◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conformal boundaries in pseudo-Riemannian geometry II

Charles Frances

Université Paris-Sud ORSAY

SRNÍ 2014

An existence issue

An existence issue

Let (M, g) be a noncompact pseudo-Riemannian manifold of type (p, q).

 The definition of the conformal boundary we gave used explicitly a (non surjective) conformal embedding
 σ : (M,g) → (N, h) into another pseudo-riemannian manifold.

An existence issue

- The definition of the conformal boundary we gave used explicitly a (non surjective) conformal embedding
 σ : (M,g) → (N, h) into another pseudo-riemannian manifold.
- This raises two natural questions :

An existence issue

- The definition of the conformal boundary we gave used explicitly a (non surjective) conformal embedding
 σ : (M,g) → (N, h) into another pseudo-riemannian manifold.
- This raises two natural questions :
 - The first one is the existence of such embeddings

An existence issue

- The definition of the conformal boundary we gave used explicitly a (non surjective) conformal embedding
 σ : (M,g) → (N, h) into another pseudo-riemannian manifold.
- This raises two natural questions :
 - The first one is the existence of such embeddings
 The second one is the independence of the boundary from the conformal embedding.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

About the existence issue

Question (existence issue)

Let (M, g) be a noncompact pseudo-Riemannian manifold. Does there exist any pseudo-Riemannian manifold (N, h) of type (p, q), together with a conformal embedding

$$\sigma: (M,g) \to (N,h)$$

such that σ is not onto.

About the existence issue

Question (existence issue)

Let (M, g) be a noncompact pseudo-Riemannian manifold. Does there exist any pseudo-Riemannian manifold (N, h) of type (p, q), together with a conformal embedding

$$\sigma: (M,g) \to (N,h)$$

such that σ is not onto.

• When such embedding σ as above do not exist, we say that (M,g) is conformally maximal.

About the existence issue

Question (existence issue)

Let (M, g) be a noncompact pseudo-Riemannian manifold. Does there exist any pseudo-Riemannian manifold (N, h) of type (p, q), together with a conformal embedding

 $\sigma: (M,g) \to (N,h)$

such that σ is not onto.

- When such embedding σ as above do not exist, we say that (M,g) is conformally maximal.
- The notion of maximality can be formulated for any class of geometric structure, and can be seen as a weak notion of completeness.

・ロト・日本・モート モー うへぐ

A unicity issue

Assume now that (M,g) is noncompact and not conformally maximal.

A unicity issue

Assume now that (M,g) is noncompact and not conformally maximal.

Question (Unicity issue)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A unicity issue

Assume now that (M,g) is noncompact and not conformally maximal.

Question (Unicity issue)

Let (M, g) be a pseudo-Riemannian manifold. Let (N_1, h_1) and (N_2, h_2) be two compact pseudo-riemannian manifolds having same dimension as M.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A unicity issue

Assume now that (M,g) is noncompact and not conformally maximal.

Question (Unicity issue)

Let (M, g) be a pseudo-Riemannian manifold. Let (N_1, h_1) and (N_2, h_2) be two compact pseudo-riemannian manifolds having same dimension as M. Assume

$$\sigma_1: (M,g) \to (N_1,h_1),$$

$$\sigma_2: (M,g) \to (N_2,h_2)$$

are two conformal embeddings.

A unicity issue

Assume now that (M,g) is noncompact and not conformally maximal.

Question (Unicity issue)

Let (M, g) be a pseudo-Riemannian manifold. Let (N_1, h_1) and (N_2, h_2) be two compact pseudo-riemannian manifolds having same dimension as M. Assume

$$\sigma_1: (M,g) \to (N_1,h_1),$$

$$\sigma_2: (M,g) \rightarrow (N_2,h_2)$$

are two conformal embeddings. Are $\partial_{\sigma_1} M$ and $\partial_{\sigma_2} M$ the same?

A unicity issue

Assume now that (M,g) is noncompact and not conformally maximal.

Question (Unicity issue)

Let (M, g) be a pseudo-Riemannian manifold. Let (N_1, h_1) and (N_2, h_2) be two compact pseudo-riemannian manifolds having same dimension as M. Assume

$$\sigma_1: (M,g) \to (N_1,h_1),$$

$$\sigma_2: (M,g) \to (N_2,h_2)$$

are two conformal embeddings. Are $\partial_{\sigma_1} M$ and $\partial_{\sigma_2} M$ the same?

• In other words, we ask wether the conformal boundary, which was defined as an extrinsic notion, is actually intrinsic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conformally maximal structures I

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Conformally maximal structures I

Theorem

- 日本 - 1 日本 - 日本 - 日本

Conformally maximal structures I

Theorem

Let (M, g) be a homogeneous Riemannian manifold of dimension $n \ge 3$. Then it is conformally maximal except if it is conformally diffeomorphic to one of the following spaces :

1 The Euclidean space \mathbf{E}^n .

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Conformally maximal structures I

Theorem

- **1** The Euclidean space \mathbf{E}^n .
- **2** The real hyperbolic space \mathbf{H}^n .

Conformally maximal structures I

Theorem

- **1** The Euclidean space \mathbf{E}^n .
- **2** The real hyperbolic space \mathbf{H}^n .
- The Riemannian product H^m × S^k, with m ≥ 1, k ≥ 1, m + k ≥ 3 (with the convention that H¹ is the 1-dimensional Euclidean space and S¹ is the circle endowed with the homogeneous Riemannian metric of total length 2π).

Conformally maximal structures I

Theorem

- **1** The Euclidean space \mathbf{E}^n .
- **2** The real hyperbolic space \mathbf{H}^n .
- The Riemannian product H^m × S^k, with m ≥ 1, k ≥ 1, m + k ≥ 3 (with the convention that H¹ is the 1-dimensional Euclidean space and S¹ is the circle endowed with the homogeneous Riemannian metric of total length 2π).
 - Except for the real hyperbolic space, all symmetric spaces of noncompact type are conformally maximal.

Conformally maximal structures I

Theorem

- **1** The Euclidean space \mathbf{E}^n .
- **2** The real hyperbolic space \mathbf{H}^n .
- The Riemannian product H^m × S^k, with m ≥ 1, k ≥ 1, m + k ≥ 3 (with the convention that H¹ is the 1-dimensional Euclidean space and S¹ is the circle endowed with the homogeneous Riemannian metric of total length 2π).
 - Except for the real hyperbolic space, all symmetric spaces of noncompact type are conformally maximal.
 - Subtle phenomena : E¹ × Sⁿ⁻¹ is not conformally maximal, while E¹ × RPⁿ⁻¹ is.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conformally maximal structures II

Theorem

The following riemannian manifolds are conformally maximal :

Conformally maximal structures II

Theorem

The following riemannian manifolds are conformally maximal :

 All complete flat riemannian manifolds of dimension n ≥ 3, except the Euclidean space Eⁿ.

Conformally maximal structures II

Theorem

The following riemannian manifolds are conformally maximal :

- All complete flat riemannian manifolds of dimension n ≥ 3, except the Euclidean space Eⁿ.
- ② All complete manifolds of constant curvature −1 and finite volume (again of dimension n ≥ 3).

Conformally maximal structures II

Theorem

The following riemannian manifolds are conformally maximal :

- All complete flat riemannian manifolds of dimension n ≥ 3, except the Euclidean space Eⁿ.
- ② All complete manifolds of constant curvature −1 and finite volume (again of dimension n ≥ 3).
 - The first point fails in dimension 2.

・ロト・日本・モト・モート ヨー うへで

Unicity results

Unicity results

Theorem

Let (L, g) and (N, h) be two connected, compact, n-dimensional Riemannian manifolds, $n \ge 3$.

Unicity results

Theorem

Let (L, g) and (N, h) be two connected, compact, n-dimensional Riemannian manifolds, $n \ge 3$. Let $\Lambda \subset L$ be a closed subset such that $\mathcal{H}^{n-1}(\Lambda) = 0$.

Unicity results

Theorem

Let (L, g) and (N, h) be two connected, compact, n-dimensional Riemannian manifolds, $n \ge 3$. Let $\Lambda \subset L$ be a closed subset such that $\mathcal{H}^{n-1}(\Lambda) = 0$. Let $\sigma : L \setminus \Lambda \to N$ a conformal embedding.

Unicity results

Theorem

Let (L, g) and (N, h) be two connected, compact, n-dimensional Riemannian manifolds, $n \ge 3$. Let $\Lambda \subset L$ be a closed subset such that $\mathcal{H}^{n-1}(\Lambda) = 0$. Let $\sigma : L \setminus \Lambda \to N$ a conformal embedding. Then σ extends to a conformal diffeomorphism

 $\sigma: (L,g) \to (N,h).$

Unicity results

Theorem

Let (L, g) and (N, h) be two connected, compact, n-dimensional Riemannian manifolds, $n \ge 3$. Let $\Lambda \subset L$ be a closed subset such that $\mathcal{H}^{n-1}(\Lambda) = 0$. Let $\sigma : L \setminus \Lambda \to N$ a conformal embedding. Then σ extends to a conformal diffeomorphism

$$\sigma:(L,g)\to (N,h).$$

• Illustration in the case of the Euclidean space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Normal Cartan connection

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Normal Cartan connection

• Ein^{$$p,q$$} \simeq PO($p + 1, q + 1$)/ P , where
 $P = (\mathbb{R}^*_+ \times O(p + Q)) \ltimes \mathbb{R}^n$.

Normal Cartan connection

- Ein^{p,q} \simeq PO(p + 1, q + 1)/P, where $P = (\mathbb{R}^*_+ \times O(p + Q)) \ltimes \mathbb{R}^n$.
- Following Felix Klein : "A geometry is the set of properties invariant under the (transitive) action of a (Lie) group". So what is the geometry preserved by PO(p + 1, q + 1) on Ein^{p,q}?

Normal Cartan connection

- Ein^{p,q} \simeq PO(p + 1, q + 1)/P, where $P = (\mathbb{R}^*_+ \times O(p + Q)) \ltimes \mathbb{R}^n$.
- Following Felix Klein : "A geometry is the set of properties invariant under the (transitive) action of a (Lie) group". So what is the geometry preserved by PO(p + 1, q + 1) on Ein^{p,q}?
- "The natural conformal class of type (p,q) on **Ein**^{p,q}" is a good answer.
Normal Cartan connection

We go back to Einstein's universe of type (p, q).

- Ein^{p,q} \simeq PO(p + 1, q + 1)/P, where $P = (\mathbb{R}^*_+ \times O(p + Q)) \ltimes \mathbb{R}^n$.
- Following Felix Klein : "A geometry is the set of properties invariant under the (transitive) action of a (Lie) group". So what is the geometry preserved by PO(p + 1, q + 1) on Ein^{p,q}?
- "The natural conformal class of type (p,q) on $\mathsf{Ein}^{p,q}$ " is a good answer.
- But there is another answer, which turns out to be equally good.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Normal Cartan connection

Consider the lie group G = PO(p + 1, q + 1) as a P-principal fiber bundle over Ein^{p,q}.

$$\mathsf{PO}(p+1,q+1) \to \mathsf{PO}(p+1,q+1)/P$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Normal Cartan connection

Consider the lie group G = PO(p + 1, q + 1) as a P-principal fiber bundle over Ein^{p,q}.

$$\mathsf{PO}(p+1,q+1) \to \mathsf{PO}(p+1,q+1)/P$$

• Denote by ω^{G} the left-invariant Maurer-Cartan form on PO(p + 1, q + 1).

Normal Cartan connection

Consider the lie group G = PO(p + 1, q + 1) as a P-principal fiber bundle over Ein^{p,q}.

$$\mathsf{PO}(p+1,q+1) \to \mathsf{PO}(p+1,q+1)/P$$

- Denote by ω^{G} the left-invariant Maurer-Cartan form on PO(p+1, q+1).
- Fact : any φ : PO(p+1, q+1) → PO(p+1, q+1) which is a bundle automorphism such that φ^{*}ω^G = ω^G corresponds to the left translation by some element of PO(p+1, q+1).

Normal Cartan connection

Consider the lie group G = PO(p + 1, q + 1) as a P-principal fiber bundle over Ein^{p,q}.

$$\mathsf{PO}(p+1,q+1) \to \mathsf{PO}(p+1,q+1)/P$$

- Denote by ω^{G} the left-invariant Maurer-Cartan form on PO(p+1, q+1).
- Fact : any φ : PO(p+1, q+1) → PO(p+1, q+1) which is a bundle automorphism such that φ^{*}ω^G = ω^G corresponds to the left translation by some element of PO(p+1, q+1).
- The geometric data consisting in the P-principal fiber bundle

$$PO(p+1,q+1)
ightarrow {\sf Ein}^{p,q}$$

together with the form ω^G can be considered as equivalent to the conformal class on **Ein**^{*p*,*q*}.

Normal Cartan connection

Theorem (E. Cartan)

Let (M, [g]) be a pseudo-Riemannian manifold of type (p, q) with $p + q \ge 3$. Then (M, [g]) defines in a canonical way a P-principal bundle $\hat{M} \to M$, as well as a 1-form $\omega : T\hat{M} \to \mathfrak{o}(p+1, q+1)$ with the following properties :

Normal Cartan connection

Theorem (E. Cartan)

Let (M, [g]) be a pseudo-Riemannian manifold of type (p, q) with $p + q \ge 3$. Then (M, [g]) defines in a canonical way a P-principal bundle $\hat{M} \to M$, as well as a 1-form $\omega : T\hat{M} \to \mathfrak{o}(p+1, q+1)$ with the following properties :

• For all $\hat{x} \in \hat{M}$, $\omega : T_{\hat{x}}\hat{M} \rightarrow \mathfrak{o}(p+1, q+1)$ is an isomorphism.

Normal Cartan connection

Theorem (E. Cartan)

Let (M, [g]) be a pseudo-Riemannian manifold of type (p, q) with $p + q \ge 3$. Then (M, [g]) defines in a canonical way a P-principal bundle $\hat{M} \to M$, as well as a 1-form $\omega : T\hat{M} \to \mathfrak{o}(p+1, q+1)$ with the following properties :

- For all $\hat{x} \in \hat{M}$, $\omega : T_{\hat{x}}\hat{M} \rightarrow \mathfrak{o}(p+1,q+1)$ is an isomorphism.
- For X ∈ p, the ω-constant vector field X̃ associated to X integrates into the 1-parameter group R_{exp(tX)}.

Normal Cartan connection

Theorem (E. Ca<u>rtan)</u>

Let (M, [g]) be a pseudo-Riemannian manifold of type (p, q) with $p + q \ge 3$. Then (M, [g]) defines in a canonical way a P-principal bundle $\hat{M} \to M$, as well as a 1-form $\omega : T\hat{M} \to \mathfrak{o}(p+1, q+1)$ with the following properties :

- For all $\hat{x} \in \hat{M}$, $\omega : T_{\hat{x}}\hat{M} \to \mathfrak{o}(p+1,q+1)$ is an isomorphism.
- For X ∈ p, the ω-constant vector field X̃ associated to X integrates into the 1-parameter group R_{exp(tX)}.

• For every
$$p\in P$$
, $(R_{
ho})^*\omega=(\operatorname{\mathsf{Ad}} p^{-1})\omega.$

Normal Cartan connection

Theorem (E. Cartan)

Let (M, [g]) be a pseudo-Riemannian manifold of type (p, q) with $p + q \ge 3$. Then (M, [g]) defines in a canonical way a P-principal bundle $\hat{M} \to M$, as well as a 1-form $\omega : T\hat{M} \to \mathfrak{o}(p+1, q+1)$ with the following properties :

- For all $\hat{x} \in \hat{M}$, $\omega : T_{\hat{x}} \hat{M} \to \mathfrak{o}(p+1,q+1)$ is an isomorphism.
- For X ∈ p, the ω-constant vector field X̃ associated to X integrates into the 1-parameter group R_{exp(tX)}.

• For every
$$p \in P$$
, $(R_p)^*\omega = (\operatorname{Ad} p^{-1})\omega$.

• The unicity of ω is ensured by suitable normalization conditions on its curvature

Normal Cartan connection

Theorem (E. Cartan)

Let (M, [g]) be a pseudo-Riemannian manifold of type (p, q) with $p + q \ge 3$. Then (M, [g]) defines in a canonical way a P-principal bundle $\hat{M} \to M$, as well as a 1-form $\omega : T\hat{M} \to \mathfrak{o}(p+1, q+1)$ with the following properties :

- For all $\hat{x} \in \hat{M}$, $\omega : T_{\hat{x}} \hat{M} \to \mathfrak{o}(p+1,q+1)$ is an isomorphism.
- For X ∈ p, the ω-constant vector field X̃ associated to X integrates into the 1-parameter group R_{exp(tX)}.

• For every
$$p\in P$$
, $(R_p)^*\omega=(\operatorname{\mathsf{Ad}} p^{-1})\omega.$

- The unicity of ω is ensured by suitable normalization conditions on its curvature
- If (M, [g]) and (N, [h]) are two conformal structures of dimension n ≥ 3, and if φ : M → N is a conformal map, then φ lifts to φ̂ : M̂ → N̂ a bundle morphism satisfying φ̂*ω^N = ω^M

Cauchy boundary of a conformal structure

Thanks to Cartan theorem, we are going to associate to **any** conformal of class [g] of pseudo-Riemannian metrics on a manifold M (dim $M \ge 3$) an abstract boundary. The construction we will present here is due to B. Schmidt, and is called "*b*-boundary construction".

Cauchy boundary of a conformal structure

Thanks to Cartan theorem, we are going to associate to **any** conformal of class [g] of pseudo-Riemannian metrics on a manifold M (dim $M \ge 3$) an abstract boundary. The construction we will present here is due to B. Schmidt, and is called "*b*-boundary construction".

• The boundary will be a metric space (well-defined up to bi-Lipschitz equivalence).

Cauchy boundary of a conformal structure

Thanks to Cartan theorem, we are going to associate to **any** conformal of class [g] of pseudo-Riemannian metrics on a manifold M (dim $M \ge 3$) an abstract boundary. The construction we will present here is due to B. Schmidt, and is called "*b*-boundary construction".

- The boundary will be a metric space (well-defined up to bi-Lipschitz equivalence).
- It will carry a continuous action of the group
 P = (ℝ^{*}₊ × O(p, q)) ⋉ ℝⁿ, and an isometric action of the conformal group Conf(M, g).

Cauchy boundary of a conformal structure

 We will see how some properties of the action of P (resp. Conf(M,g)) on the boundary will ensure conformal maximality.

Cauchy boundary of a conformal structure

- We will see how some properties of the action of *P* (resp. Conf(*M*, *g*)) on the boundary will ensure conformal maximality.
- In certain cases, the topological boundary of any conformal embedding of (M, g) into a compact manifold will be the same as this abstract boundary. Hence the topological boundary will be independent of the embedding under consideration.

Cauchy boundary of a conformal structure

Let us consider (M, [g]) a conformal structure of type (p, q), $p + q \ge 3$, and call (\hat{M}, ω^N) the associated normal Cartan bundle, endowed with the normal Cartan connection. We fix **once for all** a basis X_1, \ldots, X_n of the Lie algebra $\mathfrak{g} = \mathfrak{o}(p + 1, q + 1)$.

Cauchy boundary of a conformal structure

Let us consider (M, [g]) a conformal structure of type (p, q), $p + q \ge 3$, and call (\hat{M}, ω^N) the associated normal Cartan bundle, endowed with the normal Cartan connection. We fix **once for all** a basis X_1, \ldots, X_n of the Lie algebra $\mathfrak{g} = \mathfrak{o}(p + 1, q + 1)$.

Cauchy boundary of a conformal structure

Let us consider (M, [g]) a conformal structure of type (p, q), $p + q \ge 3$, and call (\hat{M}, ω^N) the associated normal Cartan bundle, endowed with the normal Cartan connection. We fix **once for all** a basis X_1, \ldots, X_n of the Lie algebra $\mathfrak{g} = \mathfrak{o}(p + 1, q + 1)$.

• Calling \tilde{X}_i the ω^M -constant vector field on \hat{M} corresponding to X_i , we get a global framing \mathcal{R} on \hat{M} defined at each $\hat{x} \in \hat{M}$ by

$$\mathcal{R}(\hat{x}) = (\tilde{X}_1(\hat{x}), \ldots, \tilde{X}_n(\hat{x})).$$

Cauchy boundary of a conformal structure

Let us consider (M, [g]) a conformal structure of type (p, q), $p + q \ge 3$, and call (\hat{M}, ω^N) the associated normal Cartan bundle, endowed with the normal Cartan connection. We fix **once for all** a basis X_1, \ldots, X_n of the Lie algebra $\mathfrak{g} = \mathfrak{o}(p + 1, q + 1)$.

• Calling \tilde{X}_i the ω^M -constant vector field on \hat{M} corresponding to X_i , we get a global framing \mathcal{R} on \hat{M} defined at each $\hat{x} \in \hat{M}$ by

$$\mathcal{R}(\hat{x}) = (\tilde{X}_1(\hat{x}), \ldots, \tilde{X}_n(\hat{x})).$$

• We call ρ^M the Riemannian metric making $\mathcal R$ orthonormal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cauchy boundary of a conformal structure

If x̂ and ŷ are in a same connected component of M̂, call Γ(x̂, ŷ) the set of piecewise C¹ paths, parametrized by [0, 1], joining x̂ to ŷ and defined

$$\delta_{\mathcal{M}}(\hat{x},\hat{y}) = \inf_{\gamma \in \Gamma(\hat{x},\hat{y})} \{ \int_{0}^{1} ||\gamma'(t)|| dt \}$$

Cauchy boundary of a conformal structure

If x̂ and ŷ are in a same connected component of M̂, call Γ(x̂, ŷ) the set of piecewise C¹ paths, parametrized by [0, 1], joining x̂ to ŷ and defined

$$\delta_M(\hat{x}, \hat{y}) = \inf_{\gamma \in \Gamma(\hat{x}, \hat{y})} \{ \int_0^1 ||\gamma'(t)|| dt \}$$

• We get thus a distance d_M on \hat{M} defined by $d_M(\hat{x}, \hat{y}) = \frac{\delta_M(\hat{x}, \hat{y})}{1 + \delta_M(\hat{x}, \hat{y})}$ if \hat{x} and \hat{y} are in a same connected component, and $\delta_M(\hat{x}, \hat{y}) = 2$ otherwise.

Cauchy boundary of a conformal structure

If x̂ and ŷ are in a same connected component of M̂, call Γ(x̂, ŷ) the set of piecewise C¹ paths, parametrized by [0, 1], joining x̂ to ŷ and defined

$$\delta_M(\hat{x}, \hat{y}) = \inf_{\gamma \in \Gamma(\hat{x}, \hat{y})} \{ \int_0^1 ||\gamma'(t)|| dt \}$$

- We get thus a distance d_M on \hat{M} defined by $d_M(\hat{x}, \hat{y}) = \frac{\delta_M(\hat{x}, \hat{y})}{1 + \delta_M(\hat{x}, \hat{y})}$ if \hat{x} and \hat{y} are in a same connected component, and $\delta_M(\hat{x}, \hat{y}) = 2$ otherwise.
- Let us call \hat{M}_c the Cauchy completion of the metric space (\hat{M}, d_M) . We still call d_M the extension of d_M to \hat{M}_c . The Cauchy boundary of the conformal structure is $\partial_c \hat{M} = \hat{M}_c \setminus \hat{M}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Independence of the basis

• The previous construction relied on the choice of a basis X_1, \ldots, X_n of $\mathfrak{o}(p+1, q+1)$.

Independence of the basis

- The previous construction relied on the choice of a basis X_1, \ldots, X_n of $\mathfrak{o}(p+1, q+1)$.
- Another choice of basis leads to a distance d'_M on M̂ which is bi-Lipschitz equivalent to d_M. Hence the bi-Lipschitz equivalence class of the metric space (∂_cM̂, d_M) is an invariant of the conformal structure (M, [g]).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Action of the group P.

Action of the group P.

If φ ∈ Conf(M,g) is a conformal transformation, then it lifts into φ̂ : M̂ → M̂ preserving ω^M. As a consequence, φ̂ acts isometrically for ρ^M, hence for d_M. It extends to an isometric action on (M̂_c, d_M).

Action of the group *P*.

- If φ ∈ Conf(M,g) is a conformal transformation, then it lifts into φ̂ : M̂ → M̂ preserving ω^M. As a consequence, φ̂ acts isometrically for ρ^M, hence for d_M. It extends to an isometric action on (M̂_c, d_M).
- Let p be an element of P. It does not act isometrically for ρ^M .

Action of the group *P*.

- If φ ∈ Conf(M,g) is a conformal transformation, then it lifts into φ̂ : M̂ → M̂ preserving ω^M. As a consequence, φ̂ acts isometrically for ρ^M, hence for d_M. It extends to an isometric action on (M̂_c, d_M).
- Let p be an element of P. It does not act isometrically for ρ^M. Still, we have the relation (R_p)*ω^M = Ad p⁻¹.ω^M. Thus for each x̂ ∈ M̂, the matrix of the differential of R_p at x̂, read in the frames R(x̂) and R(x̂.p) is the matrix of Ad p⁻¹ in the basis (X₁,...,X_n).

Action of the group *P*.

- If φ ∈ Conf(M,g) is a conformal transformation, then it lifts into φ̂ : M̂ → M̂ preserving ω^M. As a consequence, φ̂ acts isometrically for ρ^M, hence for d_M. It extends to an isometric action on (M̂_c, d_M).
- Let p be an element of P. It does not act isometrically for ρ^M. Still, we have the relation (R_p)*ω^M = Ad p⁻¹.ω^M. Thus for each x̂ ∈ M̂, the matrix of the differential of R_p at x̂, read in the frames R(x̂) and R(x̂.p) is the matrix of Ad p⁻¹ in the basis (X₁,...,X_n). In particular, it does not depend on the point, and there exist positive constants D_p and C_p so that :

 $D_{\rho}||u|| \leq ||D_{\hat{x}}R_{\rho}(u)|| \leq C_{\rho}||u||.$

Action of the group P.

- If φ ∈ Conf(M,g) is a conformal transformation, then it lifts into φ̂ : M̂ → M̂ preserving ω^M. As a consequence, φ̂ acts isometrically for ρ^M, hence for d_M. It extends to an isometric action on (M̂_c, d_M).
- Let p be an element of P. It does not act isometrically for ρ^M. Still, we have the relation (R_p)*ω^M = Ad p⁻¹.ω^M. Thus for each x̂ ∈ M̂, the matrix of the differential of R_p at x̂, read in the frames R(x̂) and R(x̂.p) is the matrix of Ad p⁻¹ in the basis (X₁,...,X_n). In particular, it does not depend on the point, and there exist positive constants D_p and C_p so that :

 $D_{\rho}||u|| \leq ||D_{\hat{x}}R_{\rho}(u)|| \leq C_{\rho}||u||.$

The conclusion is that R_p is Lipschitz on (M̂, d_M), hence induces a Lipschitz map of (M̂_c, d_M).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• While the action of P is free and proper on \hat{M} , it might have fixed points and/or be nonproper on $\partial_c \hat{M}$.

Action of the group P

- While the action of P is free and proper on \hat{M} , it might have fixed points and/or be nonproper on $\partial_c \hat{M}$.
- What one would rather call a boundary for M is the quotient space $\partial_c M = \partial_c \hat{M} / P$.

Action of the group P

- While the action of P is free and proper on \hat{M} , it might have fixed points and/or be nonproper on $\partial_c \hat{M}$.
- What one would rather call a boundary for M is the quotient space $\partial_c M = \partial_c \hat{M} / P$.
- But this is generally a bad idea to consider this quotient, since we lose all the interesting structures (metric space+ group action).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Boundary of Einstein's universe

Boundary of Einstein's universe

• For Einstein's universe **Ein**^{p,q}, the normal Cartan bundle is PO(p + 1, q + 1) endowed with the Maurer-Cartan connection ω^{G} .
Boundary of Einstein's universe

- For Einstein's universe **Ein**^{p,q}, the normal Cartan bundle is PO(p+1, q+1) endowed with the Maurer-Cartan connection ω^{G} .
- Because ω^G is left-invariant, ρ^G makes orthonormal a left-invariant framing, hence is a left-invariant Riemannian metric on PO(p + 1, q + 1). In particular it is complete. The metric space (!POp,!dog) is complete.

(日) (同) (三) (三) (三) (○) (○)

Boundary of Einstein's universe

- For Einstein's universe $\operatorname{Ein}^{p,q}$, the normal Cartan bundle is $\operatorname{PO}(p+1,q+1)$ endowed with the Maurer-Cartan connection ω^{G} .
- Because ω^G is left-invariant, ρ^G makes orthonormal a left-invariant framing, hence is a left-invariant Riemannian metric on PO(p + 1, q + 1). In particular it is complete. The metric space (!POp,!dog) is complete.
- It follows that the Cauchy boundary of **Ein**^{*p*,*q*} is the empty set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• We are now considering an open subset $\Omega \subset {\sf Ein}^{p,q}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We are now considering an open subset $\Omega \subset {\sf Ein}^{p,q}$
- What is the link between $\partial_c \hat{\Omega}$ and $\partial \hat{\Omega}$?

Open subsets of $Ein^{p,q}$.

- We are now considering an open subset $\Omega \subset {\sf Ein}^{p,q}$
- What is the link between $\partial_c \hat{\Omega}$ and $\partial \hat{\Omega}$?
- The problem is the following. On $\hat{\Omega}$ we have two distances : the distance d_G and the distance d_{Ω} induced by ρ^G on $\hat{\Omega}$ (using only paths in $\hat{\Omega}$). We clearly have $d_{\Omega} \ge d_G$

Open subsets of $Ein^{p,q}$.

- We are now considering an open subset $\Omega \subset {\sf Ein}^{p,q}$
- What is the link between $\partial_c \hat{\Omega}$ and $\partial \hat{\Omega}$?
- The problem is the following. On $\hat{\Omega}$ we have two distances : the distance d_G and the distance d_{Ω} induced by ρ^G on $\hat{\Omega}$ (using only paths in $\hat{\Omega}$). We clearly have $d_{\Omega} \ge d_G$
- Because (PO(p + 1, q + 1), d_G) is complete, the Cauchy boundary of (Ω̂, d_G) coincide with the topological boundary ∂Ω̂.

Open subsets of **Ein**^{p,q}

The problem is then to know when the Cauchy sequences of $(!home, d_G)$ are also Cauchy sequences in $(!home, d_\Omega)$, in which case we will conclude $\partial_c \hat{\Omega} = \partial \hat{\Omega}$.

The problem is then to know when the Cauchy sequences of $(!home, d_G)$ are also Cauchy sequences in $(!home, d_\Omega)$, in which case we will conclude $\partial_c \hat{\Omega} = \partial \hat{\Omega}$.

Proposition

Let $\Omega \subset \operatorname{Ein}^{p,q}$ be an open subset. Assume

The problem is then to know when the Cauchy sequences of $(!home, d_G)$ are also Cauchy sequences in $(!home, d_\Omega)$, in which case we will conclude $\partial_c \hat{\Omega} = \partial \hat{\Omega}$.

Proposition

Let $\Omega \subset \operatorname{\mathsf{Ein}}^{p,q}$ be an open subset. Assume

 Either Ω is a topological manifold with boundary, and ∂Ω is locally Lipschitz.

The problem is then to know when the Cauchy sequences of $(!home, d_G)$ are also Cauchy sequences in $(!home, d_\Omega)$, in which case we will conclude $\partial_c \hat{\Omega} = \partial \hat{\Omega}$.

Proposition

Let $\Omega \subset \operatorname{Ein}^{p,q}$ be an open subset. Assume

• Either $\overline{\Omega}$ is a topological manifold with boundary, and $\partial \Omega$ is locally Lipschitz.

$$Or \ \mathcal{H}^{n-1}(\partial \Omega) = 0.$$

The problem is then to know when the Cauchy sequences of $(!home, d_G)$ are also Cauchy sequences in $(!home, d_\Omega)$, in which case we will conclude $\partial_c \hat{\Omega} = \partial \hat{\Omega}$.

Proposition

Let $\Omega \subset \operatorname{Ein}^{p,q}$ be an open subset. Assume

 Either Ω is a topological manifold with boundary, and ∂Ω is locally Lipschitz.

$$Or \ \mathcal{H}^{n-1}(\partial \Omega) = 0.$$

Then $\partial_c \hat{\Omega}$ is homeomorphic to $\partial \hat{\Omega}$, and the P-action on the two spaces are conjugated.

The problem is then to know when the Cauchy sequences of $(!home, d_G)$ are also Cauchy sequences in $(!home, d_\Omega)$, in which case we will conclude $\partial_c \hat{\Omega} = \partial \hat{\Omega}$.

Proposition

Let $\Omega \subset \operatorname{Ein}^{p,q}$ be an open subset. Assume

 Either Ω is a topological manifold with boundary, and ∂Ω is locally Lipschitz.

 $Or \ \mathcal{H}^{n-1}(\partial \Omega) = 0.$

Then $\partial_c \hat{\Omega}$ is homeomorphic to $\partial \hat{\Omega}$, and the P-action on the two spaces are conjugated.

If $M = \Gamma \setminus \Omega$ is endowed with the conformal structure inherited from $\operatorname{Ein}^{p,q}$, then $\partial_c \hat{M}$ is homeomorphic to $\Gamma \setminus \partial \hat{\Omega}$, and the *P*-action is the right action of *P* on $\Gamma \setminus \partial \hat{\Omega}$.