Towards New Formulation of Quantum field theory: Geometric Picture for Scattering Amplitudes

 Part 2
Jaroslav Trnka

Winter School Srní 2014, 19-25/01/2014
Work with Nima Arkani-Hamed, Jacob Bourjaily, Freddy Cachazo, Alexander Goncharov, Alexander Postnikov, arxiv: 1212.5605

Work with Nima Arkani-Hamed, arxiv: 1312.2007

Review of the last lecture

Permutations

- Fundamental 3pt vertices:

represent permutations $(1,2,3) \rightarrow(2,3,1)$ and $(1,2,3) \rightarrow(3,2,1)$.

- Permutation $(1,2,3,4) \rightarrow(3,4,1,2)$.

Permutations

There are two identity moves:

- merge-expand of black (or white) vertices

- square move

They preserve permutation.

Configuration of vectors

- Permutations \leftrightarrow Configuration of n points \mathbb{P}^{k-1} in with consecutive linear dependencies.
- Permutation $\sigma(i)$ means that $i \subset \operatorname{span}(i+1, \ldots \sigma(i))$
- Example: $n=6, k=3$, we have six points in \mathbb{P}^{2}.

$$
\begin{aligned}
& 1 \subset(2,34,5,6) \rightarrow \sigma(1)=6, \quad 2 \subset(34,5) \rightarrow \sigma(2)=5 \text {, } \\
& 3 \subset(4) \rightarrow \sigma(3)=4, \quad 4 \subset(5,6,1,2) \rightarrow \sigma(4)=2 \text {, } \\
& 5 \subset(6,1) \rightarrow \sigma(5)=1 \text {, } \\
& 6 \subset(1,2,3) \rightarrow \sigma(6)=3 .
\end{aligned}
$$

- The permutation is $(1,2,3,4,5,6) \rightarrow(6,5,4,8,7,9)$.

The Positive Grassmannian

- Grassmannian $G(k, n)$: space of k-dimensional planes in n dimensions, represented by $k \times n$ matrix modulo $G L(k)$,

$$
C=\left(\begin{array}{cccccc}
* & * & * & \ldots & * & * \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & * & \ldots & * & *
\end{array}\right)=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{k}
\end{array}\right)=\left(\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{n}
\end{array}\right)
$$

- Positive part: all minors

$$
\left(c_{i_{1}} \ldots c_{i_{k}}\right)>0 \quad \text { for } \quad i_{1}<i_{2}<\cdots<i_{k} .
$$

The Positive Grassmannian

- Back to 6pt example:

- Linear dependencies: fix points $1,2,3$,

$$
\begin{gathered}
c_{4}=a_{34} c_{3} c_{5}=a_{25} c_{2}+a_{35} c_{3} \\
c_{6}=a_{16} c_{1}+z c_{5}=a_{16} c_{1}+z a_{25} c_{5}+z a_{35} c_{5} \\
C=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & a_{16} \\
0 & 1 & 0 & 0 & a_{25} & z a_{25} \\
0 & 0 & 1 & a_{34} & a_{35} & z a_{35}
\end{array}\right)
\end{gathered}
$$

- This is 5-dimensional cell in $G(2,6)$.

The Positive Grassmannian

- Positive Grassmannian $G_{+}(k, n)$: generalization of "convex" configurations of n points in \mathbb{P}^{k-1}.
- Top cell in $G_{+}(k, n)$: generic configuration of points.
- Example: top cell of $G_{+}(3,6)$.

We send minor $(456)=0$, then $(234)=0$, then $(345)=0$.

- Boundaries preserve convexity: all non-zero minors of $G_{+}(k, n)$ stay positive.
- This provides a stratification of $G_{+}(k, n)$.

Plabic graphs

- Plabic graphs = diagrams with black and white vertices.
- Reduced graphs: no internal bubbles - their equivalence class is isomorphic to permutations and cells in $G_{+}(k, n)$.
- Generic diagram is not reduced: it contains internal bubbles.

- The diagram is reduced after all bubbles are removed.
- In order to find the Grassmannian matrix for each reduced diagram we have to choose variables.
- Edge variables.
- Face variables.

Edge variables

- Variables associated with edges, orientation for the graph.

- There is a $G L(1)$ redundancy in each vertex. The edge variables are "connections" on the graph.
- The rule for entries of the C matrix,

$$
C_{i J}=-\sum_{\text {paths } i \rightarrow J} \prod \alpha_{i} \quad \text { edges along path }
$$

- For this example:

$$
\begin{aligned}
& c_{11}=1, \quad c_{12}=0, \quad c_{21}=0, \quad c_{22}=1 \\
& c_{13}=-\alpha_{1} \alpha_{5} \alpha_{6} \alpha_{3}, \quad c_{14}=-\alpha_{1}\left(\alpha_{5} \alpha_{6} \alpha_{7}+\alpha_{8}\right) \alpha_{4} \\
& c_{23}=-\alpha_{2} \alpha_{6} \alpha_{3}, \quad c_{24}=-\alpha_{2} \alpha_{6} \alpha_{7} \alpha_{4}
\end{aligned}
$$

Edge variables

- Variables associated with edges, orientation for the graph.

- There is a $G L(1)$ redundancy in each vertex. The edge variables are "connections" on the graph.
- The rule for entries of the C matrix,

$$
C_{i J}=-\sum_{\text {paths } i \rightarrow J} \prod \alpha_{i} \quad \text { edges along path }
$$

- For this example:

$$
C=\left(\begin{array}{cccc}
1 & 0 & -\alpha_{1} \alpha_{3} \alpha_{5} \alpha_{6} & -\alpha_{1} \alpha_{4} \alpha_{5} \alpha_{6} \alpha_{7}-\alpha_{1} \alpha_{4} \alpha_{8} \\
0 & 1 & -\alpha_{2} \alpha_{3} \alpha_{6} & -\alpha_{2} \alpha_{4} \alpha_{6} \alpha_{7}
\end{array}\right)
$$

Face variables

- Variables associated with faces.

- "Gauge invariant" (fluxes) associated with faces of the graph. Only one condition $\prod f_{i}=-1$.
- The rule for entries of the C matrix,

$$
C_{i J}=-\sum_{\text {paths } i \rightarrow J} \prod\left(-f_{j}\right) \quad \text { faces right to the path }
$$

- For this example:

$$
C=\left(\begin{array}{cccc}
1 & 0 & f_{0} f_{3} f_{4} & -f_{0} f_{4}+f_{4} \\
0 & 1 & -f_{0} f_{1} f_{3} f_{4} & -f_{0} f_{1} f_{4}
\end{array}\right)
$$

On-shell diagrams and Scattering amplitudes

Three point amplitudes

- We want to find an alternative to Feynman diagrams.
- Let us take physical three point amplitudes as our fundamental objects instead of Feynman vertices.
- On-shell conditions and momentum conservation:

$$
p_{1}+p_{2}+p_{3}=0, \quad p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=0
$$

No solution for real momenta!

- For complex momenta we get two different solutions
- All λ are proportional, $\tilde{\lambda}$ are generic.
- All $\tilde{\lambda}$ are proportional, λ are generic.

Reminder: $\sigma_{a \dot{a}}^{\mu} p_{\mu}=\lambda_{a} \tilde{\lambda}_{\dot{a}}$.

- Two independent three point amplitudes ($k=1$ and $k=2$).

Three point amplitudes

- We graphically represent as

- They represent the expressions:

$$
\begin{aligned}
& M_{3}^{(1)}=\frac{1}{[12][23][31]} \delta^{4}\left(\tilde{\eta}_{1}[23]+\tilde{\eta}_{2}[31]+\tilde{\eta}_{3}[12]\right) \delta^{4}\left(p_{1}+p_{2}+p_{3}\right) \\
& M_{3}^{(2)}=\frac{1}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{8}\left(\lambda_{1} \tilde{\eta}_{1}+\lambda_{2} \tilde{\eta}_{2}+\lambda_{3} \tilde{\eta}_{3}\right) \delta^{4}\left(p_{1}+p_{2}+p_{3}\right) \\
& \quad \text { where }\langle 12\rangle=\epsilon_{a b} \lambda_{1}^{a} \lambda_{2}^{b},[12]=\epsilon_{\dot{a} \dot{b}} \tilde{\lambda}_{1}^{\dot{a}} \tilde{\lambda}_{2}^{\dot{b}}
\end{aligned}
$$

On-shell gluing

- Glue two three point vertices into four point diagram

- We solve for the internal λ and $\tilde{\eta}$ and get

$$
\begin{gathered}
\frac{1}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle} \delta^{8}\left(\lambda_{1} \tilde{\eta}_{1}+\lambda_{2} \tilde{\eta}_{2}+\lambda_{3} \tilde{\eta}_{3}+\lambda_{4} \tilde{\eta}_{4}\right) \delta^{4}\left(p_{1}+p_{2}+p_{3}+p_{4}\right) \\
\times \delta\left(\left(p_{1}+p_{2}\right)^{2}\right)
\end{gathered}
$$

- This is a factorization channel of 4 pt tree-level amplitude, $\left(p_{1}+p_{2}\right)^{2}=0$.

On-shell gluing

- Glue four three point vertices into four point diagram

which is a 4pt tree level amplitude!
$\frac{1}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle} \delta^{8}\left(\lambda_{1} \tilde{\eta}_{1}+\lambda_{2} \tilde{\eta}_{2}+\lambda_{3} \tilde{\eta}_{3}+\lambda_{4} \tilde{\eta}_{4}\right) \delta^{4}\left(p_{1}+p_{2}+p_{3}+p_{4}\right)$
- This is equal to three Feynman diagrams.

On-shell gluing

- We glue arbitrary number of three point vertices and get on-shell diagrams: our new building blocks

- It is product of three point amplitudes where we solve (integrate) for internal data

$$
\int \frac{d^{2} \lambda d^{2} \tilde{\lambda} d^{4} \tilde{\eta}}{\mathrm{GL}(1)}
$$

- In general, it is a differential form.

On-shell diagrams

- These diagrams are identical to plabic graphs, they look identical and they satisfy the same identity moves!
- How to use the cell of Positive Grassmannian $G_{+}(k, n)$ associated with the diagram to get the function?
- We define a form with logarithmic singularities,

$$
\int \frac{d f_{1}}{f_{1}} \frac{d f_{2}}{f_{2}} \ldots \frac{d f_{d}}{f_{d}} \prod_{\alpha=1}^{k} \delta^{4 \mid 4}\left[C_{\alpha a}\left(f_{i}\right) \mathcal{W}_{a}\right]
$$

where C is the Grassmannian matrix parametrized by f_{i}.

- \mathcal{W} carries the information about external data.
- There are different kinematical variables to choose: $\mathcal{W}=(\lambda, \tilde{\lambda}, \tilde{\eta})$ or $\mathcal{W}=(Z, \tilde{\eta})$.
- Delta functions localize variables in the form.

On-shell diagrams

- This form is invariant identity moves on diagrams:

- For reduction we get

$$
\begin{gathered}
\Omega \rightarrow \int \frac{d f_{0}}{f_{0}} \frac{d f_{1}^{\prime}}{f_{1}^{\prime}} \frac{d f_{2}^{\prime}}{f_{2}^{\prime}} \cdots \frac{d f_{d}}{f_{d}} \delta^{4 \mid 4}\left(C\left(f_{1}^{\prime}, f_{2}^{\prime}, f_{3} \ldots f_{d}\right)_{\alpha a} \mathcal{W}_{a}\right) \\
-\underset{f_{2}}{f_{f_{0}}} \rightarrow \frac{\frac{f_{1}, f_{0}}{1+f_{0}}}{f_{2}\left(1+f_{0}\right)}
\end{gathered}
$$

Relations between on-shell diagrams

- All relations between on-shell diagrams are generated by

$$
\partial \Omega_{D+1}=0
$$

where Ω_{D+1} is $D+1$ dimensional cell in the Positive Grassmannian.

- This is extremely simple in terms of configurations of points in \mathbb{P}^{k-1} but it generates non-trivial identities between functions.

Relations between on-shell diagrams

- Example: $n=11, k=5$ - identity involving higher roots

Relations between on-shell diagrams

- Example: $n=11, k=5$ - identity involving higher roots

Relations between on-shell diagrams

- Example: $n=11, k=5$ - identity involving higher roots

From on-shell diagrams to amplitude

- Each diagram is a potential building block for the amplitude. Label n is given by external legs and $k=W+2 B-E$.
- Recursion relations give us the expansion of the amplitude as a sum of on-shell diagrams.

- Example: 6 pt NMHV amplitude, $n=6, k=1$, there are 3 on-shell diagrams vs 220 Feynman diagrams

From on-shell diagrams to amplitude

- The particular sum is dictated by physical properties of the amplitude - locality and unitarity.
- For tree-level amplitudes we always get reduced diagrams invariant information is just a list of permutations.
- For loop amplitudes the diagrams are not reduced. At L-loops each diagram contains $4 L$ irrelevant variables, each for one bubbles.
- Recursion relations:

From on-shell diagrams to amplitude

- Example: 4pt one-loop amplitude

- It contains four bubbles $=$ four irrelevant variables,

$$
=\int \frac{d f_{1}}{f_{1}} \frac{d f_{2}}{f_{2}} \frac{d f_{3}}{f_{3}} \frac{d f_{4}}{f_{4}} \times
$$

Conclusion

- On-shell diagrams provide a new basis of objects for scattering amplitudes (at least in our toy model).
- Each diagram corresponds to the cell in the Positive Grassmannian and its value is a canonical logarithmic form.
- It is possible to show that each diagram makes the hidden Yangian symmetry of our theory manifest - it is a positive diffeomorphism on positive part of Grassmannian.
- Scattering amplitude $M_{m, k, \ell}$ is a particular sum of on-shell diagrams.
- It is not a complete reformulation of QFT: amplitude is still a sum of pieces rather than a unique object, to get a sum we need a physical information (recursion relations) to construct the amplitude.

