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Review of the last lecture



Permutations
» Fundamental 3pt vertices:

2 2

3 3

represent permutations (1,2,3) — (2,3,1) and
(1,2,3) = (3,2,1).

» Permutation (1,2,3,4) — (3,4,1,2).



Permutations

There are two identity moves:

» merge-expand of black (or white) vertices

> square move

4 3 4

They preserve permutation.



Configuration of vectors
» Permutations < Configuration of n points P*~! in with
consecutive linear dependencies.
» Permutation o (i) means that i C span(i+1,...0(7))
» Example: n = 6,k = 3, we have six points in P2

C(2,34,5,6) > 0(1) =6, 2C (34,5) = o(2) =5,
3c() (3):4 4C (5,6,1,2) = o(4) =2,
5C (6,1) = o(5) = 6C(1,2,3) —>a(6) 3

» The permutation is (1,2,3,4,5,6) — (6,5,4,8,7,9).



The Positive Grassmannian

» Grassmannian G(k,n): space of k-dimensional planes in n
dimensions, represented by k& x n matrix modulo GL(k),

= =] | =la e )
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» Positive part: all minors

(Ci1~-Cik)>0 for i1 <ig < --- < .



The Positive Grassmannian

> Back to 6pt example:

» Linear dependencies: fix points 1, 2, 3,
C4 = G34C3 C5 = Q25C2 + A35C3

Ce = A16C1 + 2C5 = A16C1 + 2A25C5 + 2G35Cs

1 00 O 0 ae
C = 0 1 0 0 azs  2a9s5
0 0 1 agsy ass; zass

» This is 5-dimensional cell in G(2,6).



The Positive Grassmannian

» Positive Grassmannian G (k,n): generalization of " convex’
configurations of n points in P*~1.

» Top cell in G4 (k,n): generic configuration of points.
» Example: top cell of G4 (3,6).

2 2
1 3 1 3 1 2 1 2
—_— > e 1;3—>
4 651 3
5

6 5 4 6 5 4

We send minor (456) = 0, then (234) = 0, then (345) = 0.
» Boundaries preserve convexity: all non-zero minors of

G4 (k,n) stay positive.
» This provides a stratification of G (k,n).



Plabic graphs

» Plabic graphs = diagrams with black and white vertices.

» Reduced graphs: no internal bubbles - their equivalence class
is isomorphic to permutations and cells in G4 (k,n).

» Generic diagram is not reduced: it contains internal bubbles.

1 2 1 2 1 2

4 3 4 3 4 3

» The diagram is reduced after all bubbles are removed.

» In order to find the Grassmannian matrix for each reduced
diagram we have to choose variables.
» Edge variables.
» Face variables.



Edge variables

> Variables associated with edges, orientation for the graph.

» There is a GL(1) redundancy in each vertex. The edge
variables are " connections” on the graph.
» The rule for entries of the C' matrix,

Cij=— Z H «; edges along path

paths i—J
» For this example:
c11 =1, c12 =0, co1 =0, co2 =1
c13 = —0 50603, c1a = —oq(asosar + ag)oy

€23 = —QagQ3, C24 = —Q20gQ70Yy



Edge variables

> Variables associated with edges, orientation for the graph.

> There is a GL(1) redundancy in each vertex. The edge
variables are " connections” on the graph.

» The rule for entries of the C' matrix,

Cij=— Z H (; edges along path

paths i—J
» For this example:

C - 1 0 — 13050 —O1O040506007 — (N1 04008
N0 1 —agosag — QT



Face variables

» Variables associated with faces.

» " Gauge invariant” (fluxes) associated with faces of the graph.
Only one condition [] fi = —
» The rule for entries of the C' matrix,

Ciy=— Z H fj faces right to the path

paths i—J
» For this example:

o <1 0 fofsfa —fof4+f4>
0 1 —fofifsfa —fofifa



On-shell diagrams and Scattering
amplitudes



Three point amplitudes

» We want to find an alternative to Feynman diagrams.

> Let us take physical three point amplitudes as our
fundamental objects instead of Feynman vertices.

» On-shell conditions and momentum conservation:
2 2 2
p1+p2+p3 =0, pi=p;=p3=0

No solution for real momenta!
» For complex momenta we get two different solutions

» All X\ are proportional, \ are generic.
> All X are proportional, A are generic.

Reminder: agdp# = Ao e

» Two independent three point amplitudes (k = 1 and k = 2).



Three point amplitudes

> We graphically represent as

2 2

3 3

» They represent the expressions:

1
[12][23][31]
2 _ 1
My = (12)(23)(31)

where (12) = e 4N, [12] = 6@55‘%5‘2

Mén _ 54(771 23] + 72[31] + ﬁ3[12])64(p1 + p2 + p3)

8% (M + Aaffa + Asiiz)6* (p1 + p2 + p3)



On-shell gluing

» Glue two three point vertices into four point diagram

2 3

| 4
» We solve for the internal A and 7} and get

1

88 (M7 +AaTla+ A3+ Aafig )62
(12)(23)(34)(41) (M1 +A2fl2+A37l3+Aa7]a) 6" (p1+p2+p3+pa)

x5((p1 + p2)?)

» This is a factorization channel of 4pt tree-level amplitude,
(p1 +p2)* = 0.



On-shell gluing
> Glue four three point vertices into four point diagram

1 2

4 3
which is a 4pt tree level amplitude!

1

8% (A1l +Aofla+ Asfiz+Aafja )6t
2y@3) A any). A Aelt Xaa Aaiha)5 (pr--papapa)

» This is equal to three Feynman diagrams.

2 3 2 3
S
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On-shell gluing

> We glue arbitrary number of three point vertices and get
on-shell diagrams: our new building blocks

3
2
1 2
4
1
S 4 3
» It is product of three point amplitudes where we solve
(integrate) for internal data

X d?Md*7
GL(1)

> In general, it is a differential form.



On-shell diagrams

>

These diagrams are identical to plabic graphs, they look
identical and they satisfy the same identity moves!

How to use the cell of Positive Grassmannian G (k, n)
associated with the diagram to get the function?

We define a form with logarithmic singularities,

Cj{} Cj{; dfq H 5 (G (F:)Wal
where C' is the Grassmannian matrix parametrized by f;.
W carries the information about external data.

There are different kinematical variables to choose:
W= (\\n)or W= (Z7n).

Delta functions localize variables in the form.



On-shell diagrams

» This form is invariant identity moves on diagrams:

» For reduction we get

@ﬂ% dfa 414 1ot
b fo f1 f5 fd5 (C(fl’fQ’f?"--fd)aaWa)
Ji Jifo

'u‘ . 1+ﬁ)

r B+




Relations between on-shell diagrams

» All relations between on-shell diagrams are generated by

Mpy1=0
where Qpy1 is D 4 1 dimensional cell in the Positive
Grassmannian.

» This is extremely simple in terms of configurations of points in
P*~1 but it generates non-trivial identities between functions.



Relations between on-shell diagrams

» Example: n =11, k£ = 5 - identity involving higher roots




Relations between on-shell diagrams

» Example: n =11, k£ = 5 - identity involving higher roots
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Relations between on-shell diagrams

» Example: n =11, k£ = 5 - identity involving higher roots
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From on-shell diagrams to amplitude

» Each diagram is a potential building block for the amplitude.
Label n is given by external legs and k =W +2B — F.

» Recursion relations give us the expansion of the amplitude as
a sum of on-shell diagrams.

» Example: 6pt NMHV amplitude, n = 6, k = 1, there are 3
on-shell diagrams vs 220 Feynman diagrams

3 4 3 4 3 4
5 2
2 2 5 5
1 6 1 6 1 6



From on-shell diagrams to amplitude
» The particular sum is dictated by physical properties of the
amplitude - locality and unitarity.

> For tree-level amplitudes we always get reduced diagrams —
invariant information is just a list of permutations.

» For loop amplitudes the diagrams are not reduced. At L-loops

each diagram contains 4L irrelevant variables, each for one
bubbles.

» Recursion relations:




From on-shell diagrams to amplitude
> Example: 4pt one-loop amplitude

2 3

" o4
» It contains four bubbles = four irrelevant variables,

1 2

dfy dfa dfs df4

i f2 f3 f4



Conclusion

» On-shell diagrams provide a new basis of objects for scattering
amplitudes (at least in our toy model).

» Each diagram corresponds to the cell in the Positive
Grassmannian and its value is a canonical logarithmic form.

> It is possible to show that each diagram makes the hidden
Yangian symmetry of our theory manifest — it is a positive
diffeomorphism on positive part of Grassmannian.

> Scattering amplitude M, ;. ¢ is a particular sum of on-shell
diagrams.

» It is not a complete reformulation of QFT: amplitude is still a
sum of pieces rather than a unique object, to get a sum we
need a physical information (recursion relations) to construct
the amplitude.



