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Aims of the lectures

We want to understand asymptotic properties of noncompact
Riemannian, or pseudo-Riemannian, manifolds (M, g).

To this purpose, we try to attach a boundary to (M, g),
encoding the geometric structure at infinity.
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Here is a procedure to build such a boundary :

Look for another (pseudo)-Riemannanian manifold (N, h) of
the same dimension as (M, g) and an embedding

σ : (M, g)→ (N, h),

which is not onto.

This way, we get a “boundary at infinity” ∂σ(M) as the
topological boundary of σ(M) in N.

Of course, some natural geometric conditions are to be put on
σ so that ∂σ(M) reflects the geometry at infinity.
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First attempt

A first possibility would be to require σ : (M, g)→ (N, h) to
be an isometric embedding.

But this is too strong an assumption.

Lemma

Let (M, g) be a complete pseudo-Riemannian n-dimensional
manifold, and σ : (M, g)→ (N, h) an isometric embedding, where
(N, h) is also n-dimensional. Then the map σ is onto.
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Second attempt

We relax a little bit the condition on the embedding
σ : (M, g)→ (N, h).

We only require σ to be conformal, namely σ∗h = e2ϕg for
some smooth function ϕ : M → R.

In Riemannian signature, conformal just means that σ
preserves angles between curves.

In Lorentzian signature, σ preserves the distribution of
lightcones, namely σ preserves causality.
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Let (M, g) be a noncompact pseudo-Riemannian manifold of type
(p, q).

Definition (Conformal boundary)

Let σ : (M, g)→ (N, h) be a conformal embedding, where
dimM = dimN, and (N, h) is compact. Then the topological
boundary of σ(M) in N is called a conformal boundary for
(M, g), and denoted ∂σM.

We can replace the condition (N, h) compact by (N, h)
conformally maximal.

Observe that with this definition, ∂σ(M) might be very
irregular.
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Some basic examples

The (inverse of) the stereographic projection embeds the euclidean
space En into the round sphere Sn.

Stereographic projection of pole ν.

This yields a single point as the conformal boundary of En.
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The real hyperbolic space Hn is the unit euclidean ball
endowed with the metric

4geucl
(1− ||x ||2)2

.

It clearly embeds conformally in Sn as a ball. The conformal
boundary we obtain this way is topologically a (n− 1)−sphere.

Moreover this sphere is naturally endowed with a Riemannian
conformal structure, which is the standard one :
∂σHn ' Sn−1.

More generally, we will see that all pseudo-Riemannian
1-connected complete spaces of constant curvature inherit a
conformal boundary, by embedding them into a nice
“universal” space.
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Einstein’s universe

Let p and q be two integers, p ≤ q, p + q = n at least 2.

We endow Rp+q with the quadratic form

qp+1,q+1 = −x2
0 − x2

1 − . . .− x2
p−1 + x2

p + . . .+ x2
n+1.

We call Cp+1,q+1 the null cone of qp+1,q+1, and Qp,q the
projectivization of Cp+1,q+1 in RPn.

Lemma

The quadric Qp,q inherits from qp+1,q+1 a natural conformal class
[g ] of type (p, q).

The pair (Qp,q, [g ]) is called Einstein’s universe of type (p, q),
denoted by Einp,q.
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Topology

let Σ be the euclidean sphere in Rn+2. Then Cp+1,q+1 ∩ Σ is
diffeomorphic to Sp × Sq, and is a covering of order 2 of
Einp,q.

If we lift the conformal structure of Einp,q to this double
covering, we just get the conformal structure [−gSp ⊕ gSq ] on

Sp × Sq. We adopt the notation Êin
p,q

for this space.
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Conformal group

By construction of Einp,q, there is a conformal action of
PO(p + 1, q + 1) on Einp,q. Actually, the conformal group of
Einp,q is exactly PO(p + 1, q + 1).

Theorem (Liouville)

We assume p + q ≥ 3. Let U and V be two connected open
subsets of Einp,q, and

ϕ : U → V

a conformal transformation. Then there exists a unique
g ∈ PO(p + 1, q + 1) coinciding with ϕ on U.
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Lightcones and photons

A remarkable fact : in a pseudo-Riemannian manifold, all
metrics in a same conformal class have the same
unparametrized lightlike geodesics.

In Einp,q, all lightlike geodesics are obtained as projections
π(P), where P is a null 2-plane in Rp+1,q+1.

The set of all lightlike geodesics through a same point is
called a lightcone.

If x = π(x̃) is a point of Einp,q, the lightcone C (x) is the set

π(x̃⊥ ∩ Cp+1,q+1).

C (x) \ {x} ' R× Einp−1,q−1.
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A Lorentzian lightcone

Here is a lightcone in the lorentzian Einstein’s universe Ein1,n−1.
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Conformal compactification of Minkowski space

We call Minkowski space of type (p, q), denoted Minp,q, the
manifold Rp+q endowed with the flat metric

−dx2
1 − . . . dx2

p + dx2
p+1 + . . .+ dx2

p+q.

Proposition

There exists a conformal embedding

σ : Minp,q → Einp,q.

The image σ(Minp,q) is a dense open subset of Einp,q, the
boundary of which is a lightcone in Einp,q.

In any nonriemannian signature, the boundary of Minkowski
space in Einp,q is never smooth.
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Instead of qp+1,q+1, we work with

q̃(x) = 2x0xn+1 − x2
1 − . . .− x2

p + x2
p+1 + . . .+ x2

n .

We will identify Minp,q with Span(e1, . . . , en).

Define σ : Minp,q → Einp,q by

x 7→ [−1

2
q̃(x) : x : 1].

The map σ is conformal and its image is everything but
π(e⊥0 ∩ Cp+1,q+1).
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De Sitter space

In R1,n, we consider the quadric

{x ∈ R1,n | q1,n(x) = +1}.

The restriction of q1,n to this quadric has signature (1, n − 1).
This defines de Sitter space of dimension n, denoted dSn.

De Sitter space is diffeomorphic to R× Sn−1, and is complete
of constant sectional curvature +1.

The map σ : x = (x1, . . . , xn+1) 7→ [1, x1 . . . xn+1] maps dSn

conformally into Ein1,n−1.

The boundary ∂σ(dSn) is a (n − 1)−Riemannian sphere.
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Anti-de Sitter space

In R2,n−1, we consider the quadric

{x ∈ R2,n−1 | q2,n(x) = −1}.

The restriction of q2,n−1 to this quadric has signature
(1, n − 1). This defines anti-de Sitter space of dimension n,
denoted AdSn.

Anti-de Sitter space is diffeomorphic to S1 × Rn−1, and is
complete of constant sectional curvature −1.

The map σ : x = (x0, . . . , xn) 7→ [x0 . . . xn, 1] maps AdSn

conformally into Ein1,n−1.

The boundary ∂σ(AdSn) is a codimension 1 Einstein’s
sub-universe Ein1,n−2.
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Other spaces

As an exercise, and using maps built in the same way as those we
just studied, you can check that the spaces below can be

embedded conformally either in Sn, or in Ein1,n−1, or in Êin
1,n−1

,
and determine the conformal boundary obtained in this way.

The Riemannian product Hk × Sn−k, 1 ≤ k ≤ n − 1.

The Lorentzian product AdSk × Sn−k, 2 ≤ k ≤ n − 1 (use an

embedding into Êin
1,n−1

).

The Lorentzian product dSn−1 × E1.

The Lorentzian product (−E1)×Hn−1.
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