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Motivation

>

One of the most important challenges of theoretical physics:
Quantum gravity.

Method 1: Solve the problem. Most promising candidate:
String theory.

Method 2: Detour - take the inspiration from history of
physics. Reformulate Quantum field theory.

Standard formulation of Quantum field theory: space-time,
path integral, Lagrangian, locality, unitarity.

Perturbative expansion using Feynman diagrams.

Ultimate goal: Find the reformulation of Quantum field theory

where these words emerge as derived concepts from other
principle.



Motivation

>

This is an extremely hard problem with no guarantee of
success. To have any chance we should be able to do it in the
simplest set-up.

We consider the simplest Quantum field theory: N/ = 4
Super-Yang Mills theory in planar limit.

We choose one set of objects: on-shell scattering amplitudes.
In the process of reformulation we make a connection with

active area of research in combinatorics and algebraic
geometry: Positive Grassmannian G (k,n).

The final result is formulated using a new mathematical
object — Amplituhedron which is a significant generalization of
the Positive Grassmannian.



Plan of lectures

Lecture 1: Introduction to scattering amplitudes

Lecture 2: Positive Grassmannian

Lecture 3: The Amplituhedron



Very brief introduction to

Scattering Amplitudes



On-shell scattering amplitudes

>

Fundamental objects in any quantum field theory that
describe interactions of particles.

M ~ (in|out)

Each particle is characterized by the four-momentum p,, and

also by spin information.
The relevant fields have spin < 2, non-gravitational theories
have spin 0, %, 1. The information is captured for spin % by
spinor while for spin 1 by a vector. Quantum numbers: s,
m=(=s,...,S).
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On-shell: p? = m?, in many cases we consider m; = 0.

For massless amplitudes p,, has three degrees of freedom and
m is replaced by helicity h = (—s, +s5).



Kinematics

» Massless momentum p, can be written in 2x2 matrix as

Paa = O-gapa
> The fact that p® = 0 is reflected in det pas = 0. Therefore p,q
can be written as a product of two spinors A\, and ;.

Paa = )\aj\a

where in (2,2) signature A, A are real and independent while
in (3,1) signature they are complex and conjugate.

» Scalar products

<12> = 6ab>\1a>\2ba [12] = Eaéj\m)\%

are related to the original scalar product p; - p2 as

(p1+ p2)? = 2(p1 - p2) = (12)[12]



Scattering amplitudes

>

The amplitude M is a function of p, and spin information
and is directly related to the probabilities in scattering
experiment given by cross sections,

JN/dey?

Despite the physical observable is o, the amplitude M itself
satisfies many non-trivial properties from QFT.

Studying scattering amplitudes was crucial for developing QFT
in hands of Dirac, Feynman, Schwinger, Dyson and others.
Two main approaches:

» Analytic S-matrix program: the amplitude as a function can be
fixed using symmetries and consistency constraints.

» Feynman diagrams: expansion of the amplitude using pieces
that represent physical processes with virtual particles.

In history of physics the second approach was the clear winner,
demonstrated most manifestly in development of QCD.



Feynman diagrams

» Theory is characterized by the Lagrangian L, for example

Lo = 5(0,6)(09) + Ao*

» Standard QFT approach: generating functional — correlation
function — on-shell scattering amplitude.

» Diagrammatic interpretation: draw all graphs using
fundamental vertices derived from Lagrangian, and evaluate
them using certain rules.

e

» Perturbative expansion: tree-level (classical) amplitudes and
loop corrections.



Feynman diagrams

> At tree-level the amplitude is a rational function with simple
poles of external momenta and spin structure,

N(pi, si)
My= 555"~
p1bsps - - - Pr.
where the poles are of the form p? = (3=, pi)*.

> At loop level the amplitude is an integral over the rational

function,
N 7y ’L‘ve‘
ML:/d4€1...d4€L(§ k)
1.--pk

where the poles now also depend on /;.

» The class of functions we get for M, is not known in general.



Simple amplitudes

» Amplitudes are much simpler than could be predicted from
Feynman diagram approach.
» Most transparent example: Park-Taylor formula (1984)

» Original calculation: 2 — 4 tree-level scattering
Most complicated process calculated by that time.
Result written on 16 pages using small font.

Final result simplifies to one-line expression.

(ij)*
~ (12)(23)(34) (45) (56) (61)

vV vVvYyy

» The simplicity generalizes to all "MHV" amplitudes, invisible in
Feynman diagrams.
» This started a new field of research in particle physics, many
new methods and approaches have been developed. The
progress rapidly accelerated in last few years.



Simple amplitudes

» Feynman diagrams work in general for any theory with
Lagrangian, however, the results for amplitudes are artificially
complicated.

» Moreover, in many cases there are hidden symmetries for
amplitudes which are invisible in Feynman diagrams and are
only restored in the sum.

» Advantages from both approaches: perturbative QFT and
analytic theory for S-matrix.

» We use perturbative definition of the amplitude using Feynman
diagrams and it also serves like a reference result.

» On the other hand we can use properties of the S-matrix to
constrain the result: locality, unitarity, analyticity and global
symmetries.

> In our discussion we focus on the tree-level amplitudes and
integrand of loop amplitudes.



Other aspects

>

Integrated amplitudes: there is a recent activity in classifying
functions one can get for amplitudes.

In certain theories we have a good notion of transcendentality
related to the loop order of the amplitude: symbol of the
amplitude.

Relation to multiple zeta values and motivic structures.

In many theories there are also important non-perturbative
effects not seen in the standard expansion.

This is completely absent in the theory | am going to discuss
now — N =4 SYM in planar limit.

Despite it is a simple model, it is still an interesting
4-dimensional interacting theory, closed cousin of Quantum
Chromodynamics (QCD).



Toy model for gauge theories

N = 4 Super Yang-Mills theory in planar limit.

» Maximal supersymmetric version of SU(N) Yang-Mills theory,
definitely not realized in nature.

» Particle content: gauge fields "gluons”, fermions and scalars.
At tree-level: amplitudes of gluons and fermions identical to
pure Yang-Mills theory. Superfield P,

1 1 =D 1
P = G++7}AFA+inAnBSAB‘i‘geABCDnAanCF +ﬂ6ABCD77A7IB77C?7DG7

» The theory is conformal, UV finite. In planar limit (large N)
hidden infinite dimensional (Yangian) symmetry which is
completely invisible in any standard QFT approach.

» The theory is integrable: should have an exact solution. In
AdS/CFT dual to type IIB string theory on AdS; x Ss.



Properties of amplitudes in toy model

» The theory has SU(N) symmetry group, in Feynman
diagrams we get different group structures. In planar limit
only single trace survives

Mgz =Y Tr(T"T™ ... T%) Maay...0,

o/m

We consider the " color-stripped” amplitude M which is cyclic.

» New kinematical variables: n twistors Z;, points in P3, and a
set of Grassmann variables 7;. Natural SL(4) invariants
(Z1Z27374).

» The loop momentum is off-shell and has 4 degrees of freedom,
represented by a line Z4Zp in twistor space.

» The amplitude is then a rational function of (- - --) with
homogeneity 0 in all Zs with single poles. The pole structure
is dictated by locality of the amplitude:

<ZiZi+1Zij+1> or (ZAZBZiZiJrl) or <ZAZBZCZD>



Properties of amplitudes in toy model

» All amplitudes are labeled by three numbers n, k, L where a k
is a k-charge of SU(4) symmetry of the amplitude. It has
physical interpretation in terms of helicities of component
gluonic amplitudes (number of — helicity gluons). In fact we
better use the label k = k' = k — 2.

» Feynman diagram approach is extremely inefficient. For
example, n =4, k= 0:

2 3

0 1 2 3 4 5 6 7
3| 040 | 47380 | 4x10% | 6 x 10% | 1011 | 1013 | 10™®




Overview of the program

» Qur ultimate goal: to find a geometric formulation of the
scattering amplitude as a single object.

» This formulation should make all properties of the amplitude
manifest.

> It better does not use any physical concepts which should
emerge as derived properties from the geometry.

> We will proceed in two steps:

» Step 1: We find a new basis of objects which serve as building
blocks for the amplitude. It will be an alternative to Feynman
diagrams with very different properties. They will have a direct
connection to Positive Grassmannian.

» Step 2: Inspired by that we find a unique object which
represents the full scattering amplitude - Amplituhedron - a
natural generalization of Positive Grassmannian. The problem
of calculating amplitudes is then reduced to the triangulation.

» The final picture involves new mathematical structures which
should be understood more rigorously.



Scattering Amplitudes and Positive
Grassmannian




Permutations



Permutations

» Standard permutation: (1,2,...n) — (c(1),0(2),...

» Scattering process in 1 + 1 dimensions.
» Most trivial example: (1,2,3) — (3,2,1).

1 2 3



Permutations

» The picture is not unique: Yang-Baxter move

1 2 3 1 2 3

1 2 3 1 2 3

> Unfortunately, this can not be applied to 3 + 1 dimensions
» No particle creation/destruction.
» Fundamental 4pt interactions.
> We need fundamental 3pt vertices. Is there a way how to
represent a permutation with a diagram which has only 3pt
vertices?

> It is not possible to do it with a single 3pt vertex.



Permutations

» Fundamental 3pt vertices:

2 2

3 3
represent permutations (1,2,3) — (2,3,1) and
(1,2,3) — (3,2,1).
» Left-Right paths in the graph: left on white vertex, right on
black vertex.



Permutations

» Build a 4pt diagram:

» Permutations: (1,2,3,4) — (4,3,1,2), resp.
(1,2,3,4) — (3,4,1,2).

» In case k£ — k we draw the lollipop, for
(1,2,3,4) — (2,3,1,4)




Permutations

» We can build a diagram and find a permutation.

1 2

5 4
» The permutation is (1,2,3,4,5,6) — (5,4,6,1,2,3).

» Every permutation can be represented like this!



Permutations

» We can build a diagram and find a permutation.

» The permutation is (1,2,3,4,5,6) — (5,4,6,1,2,3).

» Every permutation can be represented like this!



Permutations

» There exists a different diagram that gives the same
permutation

5 4 5 4

» The map diagrams <> permutations is not unique!

» Reduced graphs: minimal number of faces (loops) - they
represent permutations.



Permutations

» There exists a different diagram that gives the same
permutation

» The map diagrams <> permutations is not unique!

» Reduced graphs: minimal number of faces (loops) - they
represent permutations.



Permutations

» There are two identity moves:

» merge-expand of black (or white) vertices

> square move

1 2 1
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Permutations

» There are two identity moves:

» merge-expand of black (or white) vertices
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1 2 1



Permutations

» Go back to the Yang-Baxter move. We expand

><q

» We could also use the substitution

Ja
K=K

and prove the same identity.



Permutations

> Then we get

T 2 3 T 2 3 r 2 3
X o o
1 2 3 1 2 3 1 2 3
T 2 3 T 2 3 r 2 3
X T % T
1 2 3 1 2 3 1 2 3

Old diagrams are included as a subset of new diagrams.



Permutations

> We will use affine permutation:

k— o(k)

where

k+n>o(k)>k
and o(k) mod k is a permutation.

1—3
214
3—-1+4=5
4—-24+4=6



Positive Grassmannian



Configuration of vectors

» Permutations <+ Configuration of vectors with consecutive
linear dependencies.

» Configuration of n pt in P*¥~1

k — o(k) means that k C span(k+1,...0(k))

1C(2,34,5,6) > a(1) =6, 2C (34,5) = o(2) =5,

g
4, 4C(5,6,1,2) = o4

3C4)—o(3)= ) =2,
5C (6,1) = o(5) = 6 C (1,2,3) = o(6) = 3.
» The permutation is (1,2,3,4,5,6) — (6,5,4,8,7,9)



The Positive Grassmannian

» Grassmannian G(k,n): space of k-dimensional planes in n
dimensions, represented by k& x n matrix modulo GL(k),

Xk k... % %k V1
C=|::: i l=1:1]=(a e ... &)
X Ok k.. % % Uk
» We can think about it as collection of k vectors vq,...,v; in

n dimensions which specify the plane.

» We consider a positive part of G(k,n) which is a space with
boundaries.



The Positive Grassmannian

> Positive part:
C=lcrca...cp

All minors
(Ci1~--cik) >0 for i1 <ig < --r <.

» Cyclic structure: ¢; — ¢, ca = ¢3, ..., cp — (=1)F ey



The Positive Grassmannian

» We can think about C' as collection n points in P*~1.

> Back to 6pt example:

100 0 O 16
C = 01 0 0 Co5 Q- Cy5
0 0 1 ¢34 c35 a-css

Five-dimensional configuration in G(3,6).



The Positive Grassmannian

» Positive part of G(k,n): convex configurations of points.

» Top cell in the Grassmannian (no constraint imposed) —
configuration of n generic points in P*~1,

» Stratification of the space is nicely provided by imposing linear
dependencies between consecutive points

2 2
1 3 1 3 1 2 1 2
—> —> ||3—>
4§54 3
5

Ute
I
(@)
e
I

6

This corresponds to sending minors of G (k,n) to zero.

» Boundaries preserve convexity: all minors of G (k,n) stay
positive (except the ones sent to zero).



Equivalence

Reduced graphs (mod identity moves)

)

Permutations

)

Configurations of vectors with linear dependencies

i)

Cells of Positive Grassmannian



Plabic graphs and Positive
Grassmannian



Plabic graphs

» These diagrams are known in the literature as " plabic graphs”
and were extensively studied by Alexander Postnikov
(math/0609764).

» He established the connection to the positive Grassmannian
and showed how to construct explicitly a matrix for each
reduced diagram.

» There is a precise definition what the "reduced” means but
the in practice it means that the diagram does not have any
bubbles.

» Bubble reduction:



Plabic graphs

> Example:

4 3

» Postnikov proved proved isomorphism between permutations
and reduced plabic graphs (modulo identity moves).
> In order to find the Grassmannian matrix for each reduced
diagram we have to choose variables.
» Edge variables.
» Face variables.

» Orientation: choose an arrow for each edge.
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Plabic graphs

> Example:

4 3

» Postnikov proved proved isomorphism between permutations
and reduced plabic graphs (modulo identity moves).
> In order to find the Grassmannian matrix for each reduced
diagram we have to choose variables.
» Edge variables.
» Face variables.

» QOrientation: choose an arrow for each edge.



Plabic graphs

> Example:

4 3

» Postnikov proved proved isomorphism between permutations
and reduced plabic graphs (modulo identity moves).
> In order to find the Grassmannian matrix for each reduced
diagram we have to choose variables.
» Edge variables.
» Face variables.

» QOrientation: choose an arrow for each edge.



Edge variables

» Variables associated with edges.

» There is a GL(1) redundancy in each vertex.
» The rule for entries of the C' matrix,

Cij=— Z H €; edges along path

paths i—J

» For this example (positive matrix for fixed signs of a;):

O — 1 0 —ajazasag —ajagasagar — apagas
01 — Q2030 — Qg7



Face variables

» Variables associated with faces.

» " Gauge invariant” (fluxes) associated with faces of the graph.
Only one condition [] f; = —
» The rule for entries of the C' matrix,

Cij=— Z H f] faces left to the path

paths i—J
» For this example:

C:<1 0 fofsfa —f0f4+f4>
0 1 —fofifsfa —fofifa



Face variables

» Moves and face variables

» Reduction: eliminate irrelevant variable

fi fifo

. 1+ /o
00 _— —

I3 S+ Jo)

» Face (or edge) variables are cluster variables and these are
cluster transformations.



