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Invariant trilinear forms
I Recall the definition of the principal series representation
πλ

πλ(g)f (x) = κ(g−1, x)ρ+λf (g−1(x))

where f ∈ C∞(S), g ∈ G , x ∈ S and ρ = n−1
2

.

I Let λ1, λ2, λ3 ∈ C. A continuous trilinear form T on
C∞(S)× C∞(S)× C∞(S) is invariant with respect to
(πλ1 , πλ2 , πλ3) if

T
(
πλ1(g)f1, πλ2(g)f2, πλ1(g)f3

)
= T (f1, f2, f3)

for f1, f2, f3 ∈ C∞(S) and g ∈ G .
I A trilinear form T can also be regarded as a distribution

on S × S × S , and when convenient, we use the notation
T (f ) for f ∈ C∞(S × S × S) or T (f1 ⊗ f2 ⊗ f3) instead of
T (f1, f2, f3).
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Formal construction
Let α = (α1, α2, α3) ∈ C3, and let

Kα(f1, f2, f3) =

∫
S×S×S
|x−y |α3|y−z |α1|z−x |α2f1(x)f2(y)f3(z) dx dy dz

This integral makes sense if <αj large enough for j = 1, 2, 3,
or if Supp(f1) ∩ Supp(f2) ∩ Supp(f3) = ∅.

Proposition
Let λ1, λ2, λ3 ∈ C, and define α = (α1, α2, α3) by

α1 =− ρ− λ1 + λ2 + λ3

α2 =− ρ + λ1 − λ2 + λ3

α3 =− ρ + λ1 + λ2 − λ3 .

Then the trilinear form Kα is invariant w.r.t. πλ1 , πλ2 , πλ3 ,
whenever it makes sense.
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I The proof of the invariance amounts to the change of
variable x ′ = g−1(x), y ′ = g−1(y), z ′ = g−1(z) in the
integral. It uses the covariance property of the Euclidean
distance on S , namely

|g(x)− g(y)| = κ(g , x)
1
2 |x − y |κ(g , y)

1
2 .

I Let λ = (λ1, λ2, λ3). The correspondance λ 7→ α can be
inverted,

λ1 = ρ+
α2 + α3

2
, λ2 = ρ+

α3 + α1

2
, λ3 = ρ+

α3 + α1

2
.

I We also use the notation Kλ = Kα, and call α the
geometric parameter and λ the spectral parameter of the
trilinear form.
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Convergence, meromorphic continuation of Kα

I The integral defining the trilinear form Kα is convergent
iff

I <(αj) > −(n − 1), j = 1, 2, 3
I <(α1 + α2 + α3) > −2(n − 1)

I If λ satisfies 0 ≤ <(λj) < ρ for j = 1, 2, 3, then the
conditions for convergence are satisfied. This covers the
case where the three representations are irreducible and
unitary.

I The map α 7−→ Kα can be meromorphically extended to
C3 with simple poles along four families of planes :

I αj = −(n − 1)− 2k, for k ∈ N
I α1 + α2 + α3 = −2(n − 1)− 2l , for l ∈ N
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I The renormalized form K̃α defined by

K̃α =
1

Γ(α1+α2+α3

2
+ 2ρ)

∏
1≤j≤3 Γ(

αj

2
+ ρ)

Kα

extends holomorphically to all of C3 (use Hartog’s
prolongation principle).

I Question : for which values of α is K̃α 6≡ 0?
If α is not a pole, then certainly K̃α 6≡ 0, by testing on
functions (f1, f2, f3) where Supp(fi) ∩ Supp(fj) = ∅ for
1 ≤ i 6= j ≤ 3.
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The generic uniqueness theorem

Theorem
Let n ≥ 3. Let λ ∈ C3, not a pole of Kλ. Then a continuous
trilinear form on C∞(S) which is invariant w.r.t. (πλ1 , πλ2 , πλ3)
is proportional to Kλ.

Sketch of the proof.

I O0 = {(x , y , z), x , y , z ∈ S , x 6= y , y 6= z , z 6= x} is a
single orbit under G .
[If n = 2, there are two open orbits, due to the
orientation index of three points on the circle]
Consequence : viewing a continuous trilinear form as a
distribution (say T ) on S × S × S , on O0 T has to
coincide with a multiple of Kλ.

I Have to prove : there is no invariant distribution
supported on the (closed) subset O0

c .
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I There are four other G -orbits in S × S × S :

O1 = {x 6= y = z}, O2 = {y 6= z = x}, O3 = {z 6= y = x}

and the diagonal O4 = {(x , x , x), x ∈ S}.

I Now O1 is a closed submanifold of the open subset
O0 ∪ O1. If T is a distribution on S × S × S , supported
in ∪1≤j≤4Oj , then the restriction of T to O0 ∪ O1 is
supported in O1.

I Using Bruhat’s necessary condition for the existence of an
invariant distribution supported on a closed submanifold,
one obtain that T|O0∪O1

has to be 0.

I Same procedure for O2 and O3, and finally for O4 which
is a closed orbit in S × S × S .
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A consequence of the generic uniqueness

For λ1, λ2, λ3 and f1, f2, f3 ∈ C∞(S)

K̃(−λ1,λ2,λ3)(J̃λ1f1, f2, f3) =
πρ

Γ(−λ1 + ρ)
K̃(λ1,λ2,λ3)(f1, f2, f3) .

Remark.

1

Γ(−λ1 + ρ)
= 0 ⇐⇒ λ1 = ρ + k

for some k ∈ N. In which case π−λ1 is reducible and admits a
finite dimensional invariant subspace.
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Evaluation of an integral

Kα(1, 1, 1) =

∫
S×S×S

|x − y |α3|y − z |α1|z − x |α2dx dy dz

= (
π

2
)
3
2
(n−1) 2α1+α2+α3

Γ(α1+α2+α3

2
+ 2ρ) 	 Γ(α1

2
+ ρ)

	 Γ(α1+α2

2
+ 2ρ)

I When n = 2 the computation is due to I. Bernstein & A.
Reznikov (using mainly geometry!), the general case was
obtained by A. Deitmar (using changes of variables and
induction over n) and by JLC & B. Ørsted (using
spherical harmonic analysis), further generalized by JLC,
T. Kobayashi, B. Ørsted and M. Pevzner.

I Kα(1, 1, 1) has exactly the poles predicted by the general
theory for Kα.
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I Kα(1, 1, 1) = 0 if and only if, up to permutation of the
indices, α1+α2

2
+ 2ρ ∈ −N, which is equivalent to

λ3 ∈ −ρ− N, i.e. πλ3 is reducible and admits a finite
dimensional subspace.



Where does K̃α ≡ 0 ?

Theorem
K̃α ≡ 0 if and only if either of the following two (non
exclusive) possibilities is satisfied :

I α belong to two planes of poles of type I

I α is a pole of type II

α1 + α2 + α3 = −2(n − 1)− 2k , for some k ∈ N

and (up to permutation of 1, 2, 3)

α1 + α2 = −2(n − 1)− 2l , for some l ∈ N

with k ≤ l .



Theorem (bis)
Let λ = (λ1, λ2, λ3). Then K̃λ ≡ 0 if and only if (at least)
one of the following properties (up to permutation of the
indices) is satisfied

• λ3 = −ρ− p, λ1 − λ2 = m,
p ∈ N,m ∈ Z, |m| ≤ p, p ≡ m (2).

• λ3 = −ρ− p, λ1 + λ2 = m,
p ∈ N,m ∈ Z, |m| ≤ p, p ≡ m (2).



Elements of the proof

I An invariant trilinear functional T is K -invariant, hence it
is enough to test it against K -invariant functions on
S × S × S .

I K -invariant polynomial functions (= restriction to
S × S × S of polynomials on E × E × E ) are dense in
K -invariant functions.

I As a consequence of the first fundamental theorem, the
algebra of K -invariant polynomial functions is generated
by the restrictions to S × S × S of

|x |2, |y |2, |z |2, < x , y >, < y , z >, < z , x > ,

or equivalently

1, |x − y |2, |y − z |2, |z − x |2 .
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I For a1, a2, a3 ∈ N, let

pa1,a2,a3(x , y , z) = |x − y |2a3|y − z |2a1|z − x |2a2 .

I

T ≡ 0⇐⇒ T (pa1,a2,a3) = 0 for all a1, a2, a3 ∈ N .

I

Kα(pa1,a2,a3) = Kα1+2a1,α2+2a2,α3+2a3(1, 1, 1) ,

I

K̃α(pa1, a2, a3) =
(π

2

) 3
2
(n−1)

2α1+α2+α3(
α1+α2+α3

2
+ 2ρ

)
a1+a2+a3

	
(
α1

2
+ ρ
)
a1

	 Γ(α1+α2

2
+ 2ρ + a1 + a2)

.

where (x)k = x(x + 1) . . . (x + k − 1) (Pochhammer’s
symbol).
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To conclude, and for further study. . .

I For λ outside of a denumerable union of complex lines,
there is a non trivial trilinear form K̃λ which is invariant
w.r.t. (πλ1 , πλ2 , πλ3).

I If the three representations πλ1 , πλ2 , πλ3 are irreducible,

then K̃λ 6≡ 0.

I For λ such that K̃λ ≡ 0, then any partial derivative
∂
∂λj
K̃λ is still invariant w.r.t. (πλ1 , πλ2 , πλ3). This should

yield (generically) two linearly independent invariant
forms...


