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– First lecture –

Content of the 1st lecture

1) A brief overview and reminder

2) General Clifford (bi-) modules and Dirac operators

Content of the 2nd lecture

1) Connections induced by Dirac (type) operators

2) The universal Dirac-Lagrangian and the Einstein-Hilbert Action

Content of the 3rd lecture
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1 A brief reminder

P. A. M. Dirac:

(i/∂
A
−m)ψ = 0 (m ≥ 0) . (1)

Geometrical interpretation:
Let R1,3 ≡ (R4, η) be the Minkowski space, where

η(eµ, eν) :=


+1 , for all µ = ν = 0 ,
−1 , for all 1 ≤ µ = ν ≤ 3 ,

0 , for all 0 ≤ µ 6= ν ≤ 3
(2)

with respect to the standard basis e0, e1 . . . , e3 ∈ R4.

Also, let Cl1,3 be the real, associative algebra with unit that is generated by the standard basis
of R1,3 according to the relations:

eµeν + eνeµ = 2 η(eµ, eν) (0 ≤ µ, ν ≤ 3) . (3)

Clearly, Cl1,3 ' Cl(R4, η): the universal Clifford algebra of the quadratic space (R4, η).

The spin group:

Spin(1, 3) := expCl(σ
−1
Ch Λ2R1,3) ⊂ Cl1,3 (4)

is the two-fold covering group of SO(1, 3). Here,

σCh : Cl1,3
'−→ ΛR1,3

ei1ei2 · · · eik 7→ ei1 ∧ ei2 · · · ∧ eik , (5)

for all 0 ≤ i1 < i2 < · · · < ik ≤ 3 and k = 0, . . . , 3.

The (geometrical) spinor module:

S := ΛW , (6)

where W ⊂ R1,3 ⊗R C is a maximal isotropic subspace with respect to ηC, such that

R1,3 ⊗R C 'C W ⊕W∗ . (7)
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It follows that

ClC1,3 'C End(S) , (8)

according to the Clifford map:

γW : R1,3 ⊗ C −→ End(S)

v = w + u∗ 7→
{
S −→ S
z 7→

√
2 (ext(w)z + int(u∗)z) .

(9)

Furthermore,

S = SR ⊕ SL , (10)

according to the parity operator:

τM := iγW(e0 · · · e3) , (11)

with SR/L being the irreducible Weyl modules with respect to Spin(1, 3).

The (electromagnetically) charged Dirac spinor fields:

ψ ∈ C∞(R1,3, E) , (12)

where

E := S ⊗C C . (13)

“The” (gauge covariant) Dirac operator:

i/∂
A

= iγW(eµ) ◦ (∂µ + iAµ) , (14)

with A ∈ Ω1(R1,3) being the electromagnetic gauge potential.

Two basic features:

1) For τMψR/L = ±ψR/L, such that ψ = ψR + ψL:

i/∂
A
ψ = mψ ⇔

{
i/∂

A
ψR = mψL ,

i/∂
A
ψL = mψR .

(15)
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2) There exists an intertwiner:

C : S −→ S̄ , (16)

such that

C−1 = C̄ , C ◦ τM ◦ C−1 = −τ̄M , (17)

The corresponding anti-linear involution:

J : E −→ E
z 7→ zcc ≡ C−1(z̄) (18)

is called charge conjugation.

Charge conjugation anti-commutes with parity:

J ◦ τM ◦ J = −τM . (19)

It follows that

(i/∂ −m)ψ = γW(A)ψ ⇔ (i/∂ −m)ψcc = −γW(A)ψcc . (20)

Physical interpretation: When “quantized” the Dirac spinor

– ψ: state of a (quantum) particle of mass m and charge +1;
– ψcc: state of a (quantum) anti-particle of mass m and charge −1.

E. Majorana:

i/∂ψ = mψcc , (21)

where ψ carries the trivial representation of U(1).

Basic feature:

i/∂ψ = mψcc ⇔
{
i/∂ψR = mψcc

R ,
i/∂ψL = mψcc

L .
(22)

Majorana module:

M := {z ∈ E | zcc = z} , (23)
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such that

E =M⊗R C . (24)

Each Majorana spinor field: χ ∈ C∞(R1,3,M), reads:

χ = ψ + ψcc , τMψ = ±ψ ∈ C∞(M, E) . (25)
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2 General Clifford modules and Dirac operators

Let (M, gM) be an orientable (semi-)Riemannian manifold of even dimension n = p + q ≥ 2 and
signature s = p− q ∈ Z.

Also, let ClM � M be the induced Clifford bundle:

ClM := SOM ×SO(p,q) Clp,q −→ M

a = [(q, a)] 7→ x = πSO(q) . (26)

Here,

πSO(q) : SOM

ιg
↪→ FM � M

q 7→ π(ιg(q)) (27)

is the gM−induced SO(p, q)−reduction of the (oriented) frame bundle π : FM � M of M .

Proposition 2.1 The set of all smooth SO(p, q)−reductions (SOM, ιg) of the (oriented) frame bundle
of M is in one-to-one correspondence with the set of all smooth sections of the “Einstein-Hilbert
bundle”:

EEH := FM ×GL(n) GL(n)/SO(p, q) � M
[(p, [h])] 7→ π(p) . (28)

Basically, this results from

FM � FM/SO(p, q) ' FM ×GL(n) GL(n)/SO(p, q) (29)

is an SO(p, q)−principal bundle.

Definition 2.1 A “Clifford module bundle”

(E , γE) � (M, gM) (30)

is a Z2−graded (complex) vector bundle πE : E = E+ ⊕ E− →M , together with an odd Clifford map:

γE : T ∗M −→ End(E)

α 7→
{
E −→ E
z 7→ γE(α)z ,

(31)

whereby

{τE , γE(α)} ≡ 0 , γE(α)2 = εgM(α, α) idE (ε = ±1) . (32)
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The sub-algebra

Endγ(E) := {B ∈ End(E) | [γE(α), B] ≡ 0} (33)

denotes the “commutant” with respect to the induced “Clifford action”

γE : ClM −→ End(E)
a 7→ γE(a) . (34)

(35)

Definition 2.2 A “Clifford bi-module bundle” is a Z2−graded vector bundle, which carries a repre-
sentation of both the algebra bundle of Clifford algebras and of the opposite Clifford algebras.

Proposition 2.2 The mapping

ClCM ⊗M Endγ(E) −→ End(E)
a⊗B 7→ γE(a) ◦B (36)

is a (bundle) isomorphism (over the identity on M).

This is a consequence of the Wedderburn Theorems about equivariant (linear) mappings.

Corollary 2.1 It follows that

Sec(M,End(E)) ' Ω∗(M,Endγ(E)) ≡ Sec(M,
⊕

k∈ZΛk
M ⊗M Endγ(E)) , (37)

This is mainly due to Chevalley’s linear isomorphism between the Clifford and the Grassmann
bundle:

σCh : ClM −→ ΛM

a 7→ γCh(a)1Λ . (38)

Here,

γCh : T ∗M −→ End(ΛM)

α 7→
{

ΛM −→ ΛM

ω 7→ ext(α)ω + εint(α)ω
(39)

denotes the canonical Clifford action on the Grassmann bundle of M :

ΛM := SOM ×SO(p,q) Λp,q � M
ω = [(q, z)] 7→ π(ιg(q)) . (40)
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Definition 2.3 Let E = E+ ⊕ E− � M be a (complex) vector bundle. A first order differential
operator /D, acting on Sec(M, E), is called of “Dirac type”, provided the principal symbol of /D2

defines an SO(p, q)−reduction gM ∈ Sec(M, EEH) of the frame bundle of M .
Furthermore, a Dirac type operator /D on Sec(M, E) is called a “Dirac operator”, if it is odd with

respect to the Z2−grading of E � M :

{τE , /D} ≡ 0 . (41)

The set of all Dirac type operators on E � M is denoted by D(E). The set of all Dirac operators is
denoted by D(E).

Remark:
Every Dirac type operator /D turns the vector bundle E � M into a Clifford module bundle, for

T ∗M ×M E −→ E
(df, z) 7→ [ /D, f ]z (42)

yields a Clifford map.
Moreover, the set of all Dirac type operators, which yield the same Clifford action on E � M ,

is an affine space with the underlying vector space being given by Ω0(M,End(E)). Likewise, the
set of all Dirac operators, which give rise to the same Clifford action, is an affine space modeled
over Ω0(M,End−(E)). The affine space of all Dirac type operators with the same Clifford action is
denoted by Dγ(E). Accordingly, the affine space of all Dirac operators with the same Clifford action
is given by Dγ(E).

Proposition 2.3 Let (M, gM) be an orientable, even-dimensional (semi-)Riemannian spin-manifold.
Also, let S � M be a spinor bundle associated with a chosen spin structure. The mapping

S ⊗M Homγ(S, E) −→ E
z ⊗ φ 7→ φ(z) (43)

is a (bundle) isomorphism (over the identity on M).
Consequently, ever Clifford module bundle over a spin-manifold is equivalent to a “twisted spinor

bundle”:

E 'C S ⊗M W , (44)

where W := Homγ(S, E).

Again, this follows from the Wedderburn Theorems about equivariant (linear) mappings.

Note that in the case of a spin-manifold: Endγ(E) ' End(W).
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Two (basic) Examples:

• Twisted spinor bundles: E := S ⊗M E � M , with E � M being a (maybe trivially) Z2−graded
vector bundle.

Endγ(E) = End(E) . (45)

• Twisted Grassmann bundles: E := ΛM ⊗M E � M .

Endγ(E) = End(S∗)⊗M End(E)

'C (Clop
M )C ⊗M End(E) . (46)


