Towards New Formulation of Quantum field theory: Geometric Picture for Scattering Amplitudes

 Part 3
Jaroslav Trnka

Winter School Srní 2014, 19-25/01/2014
Work with Nima Arkani-Hamed, Jacob Bourjaily, Freddy Cachazo, Alexander Goncharov, Alexander Postnikov, arxiv: 1212.5605

Work with Nima Arkani-Hamed, arxiv: 1312.2007

The Amplituhedron

Review of the result

- For each amplitude $A_{n, k}^{\ell-l o o p}$ we define a positive space "Amplituhedron" $P_{n, k, \ell}$ - it is a generalization of the positive Grassmannian.
- For each positive space we associate a form $\Omega_{n, k, \ell}$ which has logarithmic singularities on the boundary of this region.

- From this form we can extract the amplitude $A_{n, k}^{\ell-l o o p}$.
- Calculating amplitudes: triangulation of the positive space $P_{n, k, \ell}$ in terms of building blocks for which the form is trivial.
- Set of on-shell diagrams (given by recursion relations) provides one particular triangulation.

The New Positive Region

Inside of the simplex

- Problem from classical mechanics: center-of-mass of three points

Imagine masses c_{1}, c_{2}, c_{3} in the corners.

$$
\overrightarrow{x_{T}}=\frac{c_{1} \overrightarrow{x_{1}}+c_{2} \overrightarrow{x_{2}}+c_{3} \overrightarrow{x_{3}}}{c_{1}+c_{2}+c_{3}}
$$

- Interior of the triangle: ranging over all positive c_{1}, c_{2}, c_{3}.
- Triangle in projective space \mathbb{P}^{2}.
- Projective variables $Z_{i}=\binom{1}{\overrightarrow{x_{i}}}$
- Point Y inside the triangle.

$$
Y=c_{1} Z_{1}+c_{2} Z_{2}+c_{3} Z_{3}
$$

Inside of the simplex

- Generalization to higher dimensions is straightforward.

$$
\begin{aligned}
& \text { Point } Y \text { inside tetrahedon in } \mathbb{P}^{3} \text { : } \\
& \qquad Y=c_{1} Z_{1}+c_{2} Z_{2}+c_{3} Z_{3}+c_{4} Z_{4}
\end{aligned}
$$

Ranging over all positive c_{i} spans the interior of the simplex.

- In general point Y inside a simplex in \mathbb{P}^{m-1} :

$$
Y^{I}=C_{1 a} Z_{a}^{I} \quad \text { where } I=1,2, \ldots, m
$$

- C is $(1 \times m)$ matrix of positive numbers,

$$
C=\left(c_{1} c_{2} \ldots c_{m}\right) / G L(1) \quad \text { which is } G_{+}(1, m)
$$

Into the Grassmannian

- Generalization of this notion to Grassmannian.
- Let us imagine the same triangle and a line Y,

$$
\begin{aligned}
& Y_{1}=c_{1}^{(1)} Z_{1}+c_{2}^{(1)} Z_{2}+c_{3}^{(1)} Z_{3} \\
& Y_{2}=c_{1}^{(2)} Z_{1}+c_{2}^{(2)} Z_{2}+c_{3}^{(2)} Z_{3}
\end{aligned}
$$

writing in the compact form

$$
Y_{\alpha}^{I}=C_{\alpha a} Z_{a}^{I} \quad \text { where } \alpha=1,2
$$

- The matrix C is a (2×3) matrix mod $\mathrm{GL}(2)$ - Grassmannian $G(2,3)$.
- Positivity of coefficients? No, minors are positive!

$$
C=\left(\begin{array}{ccc}
1 & 0 & -a \\
0 & 1 & b
\end{array}\right)
$$

Into the Grassmannian

- In the general case we have

$$
Y_{\alpha}^{I}=C_{\alpha a} Z_{a}^{I}
$$

where $\alpha=1,2, \ldots, k$, ie. it is a k-plane in $(k+m)$ dimensions, $a, I=1,2, \ldots k+m$. Simplex has $\alpha=1$, for triangle also $m=2$.

- The matrix C is a 'top cell' (no constraint imposed) of the positive Grassmannian $G_{+}(k, k+m)$, it is $k \cdot m$ dimensional.
- We know exactly what these matrices are!

Beyond triangles

- Let us go back to point inside a triangle.
- Points Z_{i} did not play role, we could always choose the coordinate system such that Z is identity matrix, then $Y \sim C$.
- If the number of points $n>k+m$ the position of vertices is crucial. For a given cyclic ordering we consider the interior of the polygon in \mathbb{P}^{2}.

We need a convex polygon!

Beyond triangles

- Convexity $=$ positivity of Z 's. They form a $(3 \times n)$ matrix with all ordered minors being positive,

$$
\left\langle Z_{i} Z_{j} Z_{k}\right\rangle>0 \quad \text { for all } i<j<k
$$

- The point Y inside this polygon is

$$
Y^{I}=c_{1} Z_{1}+\cdots+c_{n} Z_{n}=C_{1 a} Z_{a}^{I}
$$

where $C \in G_{+}(1, n)$ and $Z \in M_{+}(3, n)$.

- Note that point Y is also inside some triangle

Beyond triangles

- Triangulation: set of non-intersecting triangles that cover the region.

$$
P_{n}=\sum_{i=2}^{n}[1 i i+1]
$$

- The generic point Y is inside one of the triangles. The matrix:

$$
C=\left(\begin{array}{lllllllll}
1 & 0 & \ldots & 0 & c_{i} & c_{i+1} & 0 & \ldots & 0
\end{array}\right)
$$

- Two descriptions:
- Top cell $(n-1)$-dimensional of $G_{+}(1, n)$ - redundant.
- Collection of 2-dimensional cells of $G_{+}(1, n)$ - triangulation.

Tree Amplituhedron

- In general case we have
- A k-plane Y in $(k+m)$-dimensional space.
- Positive region given by n points Z_{i} with positive constraints,

$$
\left\langle Z_{a_{1}} Z_{a_{2}} Z_{a_{3}} \ldots Z_{a_{k+m}}\right\rangle>0 \quad \text { for } a_{1}<a_{2}<a_{3}<\cdots<a_{k+m}
$$

- The definition of the space:

$$
Y_{\alpha}^{I}=C_{\alpha a} Z_{a}^{I} \quad \alpha=1, \ldots, k, \quad I=1, \ldots, k+m, \quad a=1, \ldots, n
$$

- Note that the geometric statement being "inside" does not generalize while the positivity of all $(k \times k)$ minors does.
- It is a map that defines a positive region $P_{n, k, m}$,

$$
G_{+}(k, n) \times M_{+}(k+m, n) \rightarrow G(k, k+m)
$$

- The tree-level amplitude for n, k corresponds to the case n, k and $m=4$.

Canonical forms

Canonical form

- How to get the actual formula from the positive region?
- We define a canonical form Ω_{P} which has logarithmic singularities on the boundaries of P.
- Example of triangle in \mathbb{P}^{2} :

$$
\Omega_{P}=\frac{\langle Y d Y d Y\rangle\langle 123\rangle^{2}}{\langle Y 12\rangle\langle Y 23\rangle\langle Y 31\rangle}
$$

- We parametrize $Y=Z_{1}+c_{2} Z_{2}+c_{3} Z_{3}$ and get

$$
\Omega_{P}=\frac{d c_{2}}{c_{2}} \frac{d c_{3}}{c_{3}}=\mathrm{d} \log \mathrm{c}_{2} \operatorname{d} \log \mathrm{c}_{3}
$$

- This is just a form for the top cell of $G_{+}(1,3)$,

$$
C=\left(\begin{array}{lll}
1 & c_{2} & c_{3}
\end{array}\right)
$$

Canonical form

- Simplex in \mathbb{P}^{4} - this is relevant for physics.

$$
\begin{aligned}
& \Omega_{P}=\frac{\langle Y d Y d Y d Y d Y\rangle\langle 12345\rangle^{2}}{\langle Y 1234\rangle\langle Y 2345\rangle\langle Y 3451\rangle\langle Y 4512\rangle\langle Y 5123\rangle} \\
& \text { For } Y=Z_{1}+c_{2} Z_{2}+c_{3} Z_{3}+c_{4} Z_{4}+c_{5} Z_{5}
\end{aligned}
$$

$$
\Omega_{P}=d \log c_{2} d \log c_{3} d \log c_{4} d \log c_{5}
$$

- This is a 4-dimensional (top) cell in $G_{+}(1,5)$.

$$
C=\left(\begin{array}{lllll}
1 & c_{2} & c_{3} & c_{4} & c_{5}
\end{array}\right)
$$

- The form Ω_{P} gives the $n=5, k=1$ tree-level scattering amplitude.

Canonical form

- For general D-dimensional cell of Positive Grassmannian there is an on-shell diagram associated with each cell.
- We parametrize the C matrix with D positive parameters. and the logarithmic form is

$$
\Omega_{P}=\mathrm{d} \log c_{1} \mathrm{~d} \log c_{2} \ldots \mathrm{~d} \log c_{D}
$$

- Then we can solve for parameters c_{j} using

$$
Y_{\alpha}^{I}=C_{\alpha a} Z_{a}^{I}
$$

and get the form in Y.

Canonical form

- This is not enough for us. Our space is $k m$ dimensional and it is an image of $k(n-k)$-dimensional top cell of $G_{+}(k, n)$ under the map
$Y_{\alpha}^{I}=C_{\alpha a} Z_{a}^{I} \quad \alpha=1, \ldots, k, \quad I=1, \ldots, k+m, \quad a=1, \ldots, n$
- There is a form Ω with logarithmic singularities on the boundaries of this space.
- It is not the dlog of all variables unlike for the cell of $G_{+}(k, n)$. Matrix C is parametrized using $k(n-k)$ parameters but the space is only $k m$ dimensional. We wish to find the form just from definition.
- Alternative method: triangulate the space - find a collection of $k m$ dimensional cells of $G_{+}(k, n)$ that cover the whole region for Y like in polygon case.
- Then the form is just a sum of dlog forms for each cell (after solving for parameters c_{j} in terms of Y and Z_{i}).

Canonical form

- Example: Polygon

$$
\Omega_{P}=\sum_{i=2}^{n} \frac{\langle Y d Y d Y\rangle\langle 1 i i+1\rangle^{2}}{\langle Y 1 i\rangle\langle Y 1 i+1\rangle\langle Y i i+1\rangle}
$$

Spurious poles $\langle Y 1 i\rangle$ cancel in the sum.

- We can also look directly for the form

$$
\Omega=\frac{\langle Y d Y d Y\rangle \mathcal{N}\left(Y, Z_{i}\right)}{\langle Y 12\rangle\langle Y 23\rangle\langle Y 34\rangle \ldots\langle Y n 1\rangle}
$$

and fix the numerator from the condition that singularities are logarithmic only on the boundaries of the polygon.

Canonical form

- The case of physical relevance is $m=4$.
- Tree-level Amplituhedron $P_{n, k, 4}$ defined by

$$
Y_{\alpha}^{I}=C_{\alpha a} Z_{a}^{I} \quad \alpha=1, \ldots, k, \quad I=1, \ldots, k+4, \quad a=1, \ldots, n
$$

- There is a form with logarithmic singularities on the boundary of this space.
- Recursion relations provide a triangulation of this space in terms of building blocks, $4 k$-dimensional cells of Positive Grassmannian $G_{+}(k, n)$.
- There exist many other triangulations.

From canonical forms to amplitudes

- How to extract the amplitude from Ω_{P} ?
- Look at the example of simplex in \mathbb{P}^{4}.

$$
\Omega_{P}=\frac{\langle Y d Y d Y d Y d Y\rangle\langle 12345\rangle^{4}}{\langle Y 1234\rangle\langle Y 2345\rangle\langle Y 3451\rangle\langle Y 4512\rangle\langle Y 5123\rangle}
$$

- Note that the data are five-dimensional, it is purely bosonic and it is a form rather than function.
- Let us rewrite Z_{i} as four-dimensional part and its complement

$$
Z_{i}=\binom{z_{i}}{\delta z_{i}} \quad \text { where } \quad \delta z_{i}=\left(\eta_{i} \cdot \phi\right)
$$

We define a reference point Y^{*} which is in the complement of 4 d data z_{i},

$$
Y^{*}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

From canonical forms to amplitudes

- We integrate the form, using $\left\langle Y^{*} 1234\right\rangle=\langle 1234\rangle$, etc. we get

$$
\int d^{4} \phi \int \delta\left(Y-Y^{*}\right) \Omega_{P}=\frac{\left(\langle 1234\rangle \eta_{5}+\langle 2345\rangle \eta_{1}+\cdots+\langle 5123\rangle \eta_{4}\right)^{4}}{\langle 1234\rangle\langle 2345\rangle\langle 3451\rangle\langle 4512\rangle\langle 5123\rangle}
$$

- For higher k we have $(k+4)$ dimensional external Z_{i},

$$
Z_{i}=\left(\begin{array}{c}
z_{i} \\
\left(\eta_{i} \cdot \phi_{1}\right) \\
\vdots \\
\left(\eta_{i} \cdot \phi_{k}\right)
\end{array}\right) \quad Y^{*}=\left(\begin{array}{cccc}
\overrightarrow{0} & \overrightarrow{0} & \ldots & \overrightarrow{0} \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

- Reference k-plane Y^{*} orthogonal to external z_{i}. We consider integral

$$
A_{n, k}=\int d^{4} \phi_{1} \ldots d^{4} \phi_{k} \int \delta\left(Y-Y^{*}\right) \Omega_{P_{n, k}}
$$

Loop amplitudes

MHV amplitudes

- The simplest case is $k=0$ where there is no Y-plane - MHV amplitudes. The space is just \mathbb{P}^{3} and the tree-level form is just $\Omega_{P}=1$.
- The loop momentum is represented by a line $Z_{A} Z_{B}$. We consider all configurations of this line.
- For one line we can parametrize

$$
A_{\alpha}^{I}=C_{\alpha a} Z_{a}^{I}, \quad \text { where } \alpha=1,2
$$

where $A_{\alpha}=(A, B)$.

- We demand the matrix of coefficients to be positive, ie. $C \in G_{+}(2, n)$ and $Z \in M_{+}(4, n)$.
- The form with logarithmic singularities on the boundaries of this space is MHV 1-loop amplitude.
- We know the explicit form of the result by triangulation.

MHV amplitudes

- "Triangles" are just 4-dimensional cells of $G_{+}(2, n)$: "kermits"

$$
C_{1, i, i+1 ; 1, j, j+1}=\left(\begin{array}{ccccccccccc}
1 & 0 & 0 & c_{i} & c_{i+1} & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & c_{j} & c_{j+1} & 0 & 0
\end{array}\right)
$$

- Triangulation

$$
P_{n}=\sum_{i<j}[1, i, i+1 ; 1, j, j+1]
$$

where each kermit has a simple form

$$
\Omega_{P}=\mathrm{d} \log c_{i} \mathrm{~d} \log c_{i+1} \mathrm{~d} \log c_{j} \mathrm{~d} \log c_{j+1}
$$

- The form for the full space is then

$$
\Omega_{P}=\sum_{i<j} \frac{\left\langle A B d^{2} A\right\rangle\left\langle A B d^{2} B\right\rangle\langle A B(i-1 i i+1) \bigcap(j-1 j j+1)\rangle^{2}}{\langle A B 1 i\rangle\langle A B 1 i+1\rangle\langle A B i i+1\rangle\langle A B 1 j\rangle\langle A B 1 j+1\rangle\langle A B j j+1\rangle}
$$

MHV amplitudes

- In the next case we consider two lines in \mathbb{P}^{3}, denoted as $Z_{A} Z_{B}, Z_{C} Z_{D}$,

We combine matrices into

$$
\begin{aligned}
A_{\alpha}^{(1) I} & =C_{\alpha a}^{(1)} Z_{a}^{I} \\
A_{\alpha}^{(2) I} & =C_{\alpha a}^{(2)} Z_{a}^{I}
\end{aligned}
$$

$$
C=\binom{C^{(1)}}{C^{(2)}}
$$

- We demand $C^{(1)}, C^{(2)}$ to be both $G_{+}(2, n)$. This is a "square" of one-loop problem: $\left(A_{n}^{1-l o o p}\right)^{2}$.
- Additional constraint: All (4×4) minors of C are positive!
- The form with log singularities is MHV two-loop amplitude.
- The space of C matrices is a generalization of positive Grassmannian and has not been studied in the literature - we do not know the stratification (even before applying Z-projection).

MHV amplitudes

- At L-loop we have L lines A_{α}^{I}.

$$
\begin{aligned}
A_{\alpha}^{(1) I} & =C_{\alpha a}^{(1)} Z_{a}^{I} \\
\vdots & \\
A_{\alpha}^{(L) I} & =C_{\alpha a}^{(L)} Z_{a}^{I}
\end{aligned}
$$

$$
C=\left(\begin{array}{c}
C^{(1)} \\
\vdots \\
C^{(L)}
\end{array}\right)
$$

- Positivity constraints:
- External data Z are positive.
- All minors of $C^{(j)}$ are positive.
- All (4×4) minors made of $C^{(i)}, C^{(j)}$ are positive, all (6×6) minors of $C^{(i)}, C^{(j)}, C^{(k)}$, etc. are also positive.
- The form is the integrand of n-pt L-loop MHV amplitude.

The Amplituhedron

In the general case of n-pt L-loop N^{k} MHV amplitude we have

- Positive $k+4$-dimensional external data Z.
- k-plane Y in $k+4$ dimensions
- L lines in 4-dimensional complement to Y plane

$$
Y_{\sigma}^{I}=C_{\sigma a} Z_{a}^{I}
$$

$$
A_{\alpha}^{(1) I}=C_{\alpha a}^{(1)} Z_{a}^{I}
$$

$$
C=\left(\begin{array}{c}
C \\
C^{(1)} \\
\vdots \\
C^{(L)}
\end{array}\right)
$$

Positivity constraints:

- C is positive.
- $C+$ any combination of $C^{(i)}$'s is positive.

Application: Four point amplitudes

Four point amplitude

- We have L lines in \mathbb{P}^{3} represented by L positive Grasmannians $G_{+}(2,4)$. All 4×4 minors made of pairs of $G_{+}(2,4)$ are positive. $Z \mathrm{~s}$ are totally irrelevant here, $n=m=4$.
- In one parametrization,

$$
C_{1}=\left(\begin{array}{cccc}
1 & x_{1} & 0 & -v_{1} \\
0 & y_{1} & 1 & u_{1}
\end{array}\right) \quad \ldots \quad C_{L}=\left(\begin{array}{cccc}
1 & x_{L} & 0 & -v_{L} \\
0 & y_{L} & 1 & u_{L}
\end{array}\right)
$$

All coefficients $x_{i}, y_{i}, u_{i}, v_{i}>0$ and there is a set of inequalities

$$
\left(x_{i}-x_{j}\right)\left(u_{i}-u_{j}\right)+\left(y_{i}-y_{j}\right)\left(v_{i}-v_{j}\right)<0
$$

for all pairs i, j.

- There is a way how to phrase this problem purely geometrically. Let us define

$$
a_{i}=\binom{x_{i}}{y_{i}} \quad b_{i}=\binom{v_{i}}{u_{i}}
$$

Four-point amplitude

We have 2 d vectors a_{i}, b_{i} for $i=1, \ldots, L$ and we demand

- They all live in the first quadrant.
- For any pair $\left(a_{i}-a_{j}\right) \cdot\left(b_{i}-b_{j}\right)<0$.
- Triangulation: Find all possible configurations of vectors!

We do not know how to solve it in general but we have some partial results.

One-loop amplitude

- This is a "free" case, $G_{+}(2,4)$. We have a single line in \mathbb{P}^{3} parametrized by

$$
C_{1}=\left(\begin{array}{cccc}
1 & x_{1} & 0 & -v_{1} \\
0 & y_{1} & 1 & u_{1}
\end{array}\right)
$$

with $x_{1}, y_{1}, u_{1}, v_{1}>0$.

- Therefore the form with logarithmic singularities on the boundaries (0 and ∞ for all variables), is

$$
\Omega=\frac{d x_{1}}{x_{1}} \frac{d y_{1}}{y_{1}} \frac{d u_{1}}{u_{1}} \frac{d v_{1}}{v_{1}}
$$

Two-loop amplitude

- This is a first "interacting" case.

$$
C_{1}=\left(\begin{array}{cccc}
1 & x_{1} & 0 & -v_{1} \\
0 & y_{1} & 1 & u_{1}
\end{array}\right) \quad C_{2}=\left(\begin{array}{cccc}
1 & x_{2} & 0 & -v_{2} \\
0 & y_{2} & 1 & u_{2}
\end{array}\right)
$$

where all variables are positive and satisfy

$$
\left(x_{1}-x_{2}\right)\left(u_{1}-u_{2}\right)+\left(y_{1}-y_{2}\right)\left(v_{1}-v_{2}\right)<0
$$

- This is a quadratic condition and in order to write bounds for all variables we have to triangulate the region - there are several top form.
- The final result is then:

$$
\frac{\left(u_{2} x_{1}+u_{1} x_{2}+v_{1} y_{2}+v_{2} y_{1}\right)}{x_{1} x_{2} y_{1} y_{2} u_{1} u_{2} v_{1} v_{2}\left[\left(x_{1}-x_{2}\right)\left(u_{1}-u_{2}\right)+\left(y_{1}-y_{2}\right)\left(v_{1}-v_{2}\right)\right]}
$$

Cuts of the amplitude

- We do not know how to triangulate the amplitude in general. The system of inequalities is too hard for us at the moment.
- However we can solve some special cases - cuts of the amplitude: we can generate many data not accessible using any other approach.
- One example: all $v_{i}=0$

$$
C_{1}=\left(\begin{array}{cccc}
1 & x_{1} & 0 & 0 \\
0 & y_{1} & 1 & u_{1}
\end{array}\right) \quad \ldots \quad C_{L}=\left(\begin{array}{cccc}
1 & x_{L} & 0 & 0 \\
0 & y_{L} & 1 & u_{L}
\end{array}\right)
$$

- It is the single cut of the amplitude $\left\langle(A B)_{i} 12\right\rangle=0$

$$
\left(x_{i}-x_{j}\right)\left(u_{i}-u_{j}\right)<0
$$

- Solution: we consider all orderings of x 's: $x_{1}<x_{2}<\ldots x_{L}$ and then y 's are ordered in the opposite order $y_{1}>y_{2}>\ldots y_{L}$.

Conclusion

Conclusion

Mathematics

- Amplituhedron is a significant generalization of positive Grassmannian which is of high interest in QFT.
- Interesting directions: triangulation of this space in terms of more elementary building blocks, understanding stratification of this space.
Physics
- Amplituhedron is a new geometric picture for scattering amplitudes in planar $\mathcal{N}=4$ SYM.
- It is defined purely in geometric terms with no reference to usual concepts of QFT: no Lagrangians, locality or unitarity which are all emergent properties from geometry.
- Interesting directions: calculate all-loop order results, generalization of the picture to other theories.

