Conformally invariant trilinear forms on the sphere

Jean-Louis Clerc (based on results by JLC and B. Ørsted)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Invariant trilinear forms

► Recall the definition of the principal series representation π_{λ}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\pi_{\lambda}(g)f(x) = \kappa(g^{-1}, x)^{\rho+\lambda}f(g^{-1}(x))$$

where $f \in \mathcal{C}^{\infty}(S), g \in G, x \in S$ and $\rho = \frac{n-1}{2}$.

Invariant trilinear forms

• Recall the definition of the principal series representation π_{λ}

$$\pi_{\lambda}(g)f(x) = \kappa(g^{-1}, x)^{\rho+\lambda}f(g^{-1}(x))$$

where $f \in \mathcal{C}^{\infty}(S), g \in G, x \in S$ and $\rho = \frac{n-1}{2}$.

Let λ₁, λ₂, λ₃ ∈ C. A continuous trilinear form *T* on C[∞](S) × C[∞](S) × C[∞](S) is *invariant* with respect to (π_{λ1}, π_{λ2}, π_{λ3}) if

 $\mathcal{T}\big(\pi_{\lambda_1}(g)f_1,\pi_{\lambda_2}(g)f_2,\pi_{\lambda_1}(g)f_3\big)=\mathcal{T}(f_1,f_2,f_3)$

for $f_1, f_2, f_3 \in \mathcal{C}^{\infty}(S)$ and $g \in G$.

Invariant trilinear forms

 \blacktriangleright Recall the definition of the principal series representation π_λ

$$\pi_{\lambda}(g)f(x) = \kappa(g^{-1}, x)^{\rho+\lambda}f(g^{-1}(x))$$

where $f \in \mathcal{C}^{\infty}(S), g \in G, x \in S$ and $\rho = \frac{n-1}{2}$.

Let λ₁, λ₂, λ₃ ∈ C. A continuous trilinear form *T* on C[∞](S) × C[∞](S) × C[∞](S) is *invariant* with respect to (π_{λ1}, π_{λ2}, π_{λ3}) if

 $\mathcal{T}\big(\pi_{\lambda_1}(g)f_1,\pi_{\lambda_2}(g)f_2,\pi_{\lambda_1}(g)f_3\big)=\mathcal{T}(f_1,f_2,f_3)$

for $f_1, f_2, f_3 \in \mathcal{C}^{\infty}(S)$ and $g \in G$.

A trilinear form T can also be regarded as a distribution on S × S × S, and when convenient, we use the notation T(f) for f ∈ C[∞](S × S × S) or T(f₁ ⊗ f₂ ⊗ f₃) instead of T(f₁, f₂, f₃).

Formal construction

Let $\boldsymbol{lpha}=(lpha_1,lpha_2,lpha_3)\in\mathbb{C}^3$, and let

$$\mathcal{K}_{\alpha}(f_1, f_2, f_3) = \int_{S \times S \times S} |x - y|^{\alpha_3} |y - z|^{\alpha_1} |z - x|^{\alpha_2} f_1(x) f_2(y) f_3(z) \, dx \, dy \, dz$$

This integral makes sense if $\Re \alpha_j$ large enough for j = 1, 2, 3, or if $Supp(f_1) \cap Supp(f_2) \cap Supp(f_3) = \emptyset$.

Formal construction

Let $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{C}^3$, and let

$$\mathcal{K}_{\alpha}(f_1, f_2, f_3) = \int_{S \times S \times S} |x - y|^{\alpha_3} |y - z|^{\alpha_1} |z - x|^{\alpha_2} f_1(x) f_2(y) f_3(z) \, dx \, dy \, dz$$

This integral makes sense if $\Re \alpha_j$ large enough for j = 1, 2, 3, or if $Supp(f_1) \cap Supp(f_2) \cap Supp(f_3) = \emptyset$.

Proposition

Let $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$, and define $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \alpha_3)$ by

$$\alpha_1 = -\rho - \lambda_1 + \lambda_2 + \lambda_3$$

$$\alpha_2 = -\rho + \lambda_1 - \lambda_2 + \lambda_3$$

$$\alpha_3 = -\rho + \lambda_1 + \lambda_2 - \lambda_3$$

Then the trilinear form \mathcal{K}_{α} is invariant w.r.t. $\pi_{\lambda_1}, \pi_{\lambda_2}, \pi_{\lambda_3}$, whenever it makes sense.

► The proof of the invariance amounts to the change of variable x' = g⁻¹(x), y' = g⁻¹(y), z' = g⁻¹(z) in the integral. It uses the *covariance property* of the Euclidean distance on S, namely

$$|g(x) - g(y)| = \kappa(g, x)^{\frac{1}{2}} |x - y| \kappa(g, y)^{\frac{1}{2}}$$

► The proof of the invariance amounts to the change of variable x' = g⁻¹(x), y' = g⁻¹(y), z' = g⁻¹(z) in the integral. It uses the *covariance property* of the Euclidean distance on S, namely

$$|g(x) - g(y)| = \kappa(g, x)^{rac{1}{2}} |x - y| \kappa(g, y)^{rac{1}{2}}$$

Let λ = (λ₁, λ₂, λ₃). The correspondance λ → α can be inverted,

$$\lambda_1 = \rho + \frac{\alpha_2 + \alpha_3}{2}, \quad \lambda_2 = \rho + \frac{\alpha_3 + \alpha_1}{2}, \quad \lambda_3 = \rho + \frac{\alpha_3 + \alpha_1}{2}$$

We also use the notation K^λ = K_α, and call α the geometric parameter and λ the spectral parameter of the trilinear form.

Convergence, meromorphic continuation of \mathcal{K}_{α}

 \blacktriangleright The integral defining the trilinear form \mathcal{K}_{α} is convergent iff

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\Re(\alpha_j) > -(n-1), \quad j = 1, 2, 3$$

 $\Re(\alpha_1 + \alpha_2 + \alpha_3) > -2(n-1)$

Convergence, meromorphic continuation of \mathcal{K}_{α}

- The integral defining the trilinear form K_α is convergent iff
 - $\Re(\alpha_j) > -(n-1), \quad j = 1, 2, 3$
 - $\Re(\alpha_1 + \alpha_2 + \alpha_3) > -2(n-1)$
- If λ satisfies 0 ≤ ℜ(λ_j) < ρ for j = 1, 2, 3, then the conditions for convergence are satisfied. This covers the case where the three representations are irreducible and unitary.</p>

Convergence, meromorphic continuation of \mathcal{K}_{α}

- The integral defining the trilinear form K_α is convergent iff
 - $\Re(\alpha_j) > -(n-1), \quad j = 1, 2, 3$
 - $\blacktriangleright \Re(\alpha_1 + \alpha_2 + \alpha_3) > -2(n-1)$
- If λ satisfies 0 ≤ ℜ(λ_j) < ρ for j = 1, 2, 3, then the conditions for convergence are satisfied. This covers the case where the three representations are irreducible and unitary.</p>
- The map $\alpha \mapsto \mathcal{K}_{\alpha}$ can be meromorphically extended to \mathbb{C}^3 with simple poles along four families of planes :

•
$$\alpha_j = -(n-1) - 2k$$
, for $k \in \mathbb{N}$

• $\alpha_1 + \alpha_2 + \alpha_3 = -2(n-1) - 2I$, for $I \in \mathbb{N}$

• The renormalized form $\widetilde{\mathcal{K}}_{\alpha}$ defined by

$$\widetilde{\mathcal{K}}_{\alpha} = \frac{1}{\Gamma(\frac{\alpha_1 + \alpha_2 + \alpha_3}{2} + 2\rho) \prod_{1 \le j \le 3} \Gamma(\frac{\alpha_j}{2} + \rho)} \, \mathcal{K}_{\alpha}$$

extends holomorphically to *all* of \mathbb{C}^3 (use Hartog's prolongation principle).

• The renormalized form $\widetilde{\mathcal{K}}_{\alpha}$ defined by

$$\widetilde{\mathcal{K}}_{\alpha} = \frac{1}{\Gamma(\frac{\alpha_1 + \alpha_2 + \alpha_3}{2} + 2\rho) \prod_{1 \le j \le 3} \Gamma(\frac{\alpha_j}{2} + \rho)} \mathcal{K}_{\alpha}$$

extends holomorphically to *all* of \mathbb{C}^3 (use Hartog's prolongation principle).

• Question : for which values of α is $\widetilde{\mathcal{K}}_{\alpha} \neq 0$?

• The renormalized form \mathcal{K}_{α} defined by

$$\widetilde{\mathcal{K}}_{\alpha} = \frac{1}{\Gamma(\frac{\alpha_1 + \alpha_2 + \alpha_3}{2} + 2\rho) \prod_{1 \le j \le 3} \Gamma(\frac{\alpha_j}{2} + \rho)} \mathcal{K}_{\alpha}$$

extends holomorphically to *all* of \mathbb{C}^3 (use Hartog's prolongation principle).

• Question : for which values of α is $\widetilde{\mathcal{K}}_{\alpha} \neq 0$? If α is not a pole, then certainly $\widetilde{\mathcal{K}}_{\alpha} \neq 0$, by testing on functions (f_1, f_2, f_3) where $Supp(f_i) \cap Supp(f_j) = \emptyset$ for $1 \leq i \neq j \leq 3$.

Theorem

Let $n \geq 3$. Let $\lambda \in \mathbb{C}^3$, not a pole of \mathcal{K}^{λ} . Then a continuous trilinear form on $\mathcal{C}^{\infty}(S)$ which is invariant w.r.t. $(\pi_{\lambda_1}, \pi_{\lambda_2}, \pi_{\lambda_3})$ is proportional to \mathcal{K}^{λ} .

Theorem

Let $n \geq 3$. Let $\lambda \in \mathbb{C}^3$, not a pole of \mathcal{K}^{λ} . Then a continuous trilinear form on $\mathcal{C}^{\infty}(S)$ which is invariant w.r.t. $(\pi_{\lambda_1}, \pi_{\lambda_2}, \pi_{\lambda_3})$ is proportional to \mathcal{K}^{λ} .

Sketch of the proof.

•
$$\mathcal{O}_0 = \{(x, y, z), x, y, z \in S, x \neq y, y \neq z, z \neq x\}$$
 is a single orbit under G .

Theorem

Let $n \geq 3$. Let $\lambda \in \mathbb{C}^3$, not a pole of \mathcal{K}^{λ} . Then a continuous trilinear form on $\mathcal{C}^{\infty}(S)$ which is invariant w.r.t. $(\pi_{\lambda_1}, \pi_{\lambda_2}, \pi_{\lambda_3})$ is proportional to \mathcal{K}^{λ} .

Sketch of the proof.

• $\mathcal{O}_0 = \{(x, y, z), x, y, z \in S, x \neq y, y \neq z, z \neq x\}$ is a single orbit under G.

[If n = 2, there are **two** open orbits, due to the *orientation index* of three points on the circle]

Theorem

Let $n \geq 3$. Let $\lambda \in \mathbb{C}^3$, not a pole of \mathcal{K}^{λ} . Then a continuous trilinear form on $\mathcal{C}^{\infty}(S)$ which is invariant w.r.t. $(\pi_{\lambda_1}, \pi_{\lambda_2}, \pi_{\lambda_3})$ is proportional to \mathcal{K}^{λ} .

Sketch of the proof.

*O*₀ = {(x, y, z), x, y, z ∈ S, x ≠ y, y ≠ z, z ≠ x} is a single orbit under G.
 [If n = 2, there are two open orbits, due to the orientation index of three points on the circle]
 Consequence : viewing a continuous trilinear form as a distribution (say T) on S × S × S, on O₀ T has to coincide with a multiple of K^λ.

(日) (同) (三) (三) (三) (○) (○)

Theorem

Let $n \geq 3$. Let $\lambda \in \mathbb{C}^3$, not a pole of \mathcal{K}^{λ} . Then a continuous trilinear form on $\mathcal{C}^{\infty}(S)$ which is invariant w.r.t. $(\pi_{\lambda_1}, \pi_{\lambda_2}, \pi_{\lambda_3})$ is proportional to \mathcal{K}^{λ} .

Sketch of the proof.

• $\mathcal{O}_0 = \{(x, y, z), x, y, z \in S, x \neq y, y \neq z, z \neq x\}$ is a single orbit under G.

[If n = 2, there are **two** open orbits, due to the *orientation index* of three points on the circle] Consequence : viewing a continuous trilinear form as a distribution (say T) on $S \times S \times S$, on $\mathcal{O}_0 T$ has to coincide with a multiple of \mathcal{K}^{λ} .

► Have to prove : there is no invariant distribution supported on the (closed) subset O₀^c. • There are four other *G*-orbits in $S \times S \times S$:

$$\mathcal{O}_1 = \{x \neq y = z\}, \quad \mathcal{O}_2 = \{y \neq z = x\}, \quad \mathcal{O}_3 = \{z \neq y = x\}$$

and the diagonal $\mathcal{O}_4 = \{(x, x, x), x \in S\}.$

• There are four other *G*-orbits in $S \times S \times S$:

$$\mathcal{O}_1 = \{x \neq y = z\}, \quad \mathcal{O}_2 = \{y \neq z = x\}, \quad \mathcal{O}_3 = \{z \neq y = x\}$$

and the diagonal $\mathcal{O}_4 = \{(x, x, x), x \in S\}.$

Now O₁ is a closed submanifold of the open subset O₀ ∪ O₁. If T is a distribution on S × S × S, supported in ∪_{1≤j≤4}O_j, then the restriction of T to O₀ ∪ O₁ is supported in O₁. • There are four other *G*-orbits in $S \times S \times S$:

$$\mathcal{O}_1 = \{x \neq y = z\}, \quad \mathcal{O}_2 = \{y \neq z = x\}, \quad \mathcal{O}_3 = \{z \neq y = x\}$$

and the diagonal $\mathcal{O}_4 = \{(x, x, x), x \in S\}.$

- Now O₁ is a closed submanifold of the open subset O₀ ∪ O₁. If T is a distribution on S × S × S, supported in ∪_{1≤j≤4}O_j, then the restriction of T to O₀ ∪ O₁ is supported in O₁.
- ► Using Bruhat's necessary condition for the existence of an invariant distribution supported on a closed submanifold, one obtain that T_{|O0∪O1} has to be 0.
- Same procedure for O₂ and O₃, and finally for O₄ which is a closed orbit in S × S × S.

A consequence of the generic uniqueness

For $\lambda_1, \lambda_2, \lambda_3$ and $f_1, f_2, f_3 \in \mathcal{C}^{\infty}(S)$

$$\widetilde{\mathcal{K}}^{(-\lambda_1,\lambda_2,\lambda_3)}(\widetilde{J}_{\lambda_1}f_1,f_2,f_3) = rac{\pi^
ho}{\Gamma(-\lambda_1+
ho)}\widetilde{\mathcal{K}}^{(\lambda_1,\lambda_2,\lambda_3)}(f_1,f_2,f_3) \; .$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

A consequence of the generic uniqueness

For $\lambda_1, \lambda_2, \lambda_3$ and $f_1, f_2, f_3 \in \mathcal{C}^{\infty}(S)$

$$\widetilde{\mathcal{K}}^{(-\lambda_1,\lambda_2,\lambda_3)}(\widetilde{J}_{\lambda_1}f_1,f_2,f_3) = rac{\pi^
ho}{\Gamma(-\lambda_1+
ho)}\widetilde{\mathcal{K}}^{(\lambda_1,\lambda_2,\lambda_3)}(f_1,f_2,f_3) \; .$$

Remark.

$$\frac{1}{\Gamma(-\lambda_1+\rho)}=0\iff \lambda_1=\rho+k$$

for some $k \in \mathbb{N}$. In which case $\pi_{-\lambda_1}$ is *reducible* and admits a finite dimensional invariant subspace.

Evaluation of an integral

$$\begin{split} \mathcal{K}_{\alpha}(1,1,1) &= \int_{S \times S \times S} |x-y|^{\alpha_3} |y-z|^{\alpha_1} |z-x|^{\alpha_2} dx \, dy \, dz \\ &= (\frac{\pi}{2})^{\frac{3}{2}(n-1)} \, 2^{\alpha_1 + \alpha_2 + \alpha_3} \, \frac{\Gamma(\frac{\alpha_1 + \alpha_2 + \alpha_3}{2} + 2\rho) \circlearrowleft \, \Gamma(\frac{\alpha_1}{2} + \rho)}{\circlearrowright \, \Gamma(\frac{\alpha_1 + \alpha_2}{2} + 2\rho)} \end{split}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Evaluation of an integral

$$\mathcal{K}_{\alpha}(1,1,1) = \int_{S \times S \times S} |x-y|^{\alpha_{3}} |y-z|^{\alpha_{1}} |z-x|^{\alpha_{2}} dx \, dy \, dz$$
$$= \left(\frac{\pi}{2}\right)^{\frac{3}{2}(n-1)} 2^{\alpha_{1}+\alpha_{2}+\alpha_{3}} \frac{\Gamma(\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{2}+2\rho) \circlearrowleft \Gamma(\frac{\alpha_{1}}{2}+\rho)}{\circlearrowright \Gamma(\frac{\alpha_{1}+\alpha_{2}}{2}+2\rho)}$$

When n = 2 the computation is due to I. Bernstein & A. Reznikov (using mainly geometry!), the general case was obtained by A. Deitmar (using changes of variables and induction over n) and by JLC & B. Ørsted (using spherical harmonic analysis), further generalized by JLC, T. Kobayashi, B. Ørsted and M. Pevzner.

Evaluation of an integral

$$\mathcal{K}_{\alpha}(1,1,1) = \int_{S \times S \times S} |x-y|^{\alpha_{3}} |y-z|^{\alpha_{1}} |z-x|^{\alpha_{2}} dx \, dy \, dz$$
$$= \left(\frac{\pi}{2}\right)^{\frac{3}{2}(n-1)} 2^{\alpha_{1}+\alpha_{2}+\alpha_{3}} \frac{\Gamma(\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{2}+2\rho) \circlearrowleft \Gamma(\frac{\alpha_{1}}{2}+\rho)}{\circlearrowright \Gamma(\frac{\alpha_{1}+\alpha_{2}}{2}+2\rho)}$$

- When n = 2 the computation is due to I. Bernstein & A. Reznikov (using mainly geometry!), the general case was obtained by A. Deitmar (using changes of variables and induction over n) and by JLC & B. Ørsted (using spherical harmonic analysis), further generalized by JLC, T. Kobayashi, B. Ørsted and M. Pevzner.
- K_α(1, 1, 1) has exactly the poles predicted by the general theory for K_α.

*K*_α(1, 1, 1) = 0 if and only if, up to permutation of the indices, ^{α₁+α₂}/₂ + 2ρ ∈ −N, which is equivalent to λ₃ ∈ −ρ − N, i.e. π_{λ₃} is reducible and admits a finite dimensional subspace.

Where does $\widetilde{\mathcal{K}}_{\alpha} \equiv 0$?

Theorem

 $\tilde{\mathcal{K}}_{\alpha} \equiv 0$ if and only if either of the following two (non exclusive) possibilities is satisfied :

- $\blacktriangleright lpha$ belong to two planes of poles of type I
- α is a pole of type II

$$\alpha_1 + \alpha_2 + \alpha_3 = -2(n-1) - 2k$$
, for some $k \in \mathbb{N}$

and (up to permutation of 1, 2, 3)

$$lpha_1+lpha_2=-2(\mathit{n}-1)-2\mathit{l}, \hspace{1em}$$
 for some $\mathit{l}\in\mathbb{N}$

with $k \leq I$.

Theorem (bis)

Let $\lambda = (\lambda_1, \lambda_2, \lambda_3)$. Then $\widetilde{\mathcal{K}}^{\lambda} \equiv 0$ if and only if (at least) one of the following properties (up to permutation of the indices) is satisfied

•
$$\lambda_3 = -\rho - p$$
, $\lambda_1 - \lambda_2 = m$,
 $p \in \mathbb{N}, m \in \mathbb{Z}, \quad |m| \le p, \quad p \equiv m$ (2).
• $\lambda_3 = -\rho - p, \quad \lambda_1 + \lambda_2 = m,$
 $p \in \mathbb{N}, m \in \mathbb{Z}, \quad |m| \le p, \quad p \equiv m$ (2).

Elements of the proof

- An invariant trilinear functional *T* is *K*-invariant, hence it is enough to test it against *K*-invariant functions on *S* × *S* × *S*.
- K-invariant polynomial functions (= restriction to S × S × S of polynomials on E × E × E) are dense in K-invariant functions.

Elements of the proof

- An invariant trilinear functional T is K-invariant, hence it is enough to test it against K-invariant functions on S × S × S.
- ► K-invariant polynomial functions (= restriction to S × S × S of polynomials on E × E × E) are dense in K-invariant functions.
- ► As a consequence of the *first fundamental theorem*, the algebra of *K*-invariant polynomial functions is generated by the restrictions to S × S × S of

$$|x|^2, |y|^2, |z|^2, \quad < x, y >, \quad < y, z >, \quad < z, x > ,$$

or equivalently

1,
$$|x - y|^2$$
, $|y - z|^2$, $|z - x|^2$

► For
$$a_1, a_2, a_3 \in \mathbb{N}$$
, let
 $p_{a_1, a_2, a_3}(x, y, z) = |x - y|^{2a_3}|y - z|^{2a_1}|z - x|^{2a_2}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

• For
$$a_1, a_2, a_3 \in \mathbb{N}$$
, let
 $p_{a_1, a_2, a_3}(x, y, z) = |x - y|^{2a_3}|y - z|^{2a_1}|z - x|^{2a_2}$.

$$\mathcal{T}\equiv 0 \Longleftrightarrow \mathcal{T}(\textit{p}_{\textit{a}_1,\textit{a}_2,\textit{a}_3})=0$$
 for all $\textit{a}_1,\textit{a}_2,\textit{a}_3\in\mathbb{N}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

► For
$$a_1, a_2, a_3 \in \mathbb{N}$$
, let
 $p_{a_1, a_2, a_3}(x, y, z) = |x - y|^{2a_3}|y - z|^{2a_1}|z - x|^{2a_2}$.

$$\mathcal{T}\equiv 0 \Longleftrightarrow \mathcal{T}(p_{a_1,a_2,a_3})=0 ext{ for all } a_1,a_2,a_3\in\mathbb{N}$$
 .

$$\mathcal{K}_{oldsymbol{lpha}}(oldsymbol{p}_{oldsymbol{a}_1,oldsymbol{a}_2,oldsymbol{a}_3}) = \mathcal{K}_{lpha_1+2oldsymbol{a}_1,lpha_2+2oldsymbol{a}_2,lpha_3+2oldsymbol{a}_3}(1,1,1) \;,$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

► For
$$a_1, a_2, a_3 \in \mathbb{N}$$
, let
 $p_{a_1,a_2,a_3}(x,y,z) = |x-y|^{2a_3}|y-z|^{2a_1}|z-x|^{2a_2}$.

$$\mathcal{T}\equiv 0 \Longleftrightarrow \mathcal{T}(p_{a_1,a_2,a_3})=0 ext{ for all } a_1,a_2,a_3\in \mathbb{N}$$
 .

$$\mathcal{K}_{oldsymbol{lpha}}(oldsymbol{
ho}_{oldsymbol{a}_1,oldsymbol{a}_2,oldsymbol{a}_3})=\mathcal{K}_{lpha_1+2oldsymbol{a}_1,lpha_2+2oldsymbol{a}_2,lpha_3+2oldsymbol{a}_3}(1,1,1)\;,$$

$$\begin{split} \widetilde{\mathcal{K}}_{\alpha}(p_{a_1,a_2,a_3}) &= \left(\frac{\pi}{2}\right)^{\frac{3}{2}(n-1)} 2^{\alpha_1+\alpha_2+\alpha_3} \\ \frac{\left(\frac{\alpha_1+\alpha_2+\alpha_3}{2}+2\rho\right)_{a_1+a_2+a_3} \circlearrowleft \left(\frac{\alpha_1}{2}+\rho\right)_{a_1}}{\circlearrowright \Gamma\left(\frac{\alpha_1+\alpha_2}{2}+2\rho+a_1+a_2\right)} \\ \end{split}$$
where $(x)_k = x(x+1)\dots(x+k-1)$ (Pochhammer's symbol).

To conclude, and for further study...

- For λ outside of a denumerable union of complex lines, there is a non trivial trilinear form K̃^λ which is invariant w.r.t. (π_{λ1}, π_{λ2}, π_{λ3}).
- If the three representations π_{λ1}, π_{λ2}, π_{λ3} are irreducible, then K̃^λ ≠ 0.
- ► For λ such that $\widetilde{\mathcal{K}}^{\lambda} \equiv 0$, then any partial derivative $\frac{\partial}{\partial \lambda_j} \widetilde{\mathcal{K}}^{\lambda}$ is still invariant w.r.t. $(\pi_{\lambda_1}, \pi_{\lambda_2}, \pi_{\lambda_3})$. This should yield (generically) two linearly independent invariant forms...