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SRŃI 2014



Two questions about the conformal boundary Presentation of some results

An existence issue

Let (M, g) be a noncompact pseudo-Riemannian manifold of type
(p, q).

The definition of the conformal boundary we gave used
explicitely a (non surjective) conformal embedding
σ : (M, g)→ (N, h) into another pseudo-riemannian manifold.

This raises two natural questions :

1 The first one is the existence of such embeddings
2 The second one is the independence of the boundary from the

conformal embedding.
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About the existence issue

Question (existence issue)

Let (M, g) be a noncompact pseudo-Riemannian manifold. Does
there exist any pseudo-Riemannian manifold (N, h) of type (p, q),
together with a conformal embedding

σ : (M, g)→ (N, h)

such that σ is not onto.

When such embedding σ as above do not exist, we say that
(M, g) is conformally maximal.

The notion of maximality can be formulated for any class of
geometric structure, and can be seen as a weak notion of
completeness.
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A unicity issue

Assume now that (M, g) is noncompact and not conformally
maximal.

Question (Unicity issue)

Let (M, g) be a pseudo-Riemannian manifold. Let (N1, h1) and
(N2, h2) be two compact pseudo-riemannian manifolds having
same dimension as M. Assume

σ1 : (M, g)→ (N1, h1),

σ2 : (M, g)→ (N2, h2)

are two conformal embeddings. Are ∂σ1M and ∂σ2M the same ?

In other words, we ask wether the conformal boundary, which
was defined as an extrinsic notion, is actually intrinsic.
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Conformally maximal structures I

Theorem

Let (M, g) be a homogeneous Riemannian manifold of dimension
n ≥ 3. Then it is conformally maximal except if it is conformally
diffeomorphic to one of the following spaces :

1 The Euclidean space En.

2 The real hyperbolic space Hn.

3 The Riemannian product Hm × Sk , with m ≥ 1, k ≥ 1,
m + k ≥ 3 (with the convention that H1 is the 1-dimensional
Euclidean space and S1 is the circle endowed with the
homogeneous Riemannian metric of total length 2π).

Except for the real hyperbolic space, all symmetric spaces of
noncompact type are conformally maximal.

Subtle phenomena : E1 × Sn−1 is not conformally maximal,
while E1 × RPn−1 is.
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Conformally maximal structures II

Theorem

The following riemannian manifolds are conformally maximal :

1 All complete flat riemannian manifolds of dimension n ≥ 3,
except the Euclidean space En.

2 All complete manifolds of constant curvature −1 and finite
volume (again of dimension n ≥ 3).

The first point fails in dimension 2.
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Unicity results

Theorem

Let (L, g) and (N, h) be two connected, compact, n-dimensional
Riemannian manifolds, n ≥ 3.

Let Λ ⊂ L be a closed subset such
that Hn−1(Λ) = 0. Let σ : L \ Λ→ N a conformal embedding.
Then σ extends to a conformal diffeomorphism

σ : (L, g)→ (N, h).

Illustration in the case of the Euclidean space.
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Normal Cartan connection

We go back to Einstein’s universe of type (p, q).

Einp,q ' PO(p + 1, q + 1)/P, where
P = (R∗+ × O(p + Q)) nRn.

Following Felix Klein : “A geometry is the set of properties
invariant under the (transitive) action of a (Lie) group”. So
what is the geometry preserved by PO(p + 1, q + 1) on
Einp,q ?

“The natural conformal class of type (p, q) on Einp,q” is a
good answer.

But there is another answer, which turns out to be equally
good.
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Normal Cartan connection

Consider the lie group G = PO(p + 1, q + 1) as a P-principal
fiber bundle over Einp,q.

PO(p + 1, q + 1)→ PO(p + 1, q + 1)/P

Denote by ωG the left-invariant Maurer-Cartan form on
PO(p + 1, q + 1).

Fact : any ϕ : PO(p + 1, q + 1)→ PO(p + 1, q + 1) which is a
bundle automorphism such that ϕ∗ωG = ωG corresponds to
the left translation by some element of PO(p + 1, q + 1).

The geometric data consisting in the P-principal fiber bundle

PO(p + 1, q + 1)→ Einp,q

together with the form ωG can be considered as equivalent to
the conformal class on Einp,q.
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Normal Cartan connection

Theorem (E. Cartan)

Let (M, [g ]) be a pseudo-Riemannian manifold of type (p, q) with
p + q ≥ 3. Then (M, [g ]) defines in a canonical way a P-principal
bundle M̂ → M, as well as a 1-form ω : T M̂ → o(p + 1, q + 1)
with the following properties :

For all x̂ ∈ M̂, ω : Tx̂M̂ → o(p + 1, q + 1) is an isomorphism.

For X ∈ p, the ω-constant vector field X̃ associated to X
integrates into the 1-parameter group Rexp(tX ).

For every p ∈ P, (Rp)∗ω = (Ad p−1)ω.

The unicity of ω is ensured by suitable normalization
conditions on its curvature
If (M, [g ]) and (N, [h]) are two conformal structures of
dimension n ≥ 3, and if ϕ : M → N is a conformal map, then
ϕ lifts to ϕ̂ : M̂ → N̂ a bundle morphism satisfying
ϕ̂∗ωN = ωM .
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Cauchy boundary of a conformal structure

Thanks to Cartan theorem, we are going to associate to any
conformal of class [g ] of pseudo-Riemannian metrics on a manifold
M (dim M ≥ 3) an abstract boundary. The construction we will
present here is due to B. Schmidt, and is called “b-boundary
construction”.

The boundary will be a metric space (well-defined up to
bi-Lipschitz equivalence).

It will carry a continuous action of the group
P = (R∗+ × O(p, q)) nRn, and an isometric action of the
conformal group Conf(M, g).
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Cauchy boundary of a conformal structure

We will see how some properties of the action of P (resp.
Conf(M, g)) on the boundary will ensure conformal
maximality.

In certain cases, the topological boundary of any conformal
embedding of (M, g) into a compact manifold will be the
same as this abstract boundary. Hence the topological
boundary will be independant of the embedding under
consideration.
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Cauchy boundary of a conformal structure

Let us consider (M, [g ]) a conformal structure of type (p, q),
p + q ≥ 3, and call (M̂, ωN) the associated normal Cartan bundle,
endowed with the normal Cartan connection. We fix once for all a
basis X1, . . . ,Xn of the Lie algebra g = o(p + 1, q + 1).

Calling X̃i the ωM -constant vector field on M̂ corresponding to
Xi , we get a global framing R on M̂ defined at each x̂ ∈ M̂ by

R(x̂) = (X̃1(x̂), . . . , X̃n(x̂)).

We call ρM the Riemannian metric making R orthonormal.
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Cauchy boundary of a conformal structure

If x̂ and ŷ are in a same connected component of M̂, call
Γ(x̂ , ŷ) the set of piecewise C 1 paths, parametrized by [0, 1],
joining x̂ to ŷ and defined

δM(x̂ , ŷ) = inf
γ∈Γ(x̂ ,ŷ)

{
∫ 1

0
||γ′(t)||dt}

We get thus a distance dM on M̂ defined by
dM(x̂ , ŷ) = δM(x̂ ,ŷ)

1+δM(x̂ ,ŷ) if x̂ and ŷ are in a same connected

component, and δM(x̂ , ŷ) = 2 otherwise.

Let us call M̂c the Cauchy completion of the metric space
(M̂, dM). We still call dM the extension of dM to M̂c . The
Cauchy boundary of the conformal structure is
∂cM̂ = M̂c \ M̂.
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δM(x̂ , ŷ) = inf
γ∈Γ(x̂ ,ŷ)
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Independence of the basis

The previous construction relied on the choice of a basis
X1, . . . ,Xn of o(p + 1, q + 1).

Another choice of basis leads to a distance d ′M on M̂ which is
bi-Lipschitz equivalent to dM . Hence the bi-Lipschitz
equivalence class of the metric space (∂cM̂, dM) is an
invariant of the conformal structure (M, [g ]).
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Action of the group P .

If ϕ ∈ Conf(M, g) is a conformal transformation, then it lifts
into ϕ̂ : M̂ → M̂ preserving ωM . As a consequence, ϕ̂ acts
isometrically for ρM , hence for dM . It extends to an isometric
action on (M̂c , dM).

Let p be an element of P. It does not act isometrically for ρM .

Still, we have the relation (Rp)∗ωM = Ad p−1.ωM . Thus for
each x̂ ∈ M̂, the matrix of the differential of Rp at x̂ , read in
the frames R(x̂) and R(x̂ .p) is the matrix of Ad p−1 in the
basis (X1, . . . ,Xn). In particular, it does not depend on the
point, and there exist positive constants Dp and Cp so that :

Dp||u|| ≤ ||Dx̂Rp(u)|| ≤ Cp||u||.

The conclusion is that Rp is Lipschitz on (M̂, dM), hence
induces a Lipschitz map of (M̂c , dM).
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Action of the group P

While the action of P is free and proper on M̂, it might have
fixed points and/or be nonproper on ∂cM̂.

What one would rather call a boundary for M is the quotient
space ∂cM = ∂cM̂/P.

But this is generally a bad idea to consider this quotient, since
we lose all the interesting structures (metric space+ group
action).
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Boundary of Einstein’s universe

For Einstein’s universe Einp,q, the normal Cartan bundle is
PO(p + 1, q + 1) endowed with the Maurer-Cartan connection
ωG .

Because ωG is left-invariant, ρG makes orthonormal a
left-invariant framing, hence is a left-invariant Riemannian
metric on PO(p + 1, q + 1). In particular it is complete. The
metric space (!POp, !dog) is complete.

It follows that the Cauchy boundary of Einp,q is the empty set.
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Open subsets of Einp,q.

We are now considering an open subset Ω ⊂ Einp,q

What is the link between ∂cΩ̂ and ∂Ω̂ ?

The problem is the following. On Ω̂ we have two distances :
the distance dG and the distance dΩ induced by ρG on Ω̂
(using only paths in Ω̂). We clearly have dΩ ≥ dG

Because (PO(p + 1, q + 1), dG ) is complete, the Cauchy
boundary of (Ω̂, dG ) coincide with the topological boundary
∂Ω̂.
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Open subsets of Einp,q

The problem is then to know when the Cauchy sequences of
(!home, dG ) are also Cauchy sequences in (!home, dΩ), in which
case we will conclude ∂cΩ̂ = ∂Ω̂.

Proposition

Let Ω ⊂ Einp,q be an open subset. Assume

1 Either Ω is a topological manifold with boundary, and ∂Ω is
locally Lipschitz.

2 Or Hn−1(∂Ω) = 0.

Then ∂cΩ̂ is homeomorphic to ∂Ω̂, and the P-action on the two
spaces are conjugated.

If M = Γ\Ω is endowed with the conformal structure inherited
from Einp,q, then ∂cM̂ is homeomorphic to Γ\∂Ω̂, and the
P-action is the right action of P on Γ\∂Ω̂.
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