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Review of the last lecture



Permutations
I Fundamental 3pt vertices:

represent permutations (1, 2, 3)→ (2, 3, 1) and
(1, 2, 3)→ (3, 2, 1).

I Permutation (1, 2, 3, 4)→ (3, 4, 1, 2).



Permutations
There are two identity moves:

I merge-expand of black (or white) vertices

I square move

They preserve permutation.



Configuration of vectors
I Permutations ↔ Configuration of n points Pk−1 in with

consecutive linear dependencies.
I Permutation σ(i) means that i ⊂ span(i+1, . . . σ(i))

I Example: n = 6, k = 3, we have six points in P2.

1 ⊂ (2, 34, 5, 6)→ σ(1) = 6, 2 ⊂ (34, 5)→ σ(2) = 5,

3 ⊂ (4)→ σ(3) = 4, 4 ⊂ (5, 6, 1, 2)→ σ(4) = 2,

5 ⊂ (6, 1)→ σ(5) = 1, 6 ⊂ (1, 2, 3)→ σ(6) = 3.

I The permutation is (1, 2, 3, 4, 5, 6)→ (6, 5, 4, 8, 7, 9).



The Positive Grassmannian
I Grassmannian G(k, n): space of k-dimensional planes in n

dimensions, represented by k × n matrix modulo GL(k),

C =



∗ ∗ ∗ . . . ∗ ∗
...

...
...

...
...

...
∗ ∗ ∗ . . . ∗ ∗


 =




v1
...
vk


 =

(
c1 c2 . . . cn

)

I Positive part: all minors

(ci1 . . . cik) > 0 for i1 < i2 < · · · < ik.



The Positive Grassmannian
I Back to 6pt example:

I Linear dependencies: fix points 1, 2, 3,

c4 = a34c3 c5 = a25c2 + a35c3

c6 = a16c1 + zc5 = a16c1 + za25c5 + za35c5

C =




1 0 0 0 0 a16
0 1 0 0 a25 za25
0 0 1 a34 a35 za35




I This is 5-dimensional cell in G(2, 6).



The Positive Grassmannian
I Positive Grassmannian G+(k, n): generalization of ”convex”

configurations of n points in Pk−1.
I Top cell in G+(k, n): generic configuration of points.
I Example: top cell of G+(3, 6).

We send minor (456) = 0, then (234) = 0, then (345) = 0.
I Boundaries preserve convexity: all non-zero minors of
G+(k, n) stay positive.

I This provides a stratification of G+(k, n).



Plabic graphs
I Plabic graphs = diagrams with black and white vertices.
I Reduced graphs: no internal bubbles - their equivalence class

is isomorphic to permutations and cells in G+(k, n).
I Generic diagram is not reduced: it contains internal bubbles.

I The diagram is reduced after all bubbles are removed.
I In order to find the Grassmannian matrix for each reduced

diagram we have to choose variables.
I Edge variables.
I Face variables.



Edge variables
I Variables associated with edges, orientation for the graph.

Once we have given a perfect orientation, the system of equations C ·λ̃ becomes

trivial to construct: each vertex can be viewed as giving an equation which expands

the λ̃’s of the vertex’s sources in terms of those of its sinks. Combining all such

equations then gives us an expansion of the external sources’ λ̃’s in terms of those of

the external sinks. Notice that when identifying two legs, (Iin, Iout) during amalga-

mation the degree of freedom lost in the process is accounted for via the replacement

of the pair (αIin , αIout) with the single variable αI ≡ αIinαIout .

If we denote the external sources of a graph by {a1, . . . , ak} ≡ A, then the final

linear relations imposed on the λ̃’s can easily be seen to be given by,

λ̃A + cAaλ̃a = 0, (4.56)

with
cAa = −

∑

Γ∈{A a}

∏

e∈Γ

αe , (4.57)

and where Γ ∈ {A a} is any (directed) path from A to a in the graph. (If there is

a closed, directed loop, then the geometric series should be summed—we will see an

example of this in (4.64).) The entries of the matrix cAa are called the “boundary

measurements” of the on-shell graph. The on-shell form on C(α)∈G(k, n) can then

be written in terms of the variables cAa according to:( ∏

vertices v

1

vol(GL(1)v)

)( ∏

edges e

dαe
αe

)
δk×4(C ·η̃)δk×2(C ·λ̃)δ2×(n−k)(λ·C⊥) . (4.58)

Let us consider a simple example to see how this works. Consider the following

perfectly oriented graph:

(4.59)

Using the equations for each directed 3-particle vertex, we can easily expand the λ̃

of each source—legs 1 and 2—in terms of those of the sinks—legs 3 and 4; e.g.,

λ̃2 = α2α6(α3λ̃3 + α7(α4λ̃4)). (4.60)

Such expansions obviously result in (4.57): the coefficient cAa of λ̃a in the expan-

sion of λ̃A is simply (minus) the product of all edge-variables αe along any path

Γ ∈ {A a}. Doing this for all the cAa of our example above, we find,

c1 3 = α1 α5 α6 α3 c1 4 = α1 α5 α6 α7 α4
+ α1 α8 α4

c2 3 = α2 α6 α3 c2 4 = α2 α6 α7 α4

– 39 –

I There is a GL(1) redundancy in each vertex. The edge
variables are ”connections” on the graph.

I The rule for entries of the C matrix,

CiJ = −
∑

paths i→J

∏
αi edges along path

I For this example:
c11 = 1, c12 = 0, c21 = 0, c22 = 1

c13 = −α1α5α6α3, c14 = −α1(α5α6α7 + α8)α4

c23 = −α2α6α3, c24 = −α2α6α7α4



Edge variables
I Variables associated with edges, orientation for the graph.

Once we have given a perfect orientation, the system of equations C ·λ̃ becomes

trivial to construct: each vertex can be viewed as giving an equation which expands

the λ̃’s of the vertex’s sources in terms of those of its sinks. Combining all such

equations then gives us an expansion of the external sources’ λ̃’s in terms of those of

the external sinks. Notice that when identifying two legs, (Iin, Iout) during amalga-

mation the degree of freedom lost in the process is accounted for via the replacement

of the pair (αIin , αIout) with the single variable αI ≡ αIinαIout .

If we denote the external sources of a graph by {a1, . . . , ak} ≡ A, then the final

linear relations imposed on the λ̃’s can easily be seen to be given by,

λ̃A + cAaλ̃a = 0, (4.56)

with
cAa = −

∑

Γ∈{A a}

∏

e∈Γ

αe , (4.57)

and where Γ ∈ {A a} is any (directed) path from A to a in the graph. (If there is

a closed, directed loop, then the geometric series should be summed—we will see an

example of this in (4.64).) The entries of the matrix cAa are called the “boundary

measurements” of the on-shell graph. The on-shell form on C(α)∈G(k, n) can then

be written in terms of the variables cAa according to:( ∏

vertices v

1

vol(GL(1)v)

)( ∏

edges e

dαe
αe

)
δk×4(C ·η̃)δk×2(C ·λ̃)δ2×(n−k)(λ·C⊥) . (4.58)

Let us consider a simple example to see how this works. Consider the following

perfectly oriented graph:

(4.59)

Using the equations for each directed 3-particle vertex, we can easily expand the λ̃

of each source—legs 1 and 2—in terms of those of the sinks—legs 3 and 4; e.g.,

λ̃2 = α2α6(α3λ̃3 + α7(α4λ̃4)). (4.60)

Such expansions obviously result in (4.57): the coefficient cAa of λ̃a in the expan-

sion of λ̃A is simply (minus) the product of all edge-variables αe along any path

Γ ∈ {A a}. Doing this for all the cAa of our example above, we find,

c1 3 = α1 α5 α6 α3 c1 4 = α1 α5 α6 α7 α4
+ α1 α8 α4

c2 3 = α2 α6 α3 c2 4 = α2 α6 α7 α4

– 39 –

I There is a GL(1) redundancy in each vertex. The edge
variables are ”connections” on the graph.

I The rule for entries of the C matrix,

CiJ = −
∑

paths i→J

∏
αi edges along path

I For this example:

C =

(
1 0 −α1α3α5α6 −α1α4α5α6α7 − α1α4α8

0 1 −α2α3α6 −α2α4α6α7

)



Face variables
I Variables associated with faces.

4.6 Coordinate Transformations Induced by Moves and Reduction

Let us now examine how the identification of graphs via merge-operations, square-

moves, and bubble-deletion is reflected in the coordinates—the edge- or face-variables

—used to parameterize cells C ∈ G(k, n). As usual, the simplest of these is the

merge/un-merge operation which trivially leaves any set of coordinates unchanged.

For example, in terms of the face variables, it is easy to see that

(4.62)

The square-move is more interesting. It is obvious that squares with opposite coloring

both give us a generic configuration in G(2, 4), but (as we will soon see), the square-

move acts rather non-trivially on coordinates used to parameterize a cell,

(4.63)

Let us start by determining the precise way the face-variables fi and f ′i of square-

move related graphs are related to one another. To do this, we will provide perfect

orientations (decorated with edge variables) for both graphs, allowing us to com-

pare the resulting boundary-measurement matrices in each case. Because these two

boundary measurement matrices must represent the same point in G(2, 4), we will

be able to explicitly determine how all the various coordinate charts are related—

including the relationship between the variables fi and f ′i . Our work will be consid-

erably simplified if we remove the GL(1)-redundancies from each vertex, leaving us

with a non-redundant set of edge-variables. Of course, any choice of perfect orienta-

tions for the graphs, and any fixing of the GL(1)-redundancies would suffice for our

purposes; but for the sake of concreteness, let us consider the following:

(
1 α1 0 α4

0 α2 1 α3

) (
1 β2β3β4∆ 0 β4∆

0 β2∆ 1 β1β2β4∆

)

(4.64)

– 41 –

I ”Gauge invariant”(fluxes) associated with faces of the graph.
Only one condition

∏
fi = −1.

I The rule for entries of the C matrix,

CiJ = −
∑

paths i→J

∏
(−fj) faces right to the path

I For this example:

C =

(
1 0 f0f3f4 −f0f4 + f4
0 1 −f0f1f3f4 −f0f1f4

)



On-shell diagrams and Scattering
amplitudes



Three point amplitudes
I We want to find an alternative to Feynman diagrams.
I Let us take physical three point amplitudes as our

fundamental objects instead of Feynman vertices.
I On-shell conditions and momentum conservation:

p1 + p2 + p3 = 0, p21 = p22 = p23 = 0

No solution for real momenta!
I For complex momenta we get two different solutions

I All λ are proportional, λ̃ are generic.
I All λ̃ are proportional, λ are generic.

Reminder: σµaȧpµ = λaλ̃ȧ.
I Two independent three point amplitudes (k = 1 and k = 2).



Three point amplitudes
I We graphically represent as

I They represent the expressions:

M
(1)
3 =

1

[12][23][31]
δ4(η̃1[23] + η̃2[31] + η̃3[12])δ4(p1 + p2 + p3)

M
(2)
3 =

1

〈12〉〈23〉〈31〉δ
8(λ1η̃1 + λ2η̃2 + λ3η̃3)δ

4(p1 + p2 + p3)

where 〈12〉 = εabλ
a
1λ

b
2, [12] = εȧḃλ̃

ȧ
1λ̃

ḃ
2



On-shell gluing
I Glue two three point vertices into four point diagram
the first two of which involve off-shell gluon exchange. Another striking difference

is that, despite the fact that we’re discussing a tree amplitude, the on-shell diagram

(2.16) looks like a loop! To emphasize this distinction, consider a “tree-like” on-shell

graph such as,

(2.18)

Since the internal line in this graph must be on-shell, the diagram imposes a

delta-function constraint δ((p1 + p2)2) on the external momenta—and so (2.18) cor-

responds to a factorization channel. The extra leg in (2.16) that makes the “loop”

allows a non-vanishing result for generic (on-shell, momentum-conserving) momenta.

It is interesting to note that we can interpret (2.16) as having been obtained by at-

taching a “BCFW bridge” to any of the factorization channels of the four-particle

amplitude—such as that of (2.18). This makes it possible for the single diagram

(2.16) to simultaneously exhibit all the physical factorization channels.

This simple example illustrates the fundamental physical idea behind the BCFW

determination of an amplitude—not just at tree-level, but at all loop orders: the

amplitude can be fully reconstructed from the knowledge of its singularities; and

the singularities of an amplitude are determined by completely on-shell data. At

tree-level, the singularities are just the familiar factorization channels,

(2.19)

where the left- and right-hand sides are both scattering amplitudes involving only on-

shell particles. At loop-level, all the singularities of the integrand can be understood

as factorizations like that of (2.19), or those for which an internal particle is put

on-shell; at least for N = 4 SYM in the planar limit, these singularities are given by

the “forward limit” of an on-shell amplitude with one fewer loop, with two adjacent

particles taken to have equal and opposite momenta, denoted:

(2.20)

Combining these two terms, the singularities of the full amplitude are therefore:

– 10 –

I We solve for the internal λ and η̃ and get

1

〈12〉〈23〉〈34〉〈41〉δ
8(λ1η̃1+λ2η̃2+λ3η̃3+λ4η̃4)δ

4(p1+p2+p3+p4)

×δ((p1 + p2)
2)

I This is a factorization channel of 4pt tree-level amplitude,
(p1 + p2)

2 = 0.



On-shell gluing
I Glue four three point vertices into four point diagram

which is a 4pt tree level amplitude!

1

〈12〉〈23〉〈34〉〈41〉δ
8(λ1η̃1+λ2η̃2+λ3η̃3+λ4η̃4)δ

4(p1+p2+p3+p4)

I This is equal to three Feynman diagrams.



On-shell gluing
I We glue arbitrary number of three point vertices and get
on-shell diagrams: our new building blocks

I It is product of three point amplitudes where we solve
(integrate) for internal data

∫
d2λ d2λ̃d4η̃

GL(1)

I In general, it is a differential form.



On-shell diagrams
I These diagrams are identical to plabic graphs, they look

identical and they satisfy the same identity moves!
I How to use the cell of Positive Grassmannian G+(k, n)

associated with the diagram to get the function?
I We define a form with logarithmic singularities,

∫
df1
f1

df2
f2

. . .
dfd
fd

k∏

α=1

δ4|4 [Cαa(fi)Wa]

where C is the Grassmannian matrix parametrized by fi.
I W carries the information about external data.
I There are different kinematical variables to choose:
W = (λ, λ̃, η̃) or W = (Z, η̃).

I Delta functions localize variables in the form.



On-shell diagrams
I This form is invariant identity moves on diagrams:

I For reduction we get

Ω→
∫
df0
f0

df ′1
f ′1

df ′2
f ′2

. . .
dfd
fd
δ4|4

(
C(f ′1, f

′
2, f3 . . . fd)αaWa

)



Relations between on-shell diagrams
I All relations between on-shell diagrams are generated by

∂ΩD+1 = 0

where ΩD+1 is D + 1 dimensional cell in the Positive
Grassmannian.

I This is extremely simple in terms of configurations of points in
Pk−1 but it generates non-trivial identities between functions.



Relations between on-shell diagrams
I Example: n = 11, k = 5 - identity involving higher roots

The Analytic S-Matrix, Redux
Two Roads to the Grassmannian

Grassmannian Polytopes, Leading Singularities, and All That

The Complete Classification of Yangian Invariants
Relations Among Yangian Invariants

A Theorem for 11-Point N3MHV Leading Singularities

+ ––

+
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From on-shell diagrams to amplitude
I Each diagram is a potential building block for the amplitude.

Label n is given by external legs and k = W + 2B − E.
I Recursion relations give us the expansion of the amplitude as

a sum of on-shell diagrams.

I Example: 6pt NMHV amplitude, n = 6, k = 1, there are 3
on-shell diagrams vs 220 Feynman diagrams



From on-shell diagrams to amplitude
I The particular sum is dictated by physical properties of the

amplitude - locality and unitarity.
I For tree-level amplitudes we always get reduced diagrams –

invariant information is just a list of permutations.
I For loop amplitudes the diagrams are not reduced. At L-loops

each diagram contains 4L irrelevant variables, each for one
bubbles.

I Recursion relations:



From on-shell diagrams to amplitude
I Example: 4pt one-loop amplitude

(2.26)

But using a series of mergers and square moves, it can be brought to the beautifully

symmetrical form:

(2.27)

These forms are completely equivalent, but suggest very different physical interpreta-

tions. The first, (2.26), clearly exposes its origin as a forward-limit: arising through

the “hiding” of two of the external particles of the six-point tree-amplitude. The sec-

ond form, (2.27), does not look like this at all; instead, it appears to represent four

BCFW-bridges attached to an internal square—which is of course the four-particle

tree-amplitude. Thus, in this picture, we can think of the one-loop amplitude as an

integral over a four-parameter deformation of the tree-amplitude!

This is more than mere amusement. It immediately tells us that with an appro-

priate choice of variables representing the BCFW shifts, the one-loop amplitude can

be represented in a remarkably simple form:

A1−loop
4 = Atree

4 ×
∫
dα1

α1

dα2

α2

dα3

α3

dα4

α4

. (2.28)

Of course, this does not look anything like the more familiar expression,

A1−loop
4 = Atree

4 × = Atree
4 ×

∫
d4` (p1 + p2)2(p1 + p3)2

`2(`+ p1)2(`+ p1 + p2)2(`− p4)2
. (2.29)

In this form, it is not at all obvious that there is any change of variables that reduces

the integrand to the “d log”-form of equation (2.28). However, following the rule

for identifying off-shell loop momenta in terms of on-shell data, (2.22), and keeping

track of the changes of variables induced by the square moves, we may easily identify

the map which takes us from the ` of (2.29) to the αi of (2.28):

d4` (p1 + p2)2(p1 + p3)2

`2(`+ p1)2(`+ p1 + p2)2(`− p4)2
(2.30)

=d log

(
`2

(`− λ1λ̃3)2

)
d log

(
(`+ p1)2

(`− λ1λ̃3)2

)
d log

(
(`+ p1 + p2)2

(`− λ1λ̃3)2

)
d log

(
(`− p4)2

(`− λ1λ̃3)2

)
.

– 14 –

I It contains four bubbles = four irrelevant variables,

=

∫
df1
f1

df2
f2

df3
f3

df4
f4
×



Conclusion
I On-shell diagrams provide a new basis of objects for scattering

amplitudes (at least in our toy model).
I Each diagram corresponds to the cell in the Positive

Grassmannian and its value is a canonical logarithmic form.
I It is possible to show that each diagram makes the hidden

Yangian symmetry of our theory manifest – it is a positive
diffeomorphism on positive part of Grassmannian.

I Scattering amplitude Mm,k,` is a particular sum of on-shell
diagrams.

I It is not a complete reformulation of QFT: amplitude is still a
sum of pieces rather than a unique object, to get a sum we
need a physical information (recursion relations) to construct
the amplitude.


