
Towards New Formulation of Quantum field theory:
Geometric Picture for Scattering Amplitudes

Part 1

Jaroslav Trnka

Winter School Srní 2014, 19-25/01/2014

Work with Nima Arkani-Hamed, Jacob Bourjaily, Freddy Cachazo,
Alexander Goncharov, Alexander Postnikov, arxiv: 1212.5605

Work with Nima Arkani-Hamed, arxiv: 1312.2007



Motivation
I One of the most important challenges of theoretical physics:

Quantum gravity.
I Method 1: Solve the problem. Most promising candidate:

String theory.
I Method 2: Detour - take the inspiration from history of

physics. Reformulate Quantum field theory.
I Standard formulation of Quantum field theory: space-time,

path integral, Lagrangian, locality, unitarity.
I Perturbative expansion using Feynman diagrams.
I Ultimate goal: Find the reformulation of Quantum field theory

where these words emerge as derived concepts from other
principle.



Motivation
I This is an extremely hard problem with no guarantee of

success. To have any chance we should be able to do it in the
simplest set-up.

I We consider the simplest Quantum field theory: N = 4
Super-Yang Mills theory in planar limit.

I We choose one set of objects: on-shell scattering amplitudes.
I In the process of reformulation we make a connection with

active area of research in combinatorics and algebraic
geometry: Positive Grassmannian G+(k, n).

I The final result is formulated using a new mathematical
object – Amplituhedron which is a significant generalization of
the Positive Grassmannian.



Plan of lectures

Lecture 1: Introduction to scattering amplitudes

Lecture 2: Positive Grassmannian

Lecture 3: The Amplituhedron



Very brief introduction to

Scattering Amplitudes



On-shell scattering amplitudes
I Fundamental objects in any quantum field theory that

describe interactions of particles.

M∼ 〈in | out〉

I Each particle is characterized by the four-momentum pµ and
also by spin information.

I The relevant fields have spin ≤ 2, non-gravitational theories
have spin 0, 12 , 1. The information is captured for spin 1

2 by
spinor while for spin 1 by a vector. Quantum numbers: s,
m = (−s, . . . , s).

I On-shell: p2i = m2
i , in many cases we consider mi = 0.

I For massless amplitudes pµ has three degrees of freedom and
m is replaced by helicity h = (−s,+s).



Kinematics
I Massless momentum pα can be written in 2x2 matrix as

paȧ = σαaȧpα

I The fact that p2 = 0 is reflected in det paȧ = 0. Therefore paȧ
can be written as a product of two spinors λa and λ̃ȧ.

paȧ = λaλ̃ȧ

where in (2,2) signature λ, λ̃ are real and independent while
in (3,1) signature they are complex and conjugate.

I Scalar products

〈12〉 = εabλ1aλ2b, [12] = εȧḃλ̃1ȧλ̃2ḃ

are related to the original scalar product p1 · p2 as

(p1 + p2)
2 = 2(p1 · p2) = 〈12〉[12]



Scattering amplitudes
I The amplitude M is a function of pµ and spin information

and is directly related to the probabilities in scattering
experiment given by cross sections,

σ ∼
∫
dΩ |M|2

I Despite the physical observable is σ, the amplitude M itself
satisfies many non-trivial properties from QFT.

I Studying scattering amplitudes was crucial for developing QFT
in hands of Dirac, Feynman, Schwinger, Dyson and others.

I Two main approaches:
I Analytic S-matrix program: the amplitude as a function can be

fixed using symmetries and consistency constraints.
I Feynman diagrams: expansion of the amplitude using pieces

that represent physical processes with virtual particles.
I In history of physics the second approach was the clear winner,

demonstrated most manifestly in development of QCD.



Feynman diagrams
I Theory is characterized by the Lagrangian L, for example

Lφ4 =
1

2
(∂µφ)(∂µφ) + λφ4

I Standard QFT approach: generating functional → correlation
function → on-shell scattering amplitude.

I Diagrammatic interpretation: draw all graphs using
fundamental vertices derived from Lagrangian, and evaluate
them using certain rules.

I Perturbative expansion: tree-level (classical) amplitudes and
loop corrections.



Feynman diagrams
I At tree-level the amplitude is a rational function with simple

poles of external momenta and spin structure,

M0 =
N(pi, si)

p21p
2
2p

2
3 . . . p

2
k

where the poles are of the form p2j = (
∑

k pk)
2.

I At loop level the amplitude is an integral over the rational
function,

ML =

∫
d4`1 . . . d

4`L
N(pi, si, `j)

p21 . . . p
2
k

where the poles now also depend on `i.
I The class of functions we get for ML is not known in general.



Simple amplitudes
I Amplitudes are much simpler than could be predicted from

Feynman diagram approach.
I Most transparent example: Park-Taylor formula (1984)

I Original calculation: 2→ 4 tree-level scattering
I Most complicated process calculated by that time.
I Result written on 16 pages using small font.
I Final result simplifies to one-line expression.

M =
〈ij〉4

〈12〉〈23〉〈34〉〈45〉〈56〉〈61〉
I The simplicity generalizes to all ”MHV”amplitudes, invisible in

Feynman diagrams.

I This started a new field of research in particle physics, many
new methods and approaches have been developed. The
progress rapidly accelerated in last few years.



Simple amplitudes
I Feynman diagrams work in general for any theory with

Lagrangian, however, the results for amplitudes are artificially
complicated.

I Moreover, in many cases there are hidden symmetries for
amplitudes which are invisible in Feynman diagrams and are
only restored in the sum.

I Advantages from both approaches: perturbative QFT and
analytic theory for S-matrix.

I We use perturbative definition of the amplitude using Feynman
diagrams and it also serves like a reference result.

I On the other hand we can use properties of the S-matrix to
constrain the result: locality, unitarity, analyticity and global
symmetries.

I In our discussion we focus on the tree-level amplitudes and
integrand of loop amplitudes.



Other aspects
I Integrated amplitudes: there is a recent activity in classifying

functions one can get for amplitudes.
I In certain theories we have a good notion of transcendentality

related to the loop order of the amplitude: symbol of the
amplitude.

I Relation to multiple zeta values and motivic structures.
I In many theories there are also important non-perturbative

effects not seen in the standard expansion.
I This is completely absent in the theory I am going to discuss

now – N = 4 SYM in planar limit.
I Despite it is a simple model, it is still an interesting

4-dimensional interacting theory, closed cousin of Quantum
Chromodynamics (QCD).



Toy model for gauge theories
N = 4 Super Yang-Mills theory in planar limit.
I Maximal supersymmetric version of SU(N) Yang-Mills theory,

definitely not realized in nature.
I Particle content: gauge fields ”gluons”, fermions and scalars.

At tree-level: amplitudes of gluons and fermions identical to
pure Yang-Mills theory. Superfield Φ,

Φ = G++ηAΓA+
1

2
ηAηBSAB+

1

6
εABCDη

AηBηCΓ
D

+
1

24
εABCDη

AηBηCηDG−

I The theory is conformal, UV finite. In planar limit (large N)
hidden infinite dimensional (Yangian) symmetry which is
completely invisible in any standard QFT approach.

I The theory is integrable: should have an exact solution. In
AdS/CFT dual to type IIB string theory on AdS5 × S5.



Properties of amplitudes in toy model
I The theory has SU(N) symmetry group, in Feynman

diagrams we get different group structures. In planar limit
only single trace survives

M123...n =
∑

σ/π

Tr (T a1T a2 . . . T an) Ma1a2...an

We consider the ”color-stripped” amplitude M which is cyclic.
I New kinematical variables: n twistors Zi, points in P3, and a

set of Grassmann variables ηi. Natural SL(4) invariants
〈Z1Z2Z3Z4〉.

I The loop momentum is off-shell and has 4 degrees of freedom,
represented by a line ZAZB in twistor space.

I The amplitude is then a rational function of 〈· · ··〉 with
homogeneity 0 in all Zs with single poles. The pole structure
is dictated by locality of the amplitude:

〈ZiZi+1ZjZj+1〉 or 〈ZAZB ZiZi+1〉 or 〈ZAZBZCZD〉



Properties of amplitudes in toy model
I All amplitudes are labeled by three numbers n, k, L where a k

is a k-charge of SU(4) symmetry of the amplitude. It has
physical interpretation in terms of helicities of component
gluonic amplitudes (number of − helicity gluons). In fact we
better use the label k ≡ k′ = k − 2.

I Feynman diagram approach is extremely inefficient. For
example, n = 4, k = 0:

0 1 2 3 4 5 6 7
3 940 47.380 4× 106 6× 108 1011 1013 1015



Overview of the program
I Our ultimate goal: to find a geometric formulation of the

scattering amplitude as a single object.
I This formulation should make all properties of the amplitude

manifest.
I It better does not use any physical concepts which should

emerge as derived properties from the geometry.
I We will proceed in two steps:

I Step 1: We find a new basis of objects which serve as building
blocks for the amplitude. It will be an alternative to Feynman
diagrams with very different properties. They will have a direct
connection to Positive Grassmannian.

I Step 2: Inspired by that we find a unique object which
represents the full scattering amplitude - Amplituhedron - a
natural generalization of Positive Grassmannian. The problem
of calculating amplitudes is then reduced to the triangulation.

I The final picture involves new mathematical structures which
should be understood more rigorously.



Scattering Amplitudes and Positive
Grassmannian



Permutations



Permutations
I Standard permutation: (1, 2, . . . n)→ (σ(1), σ(2), . . . σ(n)).

I Scattering process in 1 + 1 dimensions.
I Most trivial example: (1, 2, 3)→ (3, 2, 1).



Permutations
I The picture is not unique: Yang-Baxter move

I Unfortunately, this can not be applied to 3 + 1 dimensions
I No particle creation/destruction.
I Fundamental 4pt interactions.

I We need fundamental 3pt vertices. Is there a way how to
represent a permutation with a diagram which has only 3pt
vertices?

I It is not possible to do it with a single 3pt vertex.



Permutations
I Fundamental 3pt vertices:

represent permutations (1, 2, 3)→ (2, 3, 1) and
(1, 2, 3)→ (3, 2, 1).

I Left-Right paths in the graph: left on white vertex, right on
black vertex.



Permutations
I Build a 4pt diagram:

I Permutations: (1, 2, 3, 4)→ (4, 3, 1, 2), resp.
(1, 2, 3, 4)→ (3, 4, 1, 2).

I In case k → k we draw the lollipop, for
(1, 2, 3, 4)→ (2, 3, 1, 4)



Permutations
I We can build a diagram and find a permutation.

I The permutation is (1, 2, 3, 4, 5, 6)→ (5, 4, 6, 1, 2, 3).
I Every permutation can be represented like this!
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Permutations
I There exists a different diagram that gives the same

permutation

I The map diagrams ↔ permutations is not unique!
I Reduced graphs: minimal number of faces (loops) - they

represent permutations.
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I There are two identity moves:

I merge-expand of black (or white) vertices

I square move
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Permutations
I There are two identity moves:

I merge-expand of black (or white) vertices

I square move



Permutations
I Go back to the Yang-Baxter move. We expand

I We could also use the substitution

and prove the same identity.



Permutations
I Then we get

Old diagrams are included as a subset of new diagrams.



Permutations
I We will use affine permutation:

k → σ(k)

where

k + n ≥ σ(k) ≥ k
and σ(k) mod k is a permutation.

1→ 3

2→ 4

3→ 1 + 4 = 5

4→ 2 + 4 = 6



Positive Grassmannian



Configuration of vectors
I Permutations ↔ Configuration of vectors with consecutive

linear dependencies.
I Configuration of n pt in Pk−1

k → σ(k) means that k ⊂ span(k+1, . . . σ(k))

1 ⊂ (2, 34, 5, 6)→ σ(1) = 6, 2 ⊂ (34, 5)→ σ(2) = 5,

3 ⊂ (4)→ σ(3) = 4, 4 ⊂ (5, 6, 1, 2)→ σ(4) = 2,

5 ⊂ (6, 1)→ σ(5) = 1, 6 ⊂ (1, 2, 3)→ σ(6) = 3.

I The permutation is (1, 2, 3, 4, 5, 6)→ (6, 5, 4, 8, 7, 9).



The Positive Grassmannian
I Grassmannian G(k, n): space of k-dimensional planes in n

dimensions, represented by k × n matrix modulo GL(k),

C =



∗ ∗ ∗ . . . ∗ ∗
...

...
...

...
...

...
∗ ∗ ∗ . . . ∗ ∗


 =




v1
...
vk


 =

(
c1 c2 . . . cn

)

I We can think about it as collection of k vectors v1, . . . , vk in
n dimensions which specify the plane.

I We consider a positive part of G(k, n) which is a space with
boundaries.



The Positive Grassmannian
I Positive part:

C = [c1 c2 . . . cn]

All minors

(ci1 . . . cik) > 0 for i1 < i2 < · · · < ik.

I Cyclic structure: c1 → c2, c2 → c3, . . . , cn → (−1)k+1c1.



The Positive Grassmannian
I We can think about C as collection n points in Pk−1.
I Back to 6pt example:

C =




1 0 0 0 0 c16
0 1 0 0 c25 a · c25
0 0 1 c34 c35 a · c35




Five-dimensional configuration in G(3, 6).



The Positive Grassmannian
I Positive part of G(k, n): convex configurations of points.
I Top cell in the Grassmannian (no constraint imposed) →

configuration of n generic points in Pk−1.
I Stratification of the space is nicely provided by imposing linear

dependencies between consecutive points

This corresponds to sending minors of G+(k, n) to zero.
I Boundaries preserve convexity: all minors of G+(k, n) stay

positive (except the ones sent to zero).



Equivalence

Reduced graphs (mod identity moves)
m

Permutations
m

Configurations of vectors with linear dependencies
m

Cells of Positive Grassmannian



Plabic graphs and Positive
Grassmannian



Plabic graphs
I These diagrams are known in the literature as ”plabic graphs”

and were extensively studied by Alexander Postnikov
(math/0609764).

I He established the connection to the positive Grassmannian
and showed how to construct explicitly a matrix for each
reduced diagram.

I There is a precise definition what the ”reduced” means but
the in practice it means that the diagram does not have any
bubbles.

I Bubble reduction:

As we will see, the existence of this “d log” representation for the loop integrand

is a completely general feature of all amplitudes at all loop-orders. But even the

existence of such a form would have been hard to anticipate from the more traditional

formulation of field theory. Indeed, even for the simple example of the four-particle

one-loop amplitude, (2.29), the existence of a change of variables converting d4` to

four d log’s went unnoticed for decades. We will see that these “d log”-forms follow

directly from the on-shell diagram description of scattering amplitudes generated

by the BCFW recursion relations, (2.21). Beyond their elegance, these d log-forms

suggest a completely new way of carrying out loop integrations, and more directly

expose an underlying, “motivic” structure of the final results which will be a theme

pursued in a more extensive, forthcoming work, [].

The equivalence of on-shell diagrams related by mergers and square moves clearly

represents a major simplification in the structure on-shell diagrams, but by them-

selves cannot reduce the seemingly infinite complexities available with more and

more loops as the merge and square moves don’t change the number of faces of a

graph. However, using mergers and square moves, it may be possible to represent an

on-shell digram in a way that exposes a “bubble” on an internal line. As one might

expect intuitively, there is a concrete sense in which such diagrams can be reduced,

by eliminating such bubbles:

(2.31)

Of course this can’t literally be true: there is one more integration variable in the

diagram with the bubble than the one without. What “reduction” actually means

is that there is a concrete and simple change of variables for which this extra degree

of freedom, say α, factors-out of the on-shell form cleanly as d logα—which, upon

taking the residue on a contour around α = 0, yields the reduced diagram and the

associated on-shell form.

It turns out that using mergers, square-moves and bubble-deletion, all planar,

on-shell diagrams involving n external particles can be reduced to a finite number of

diagrams. This shows that the essential content of on-shell diagrams are encapsulated

by a finite number of reduced objects. And as we will see, the extra, “irrelevant”

variables associated with bubble-deletion also have a purpose in life: they represent

the loop integration variables.
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Plabic graphs
I Example:

I Postnikov proved proved isomorphism between permutations
and reduced plabic graphs (modulo identity moves).

I In order to find the Grassmannian matrix for each reduced
diagram we have to choose variables.

I Edge variables.
I Face variables.

I Orientation: choose an arrow for each edge.
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Edge variables
I Variables associated with edges.

Once we have given a perfect orientation, the system of equations C ·λ̃ becomes

trivial to construct: each vertex can be viewed as giving an equation which expands

the λ̃’s of the vertex’s sources in terms of those of its sinks. Combining all such

equations then gives us an expansion of the external sources’ λ̃’s in terms of those of

the external sinks. Notice that when identifying two legs, (Iin, Iout) during amalga-

mation the degree of freedom lost in the process is accounted for via the replacement

of the pair (αIin , αIout) with the single variable αI ≡ αIinαIout .

If we denote the external sources of a graph by {a1, . . . , ak} ≡ A, then the final

linear relations imposed on the λ̃’s can easily be seen to be given by,

λ̃A + cAaλ̃a = 0, (4.56)

with
cAa = −

∑

Γ∈{A a}

∏

e∈Γ

αe , (4.57)

and where Γ ∈ {A a} is any (directed) path from A to a in the graph. (If there is

a closed, directed loop, then the geometric series should be summed—we will see an

example of this in (4.64).) The entries of the matrix cAa are called the “boundary

measurements” of the on-shell graph. The on-shell form on C(α)∈G(k, n) can then

be written in terms of the variables cAa according to:( ∏

vertices v

1

vol(GL(1)v)

)( ∏

edges e

dαe
αe

)
δk×4(C ·η̃)δk×2(C ·λ̃)δ2×(n−k)(λ·C⊥) . (4.58)

Let us consider a simple example to see how this works. Consider the following

perfectly oriented graph:

(4.59)

Using the equations for each directed 3-particle vertex, we can easily expand the λ̃

of each source—legs 1 and 2—in terms of those of the sinks—legs 3 and 4; e.g.,

λ̃2 = α2α6(α3λ̃3 + α7(α4λ̃4)). (4.60)

Such expansions obviously result in (4.57): the coefficient cAa of λ̃a in the expan-

sion of λ̃A is simply (minus) the product of all edge-variables αe along any path

Γ ∈ {A a}. Doing this for all the cAa of our example above, we find,

c1 3 = α1 α5 α6 α3 c1 4 = α1 α5 α6 α7 α4
+ α1 α8 α4

c2 3 = α2 α6 α3 c2 4 = α2 α6 α7 α4
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I There is a GL(1) redundancy in each vertex.
I The rule for entries of the C matrix,

CiJ = −
∑

paths i→J

∏
ei edges along path

I For this example (positive matrix for fixed signs of αi):

C =

(
1 0 −α1α3α5α6 −α1α4α5α6α7 − α1α4α8

0 1 −α2α3α6 −α2α4α6α7

)



Face variables
I Variables associated with faces.

4.6 Coordinate Transformations Induced by Moves and Reduction

Let us now examine how the identification of graphs via merge-operations, square-

moves, and bubble-deletion is reflected in the coordinates—the edge- or face-variables

—used to parameterize cells C ∈ G(k, n). As usual, the simplest of these is the

merge/un-merge operation which trivially leaves any set of coordinates unchanged.

For example, in terms of the face variables, it is easy to see that

(4.62)

The square-move is more interesting. It is obvious that squares with opposite coloring

both give us a generic configuration in G(2, 4), but (as we will soon see), the square-

move acts rather non-trivially on coordinates used to parameterize a cell,

(4.63)

Let us start by determining the precise way the face-variables fi and f ′i of square-

move related graphs are related to one another. To do this, we will provide perfect

orientations (decorated with edge variables) for both graphs, allowing us to com-

pare the resulting boundary-measurement matrices in each case. Because these two

boundary measurement matrices must represent the same point in G(2, 4), we will

be able to explicitly determine how all the various coordinate charts are related—

including the relationship between the variables fi and f ′i . Our work will be consid-

erably simplified if we remove the GL(1)-redundancies from each vertex, leaving us

with a non-redundant set of edge-variables. Of course, any choice of perfect orienta-

tions for the graphs, and any fixing of the GL(1)-redundancies would suffice for our

purposes; but for the sake of concreteness, let us consider the following:

(
1 α1 0 α4

0 α2 1 α3

) (
1 β2β3β4∆ 0 β4∆

0 β2∆ 1 β1β2β4∆

)

(4.64)
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I ”Gauge invariant”(fluxes) associated with faces of the graph.
Only one condition

∏
fi = −1.

I The rule for entries of the C matrix,

CiJ = −
∑

paths i→J

∏
(−fj) faces left to the path

I For this example:

C =

(
1 0 f0f3f4 −f0f4 + f4
0 1 −f0f1f3f4 −f0f1f4

)



Face variables
I Moves and face variables

I Reduction: eliminate irrelevant variable

I Face (or edge) variables are cluster variables and these are
cluster transformations.


