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Boundary of open subsets of Einp,q

Last time we defined a Cauchy boundary for any type-(p, q)
conformal structure (M, [g ]) of dimension ≥ 3.

We showed that the Cauchy boundary of Einstein’s universe
Einp,q was empty.

To determine the Cauchy boundary of an open subset
Ω ⊂ Einp,q, we were faced to the following problem.

Let Ω̂ be
an open subset of the complete Riemannian manifold (G , ρG )
(where G = PO(p + 1, q + 1) and ρG is left-invariant). Let dΩ

be the distance induced by ρG on Ω̂. When does the Cauchy
boundary of (Ω̂, dΩ) coincide with ∂Ω̂ ?
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Boundary of open subsets of Einp,q

The problem is to know when the Cauchy sequences of (Ω̂, dG ) are
also Cauchy sequences in (Ω̂, dΩ), in which case we will conclude
∂cΩ̂ = ∂Ω̂.

Proposition

Let Ω ⊂ Einp,q be an open subset. Assume

1 Either Ω is a topological manifold with boundary, and ∂Ω is
locally Lipschitz.

2 Or Hn−1(∂Ω) = 0.

Then ∂cΩ̂ is homeomorphic to ∂Ω̂, and the P-action on the two
spaces are conjugated.

If Γ ⊂ PO(p + 1, q + 1) is discrete, and M = Γ\Ω is Kleinian, then
∂cM̂ is homeomorphic to Γ\∂Ω̂, and the P-action is the right
action of P on Γ\∂Ω̂.
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Corollary

Let (M, g) be a complete flat manifold which is not the
Euclidean space. Then ∂cM̂ is identified to Γ\P, for some
nontrivial Γ. In particular the P action is nowhere free.

Let (M, g) be a complete hyperbolic manifold of finite volume.
Then ∂cM̂ is a smooth manifold of dimension n − 1 + dim P,
on which the P-action is minimal (all orbits are dense).
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Boundary maps

We want to use the abstract boundary to understand better
conformal embeddings. To this end, we are going to show that any
conformal embedding induces a boundary map.

In all the following, we consider σ : (M, g)→ (N, h) a conformal
embedding (dim M = dim N ≥ 3). We denote (M̂, ωM) the Cartan
bundle, and ρM , dM the metric and the distance we determined
using a basis (X1, . . . ,Xs) of o(p + 1, q + 1). We call ρN and dN

the metrics and distances determined on (N̂, ωN) using the same
basis.

The map σ lifts to σ̂ : M̂ → N̂ satisfying σ̂∗ρN = ρM . In
particular it is 1-Lipschitz from (M̂, dM) to (N̂, dN).

Hence there is a 1-Lipschitz P-equivariant extension
σ̂ext : M̂c → N̂c , which restricts to a P-equivariant boundary
map

∂σ̂ : ∂cM̂ → N̂c .
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Regular set

Because ρN might be incomplete, there is no reason, for a
point x ∈ ∂cM̂, that ∂σ̂(x) ∈ N̂.

That’s why we introduce the regular set Λ̂reg = ∂σ̂−1(N̂).

Observe that the regular set depends on the embedding σ we
are considering.
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Properties of the regular set

Proposition

We assume that our conformal embedding σ : M → N is not onto.
Then :

1 The regular set Λ̂reg is nonempty and open in ∂cM̂.

2 We have the inclusion σ̂(Λ̂reg ) ⊂ ∂(σ̂(M̂)).

Actually σ̂(Λ̂reg )
contains every accessible point of ∂(σ̂(M̂)), hence is dense in
∂(σ̂(M̂)).

3 The group P acts freely and properly on Λ̂reg ∪ M̂.

If U is an open subset in a manifold. A point x ∈ ∂U is
accesible if there exists a C 1 curve γ : [0, 1]→ U, with
γ(1) = x and γ([0, 1[) ⊂ U.
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It follows clearly from the previous proposition that if for some
conformal structure (M, [g ]), the action of the group P is free
and proper on no nonempty open subset of ∂cM̂, then
(M, [g ]) is conformally maximal.

In particular, the work done before leads directly to the

Theorem

The following riemannian manifolds are conformally maximal :

1 All complete flat riemannian manifolds of dimension n ≥ 3, except
the Euclidean space En.

2 All complete manifolds of constant curvature −1 and finite volume
(again of dimension n ≥ 3).
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Actually, with all we did so far, we have proved a more general
result :

Theorem

Let Ω ⊂ Einp,q be an open subset satisfying one of the two
conditions

Hn−1(∂Ω) = 0.

Ω is a manifold with boundary and ∂Ω is locally Lipschitz.

Let Γ ⊂ PO(p + 1, q + 1) a discrete subgroup and M = Γ\Ω a
Kleinian manifold. If the action of Γ is free and proper on no open
subset of Ω containing Ω properly, then M is conformally maximal.

This theorem is true with the same proof for any Cartan
geometry.
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Just for fun....

We just saw that if τ is a nontrivial translation of Rn, and Γ is
the subgroup generated by Γ, then En/Γ is conformally
maximal (n ≥ 3).

But... E1,n−1/Γ is not conformally maximal.

On the other hand En/Γ (or equivalently E1,n−1/Γ) is
projectively maximal.



Other results

We can also use the Cauchy boundary to get some results
about the unicity of the conformal compactification.

Theorem

Let Ω ⊂ Einp,q be an open subset satisfying Hn−1(∂Ω) = 0.

Assume that σ : Ω→ (N, h) is a conformal embedding, where
(N, h) is of type (p, q).
Then (N, h) is conformally diffeomorphic to an open subset of
Einp,q containing Ω.
In particular, if N is compact, (N, h) is conformally diffeomorphic
to Einp,q.

Application to Sk ×Hn−k, n − 1 ≥ k ≥ 1, and AdSk × Sn−k,
n − 1 ≥ k ≥ 2.
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A counter-example

For n ≥ 3, let us consider a flat torus Tn, that we see as a
quotient En/Γ. We call π : En → Tn the covering map.

Using the stereographic projection, we can also see π as a
conformal map π : Sn \ {ν} → Tn.

Check that for every open set U, π(U \ {ν}) = Tn, so that π
does not extend even continuously to Sn.

In the previous theorem, it was very important to deal with
conformal embeddings, and not merely with immersions (find
where we used it).
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A last remark

Theorem

Let (L, g) and (N, h) be two connected, compact, n-dimensional
Riemannian manifolds, n ≥ 3. Let Λ ⊂ L be a closed subset such
that Hn−1(Λ) = 0. Let σ : L \ Λ→ N a conformal embedding.
Then σ extends to a conformal diffeomorphism

σ : (L, g)→ (N, h).

This theorem looks like the previous one, but is harder to
prove, even when λ = {x0}, because the manifold L \ Λ is no
longer an open subset of the model. Actually, the Cauchy
boundary is here useless to solve the problem.
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Conclusion

We showed on a few examples how elementary arguments
involving the Cauchy boundary of a conformal structure allow
to prove some results about maximality, or uniqueness of the
conformal boundary.

These methods don’t use really the specificity of conformal
geometry, and are actually easy to generalize to other “Cartan
geometries” (CR-structures, projective structures etc...)

The main drawback of the Cauchy boundary is that we can
determine it only for few classes of spaces (here, mostly
conformally flat ones).

To get results of the same flavor for general conformal
structures, the use of the normal Cartan connection is still
powerfull, but proofs are more involved, and require other
tools (use of conformal geodesics etc...).
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