Towards New Formulation of Quantum field theory: Geometric Picture for Scattering Amplitudes

$$
\text { Part } 1
$$

Jaroslav Trnka

> Winter School Srní 2014, 19-25/01/2014

Work with Nima Arkani-Hamed, Jacob Bourjaily, Freddy Cachazo, Alexander Goncharov, Alexander Postnikov, arxiv: 1212.5605

Work with Nima Arkani-Hamed, arxiv: 1312.2007

Motivation

- One of the most important challenges of theoretical physics: Quantum gravity.
- Method 1: Solve the problem. Most promising candidate: String theory.
- Method 2: Detour - take the inspiration from history of physics. Reformulate Quantum field theory.
- Standard formulation of Quantum field theory: space-time, path integral, Lagrangian, locality, unitarity.
- Perturbative expansion using Feynman diagrams.
- Ultimate goal: Find the reformulation of Quantum field theory where these words emerge as derived concepts from other principle.

Motivation

- This is an extremely hard problem with no guarantee of success. To have any chance we should be able to do it in the simplest set-up.
- We consider the simplest Quantum field theory: $\mathcal{N}=4$ Super-Yang Mills theory in planar limit.
- We choose one set of objects: on-shell scattering amplitudes.
- In the process of reformulation we make a connection with active area of research in combinatorics and algebraic geometry: Positive Grassmannian $G_{+}(k, n)$.
- The final result is formulated using a new mathematical object - Amplituhedron which is a significant generalization of the Positive Grassmannian.

Plan of lectures

Lecture 1: Introduction to scattering amplitudes

Lecture 2: Positive Grassmannian

Lecture 3: The Amplituhedron

Very brief introduction to Scattering Amplitudes

On-shell scattering amplitudes

- Fundamental objects in any quantum field theory that describe interactions of particles.

$$
\mathcal{M} \sim\langle\text { in }| \text { out }\rangle
$$

- Each particle is characterized by the four-momentum p_{μ} and also by spin information.
- The relevant fields have spin ≤ 2, non-gravitational theories have spin $0, \frac{1}{2}, 1$. The information is captured for spin $\frac{1}{2}$ by spinor while for spin 1 by a vector. Quantum numbers: s, $m=(-s, \ldots, s)$.
- On-shell: $p_{i}^{2}=m_{i}^{2}$, in many cases we consider $m_{i}=0$.
- For massless amplitudes p_{μ} has three degrees of freedom and m is replaced by helicity $h=(-s,+s)$.

Kinematics

- Massless momentum p_{α} can be written in 2×2 matrix as

$$
p_{a \dot{a}}=\sigma_{a \dot{a}}^{\alpha} p_{\alpha}
$$

- The fact that $p^{2}=0$ is reflected in $\operatorname{det} p_{a \dot{a}}=0$. Therefore $p_{a \dot{a}}$ can be written as a product of two spinors λ_{a} and $\tilde{\lambda}_{\dot{a}}$.

$$
p_{a \dot{a}}=\lambda_{a} \tilde{\lambda}_{\dot{a}}
$$

where in $(2,2)$ signature $\lambda, \tilde{\lambda}$ are real and independent while in $(3,1)$ signature they are complex and conjugate.

- Scalar products

$$
\langle 12\rangle=\epsilon^{a b} \lambda_{1 a} \lambda_{2 b}, \quad[12]=\epsilon^{\dot{a} \dot{b}} \tilde{\lambda}_{1 \dot{a}} \tilde{\lambda}_{2 \dot{b}}
$$

are related to the original scalar product $p_{1} \cdot p_{2}$ as

$$
\left(p_{1}+p_{2}\right)^{2}=2\left(p_{1} \cdot p_{2}\right)=\langle 12\rangle[12]
$$

Scattering amplitudes

- The amplitude \mathcal{M} is a function of p_{μ} and spin information and is directly related to the probabilities in scattering experiment given by cross sections,

$$
\sigma \sim \int d \Omega|\mathcal{M}|^{2}
$$

- Despite the physical observable is σ, the amplitude \mathcal{M} itself satisfies many non-trivial properties from QFT.
- Studying scattering amplitudes was crucial for developing QFT in hands of Dirac, Feynman, Schwinger, Dyson and others.
- Two main approaches:
- Analytic S-matrix program: the amplitude as a function can be fixed using symmetries and consistency constraints.
- Feynman diagrams: expansion of the amplitude using pieces that represent physical processes with virtual particles.
- In history of physics the second approach was the clear winner, demonstrated most manifestly in development of QCD.

Feynman diagrams

- Theory is characterized by the Lagrangian \mathcal{L}, for example

$$
\mathcal{L}_{\phi^{4}}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)+\lambda \phi^{4}
$$

- Standard QFT approach: generating functional \rightarrow correlation function \rightarrow on-shell scattering amplitude.
- Diagrammatic interpretation: draw all graphs using fundamental vertices derived from Lagrangian, and evaluate them using certain rules.

- Perturbative expansion: tree-level (classical) amplitudes and loop corrections.

Feynman diagrams

- At tree-level the amplitude is a rational function with simple poles of external momenta and spin structure,

$$
M_{0}=\frac{N\left(p_{i}, s_{i}\right)}{p_{1}^{2} p_{2}^{2} p_{3}^{2} \ldots p_{k}^{2}}
$$

where the poles are of the form $p_{j}^{2}=\left(\sum_{k} p_{k}\right)^{2}$.

- At loop level the amplitude is an integral over the rational function,

$$
M_{L}=\int d^{4} \ell_{1} \ldots d^{4} \ell_{L} \frac{N\left(p_{i}, s_{i}, \ell_{j}\right)}{p_{1}^{2} \ldots p_{k}^{2}}
$$

where the poles now also depend on ℓ_{i}.

- The class of functions we get for M_{L} is not known in general.

Simple amplitudes

- Amplitudes are much simpler than could be predicted from Feynman diagram approach.
- Most transparent example: Park-Taylor formula (1984)
- Original calculation: $2 \rightarrow 4$ tree-level scattering
- Most complicated process calculated by that time.
- Result written on 16 pages using small font.
- Final result simplifies to one-line expression.

$$
M=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle\langle 61\rangle}
$$

- The simplicity generalizes to all "MHV"amplitudes, invisible in Feynman diagrams.
- This started a new field of research in particle physics, many new methods and approaches have been developed. The progress rapidly accelerated in last few years.

Simple amplitudes

- Feynman diagrams work in general for any theory with Lagrangian, however, the results for amplitudes are artificially complicated.
- Moreover, in many cases there are hidden symmetries for amplitudes which are invisible in Feynman diagrams and are only restored in the sum.
- Advantages from both approaches: perturbative QFT and analytic theory for S-matrix.
- We use perturbative definition of the amplitude using Feynman diagrams and it also serves like a reference result.
- On the other hand we can use properties of the S-matrix to constrain the result: locality, unitarity, analyticity and global symmetries.
- In our discussion we focus on the tree-level amplitudes and integrand of loop amplitudes.

Other aspects

- Integrated amplitudes: there is a recent activity in classifying functions one can get for amplitudes.
- In certain theories we have a good notion of transcendentality related to the loop order of the amplitude: symbol of the amplitude.
- Relation to multiple zeta values and motivic structures.
- In many theories there are also important non-perturbative effects not seen in the standard expansion.
- This is completely absent in the theory I am going to discuss now $-\mathcal{N}=4$ SYM in planar limit.
- Despite it is a simple model, it is still an interesting 4-dimensional interacting theory, closed cousin of Quantum Chromodynamics (QCD).

Toy model for gauge theories

$\mathcal{N}=4$ Super Yang-Mills theory in planar limit.

- Maximal supersymmetric version of $S U(N)$ Yang-Mills theory, definitely not realized in nature.
- Particle content: gauge fields "gluons", fermions and scalars. At tree-level: amplitudes of gluons and fermions identical to pure Yang-Mills theory. Superfield Φ,

$$
\Phi=G_{+}+\eta^{A} \Gamma_{A}+\frac{1}{2} \eta^{A} \eta^{B} S_{A B}+\frac{1}{6} \epsilon_{A B C D} \eta^{A} \eta^{B} \eta^{C} \bar{\Gamma}^{D}+\frac{1}{24} \epsilon_{A B C D} \eta^{A} \eta^{B} \eta^{C} \eta^{D} G_{-}
$$

- The theory is conformal, UV finite. In planar limit (large N) hidden infinite dimensional (Yangian) symmetry which is completely invisible in any standard QFT approach.
- The theory is integrable: should have an exact solution. In AdS/CFT dual to type IIB string theory on $\operatorname{Ad} S_{5} \times S_{5}$.

Properties of amplitudes in toy model

- The theory has $S U(N)$ symmetry group, in Feynman diagrams we get different group structures. In planar limit only single trace survives

$$
\mathcal{M}_{123 \ldots n}=\sum_{\sigma / \pi} \operatorname{Tr}\left(T^{a_{1}} T^{a_{2}} \ldots T^{a_{n}}\right) M_{a_{1} a_{2} \ldots a_{n}}
$$

We consider the "color-stripped" amplitude M which is cyclic.

- New kinematical variables: n twistors Z_{i}, points in \mathbb{P}^{3}, and a set of Grassmann variables η_{i}. Natural $S L(4)$ invariants $\left\langle Z_{1} Z_{2} Z_{3} Z_{4}\right\rangle$.
- The loop momentum is off-shell and has 4 degrees of freedom, represented by a line $Z_{A} Z_{B}$ in twistor space.
- The amplitude is then a rational function of $\langle\cdots\rangle$ with homogeneity 0 in all $Z \mathrm{~s}$ with single poles. The pole structure is dictated by locality of the amplitude:

$$
\left\langle Z_{i} Z_{i+1} Z_{j} Z_{j+1}\right\rangle \text { or }\left\langle Z_{A} Z_{B} Z_{i} Z_{i+1}\right\rangle \text { or }\left\langle Z_{A} Z_{B} Z_{C} Z_{D}\right\rangle
$$

Properties of amplitudes in toy model

- All amplitudes are labeled by three numbers n, k, L where a k is a k-charge of $S U(4)$ symmetry of the amplitude. It has physical interpretation in terms of helicities of component gluonic amplitudes (number of - helicity gluons). In fact we better use the label $k \equiv k^{\prime}=k-2$.
- Feynman diagram approach is extremely inefficient. For example, $n=4, k=0$:

0	1	2	3	4	5	6	7
3	940	47.380	4×10^{6}	6×10^{8}	10^{11}	10^{13}	10^{15}

Overview of the program

- Our ultimate goal: to find a geometric formulation of the scattering amplitude as a single object.
- This formulation should make all properties of the amplitude manifest.
- It better does not use any physical concepts which should emerge as derived properties from the geometry.
- We will proceed in two steps:
- Step 1: We find a new basis of objects which serve as building blocks for the amplitude. It will be an alternative to Feynman diagrams with very different properties. They will have a direct connection to Positive Grassmannian.
- Step 2: Inspired by that we find a unique object which represents the full scattering amplitude - Amplituhedron - a natural generalization of Positive Grassmannian. The problem of calculating amplitudes is then reduced to the triangulation.
- The final picture involves new mathematical structures which should be understood more rigorously.

Scattering Amplitudes and Positive Grassmannian

Permutations

Permutations

- Standard permutation: $(1,2, \ldots n) \rightarrow(\sigma(1), \sigma(2), \ldots \sigma(n))$.

- Scattering process in $1+1$ dimensions.
- Most trivial example: $(1,2,3) \rightarrow(3,2,1)$.

Permutations

- The picture is not unique: Yang-Baxter move

- Unfortunately, this can not be applied to $3+1$ dimensions
- No particle creation/destruction.
- Fundamental 4pt interactions.
- We need fundamental 3pt vertices. Is there a way how to represent a permutation with a diagram which has only 3pt vertices?
- It is not possible to do it with a single 3pt vertex.

Permutations

- Fundamental 3pt vertices:

represent permutations $(1,2,3) \rightarrow(2,3,1)$ and $(1,2,3) \rightarrow(3,2,1)$.
- Left-Right paths in the graph: left on white vertex, right on black vertex.

Permutations

- Build a 4pt diagram:

- Permutations: $(1,2,3,4) \rightarrow(4,3,1,2)$, resp.
$(1,2,3,4) \rightarrow(3,4,1,2)$.
- In case $k \rightarrow k$ we draw the lollipop, for
$(1,2,3,4) \rightarrow(2,3,1,4)$

Permutations

- We can build a diagram and find a permutation.

- The permutation is $(1,2,3,4,5,6) \rightarrow(5,4,6,1,2,3)$.
- Every permutation can be represented like this!

Permutations

- We can build a diagram and find a permutation.

- The permutation is $(1,2,3,4,5,6) \rightarrow(5,4,6,1,2,3)$.
- Every permutation can be represented like this!

Permutations

- There exists a different diagram that gives the same permutation

- The map diagrams \leftrightarrow permutations is not unique!
- Reduced graphs: minimal number of faces (loops) - they represent permutations.

Permutations

- There exists a different diagram that gives the same permutation

- The map diagrams \leftrightarrow permutations is not unique!
- Reduced graphs: minimal number of faces (loops) - they represent permutations.

Permutations

- There are two identity moves:
- merge-expand of black (or white) vertices

- square move

Permutations

- There are two identity moves:
- merge-expand of black (or white) vertices

- square move

Permutations

- There are two identity moves:
- merge-expand of black (or white) vertices

- square move

Permutations

- Go back to the Yang-Baxter move. We expand

- We could also use the substitution

and prove the same identity.

Permutations

- Then we get

Old diagrams are included as a subset of new diagrams.

Permutations

- We will use affine permutation:

$$
k \rightarrow \sigma(k)
$$

where

$$
k+n \geq \sigma(k) \geq k
$$

and $\sigma(k) \bmod k$ is a permutation.

$$
\begin{aligned}
& 1 \rightarrow 3 \\
& 2 \rightarrow 4 \\
& 3 \rightarrow 1+4=5 \\
& 4 \rightarrow 2+4=6
\end{aligned}
$$

Positive Grassmannian

Configuration of vectors

- Permutations \leftrightarrow Configuration of vectors with consecutive linear dependencies.
- Configuration of $n \mathrm{pt}$ in \mathbb{P}^{k-1}

$$
k \rightarrow \sigma(k) \quad \text { means that } \quad k \subset \operatorname{span}(k+1, \ldots \sigma(k))
$$

$$
\begin{aligned}
& 1 \subset(2,34,5,6) \rightarrow \sigma(1)=6, \quad 2 \subset(34,5) \rightarrow \sigma(2)=5, \\
& 3 \subset(4) \rightarrow \sigma(3)=4, \quad 4 \subset(5,6,1,2) \rightarrow \sigma(4)=2, \\
& 5 \subset(6,1) \rightarrow \sigma(5)=1, \quad 6 \subset(1,2,3) \rightarrow \sigma(6)=3 .
\end{aligned}
$$

- The permutation is $(1,2,3,4,5,6) \rightarrow(6,5,4,8,7,9)$.

The Positive Grassmannian

- Grassmannian $G(k, n)$: space of k-dimensional planes in n dimensions, represented by $k \times n$ matrix modulo $G L(k)$,

$$
C=\left(\begin{array}{cccccc}
* & * & * & \ldots & * & * \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & * & \ldots & * & *
\end{array}\right)=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{k}
\end{array}\right)=\left(\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{n}
\end{array}\right)
$$

- We can think about it as collection of k vectors v_{1}, \ldots, v_{k} in n dimensions which specify the plane.
- We consider a positive part of $G(k, n)$ which is a space with boundaries.

The Positive Grassmannian

- Positive part:

$$
C=\left[c_{1} c_{2} \ldots c_{n}\right]
$$

All minors

$$
\left(c_{i_{1}} \ldots c_{i_{k}}\right)>0 \quad \text { for } \quad i_{1}<i_{2}<\cdots<i_{k} .
$$

- Cyclic structure: $c_{1} \rightarrow c_{2}, c_{2} \rightarrow c_{3}, \ldots, c_{n} \rightarrow(-1)^{k+1} c_{1}$.

The Positive Grassmannian

- We can think about C as collection n points in \mathbb{P}^{k-1}.
- Back to 6pt example:

$$
C=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & c_{16} \\
0 & 1 & 0 & 0 & c_{25} & a \cdot c_{25} \\
0 & 0 & 1 & c_{34} & c_{35} & a \cdot c_{35}
\end{array}\right)
$$

Five-dimensional configuration in $G(3,6)$.

The Positive Grassmannian

- Positive part of $G(k, n)$: convex configurations of points.
- Top cell in the Grassmannian (no constraint imposed) \rightarrow configuration of n generic points in \mathbb{P}^{k-1}.
- Stratification of the space is nicely provided by imposing linear dependencies between consecutive points

This corresponds to sending minors of $G_{+}(k, n)$ to zero.

- Boundaries preserve convexity: all minors of $G_{+}(k, n)$ stay positive (except the ones sent to zero).

Equivalence

Reduced graphs (mod identity moves)

Permutations
॥
Configurations of vectors with linear dependencies

Cells of Positive Grassmannian

Plabic graphs and Positive Grassmannian

Plabic graphs

- These diagrams are known in the literature as "plabic graphs" and were extensively studied by Alexander Postnikov (math/0609764).
- He established the connection to the positive Grassmannian and showed how to construct explicitly a matrix for each reduced diagram.
- There is a precise definition what the "reduced" means but the in practice it means that the diagram does not have any bubbles.
- Bubble reduction:

Plabic graphs

- Example:

- Postnikov proved proved isomorphism between permutations and reduced plabic graphs (modulo identity moves).
- In order to find the Grassmannian matrix for each reduced diagram we have to choose variables.
- Edge variables.
- Face variables.
- Orientation: choose an arrow for each edge.

Plabic graphs

- Example:

- Postnikov proved proved isomorphism between permutations and reduced plabic graphs (modulo identity moves).
- In order to find the Grassmannian matrix for each reduced diagram we have to choose variables.
- Edge variables.
- Face variables.
- Orientation: choose an arrow for each edge.

Plabic graphs

- Example:

- Postnikov proved proved isomorphism between permutations and reduced plabic graphs (modulo identity moves).
- In order to find the Grassmannian matrix for each reduced diagram we have to choose variables.
- Edge variables.
- Face variables.
- Orientation: choose an arrow for each edge.

Plabic graphs

- Example:

- Postnikov proved proved isomorphism between permutations and reduced plabic graphs (modulo identity moves).
- In order to find the Grassmannian matrix for each reduced diagram we have to choose variables.
- Edge variables.
- Face variables.
- Orientation: choose an arrow for each edge.

Plabic graphs

- Example:

- Postnikov proved proved isomorphism between permutations and reduced plabic graphs (modulo identity moves).
- In order to find the Grassmannian matrix for each reduced diagram we have to choose variables.
- Edge variables.
- Face variables.
- Orientation: choose an arrow for each edge.

Edge variables

- Variables associated with edges.

- There is a $G L(1)$ redundancy in each vertex.
- The rule for entries of the C matrix,

$$
C_{i J}=-\sum_{\text {paths } i \rightarrow J} \prod e_{i} \quad \text { edges along path }
$$

- For this example (positive matrix for fixed signs of α_{i}):

$$
C=\left(\begin{array}{cccc}
1 & 0 & -\alpha_{1} \alpha_{3} \alpha_{5} \alpha_{6} & -\alpha_{1} \alpha_{4} \alpha_{5} \alpha_{6} \alpha_{7}-\alpha_{1} \alpha_{4} \alpha_{8} \\
0 & 1 & -\alpha_{2} \alpha_{3} \alpha_{6} & -\alpha_{2} \alpha_{4} \alpha_{6} \alpha_{7}
\end{array}\right)
$$

Face variables

- Variables associated with faces.

- "Gauge invariant" (fluxes) associated with faces of the graph. Only one condition $\prod f_{i}=-1$.
- The rule for entries of the C matrix,

$$
C_{i J}=-\sum_{\text {paths } i \rightarrow J} \prod\left(-f_{j}\right) \quad \text { faces left to the path }
$$

- For this example:

$$
C=\left(\begin{array}{cccc}
1 & 0 & f_{0} f_{3} f_{4} & -f_{0} f_{4}+f_{4} \\
0 & 1 & -f_{0} f_{1} f_{3} f_{4} & -f_{0} f_{1} f_{4}
\end{array}\right)
$$

Face variables

- Moves and face variables

- Reduction: eliminate irrelevant variable

- Face (or edge) variables are cluster variables and these are cluster transformations.

