Conformally invariant trilinear forms on the sphere

Jean-Louis Clerc
(based on results by JLC and B. Ørsted)

Invariant trilinear forms

- Recall the definition of the principal series representation π_{λ}

$$
\pi_{\lambda}(g) f(x)=\kappa\left(g^{-1}, x\right)^{\rho+\lambda} f\left(g^{-1}(x)\right)
$$

where $f \in \mathcal{C}^{\infty}(S), g \in G, x \in S$ and $\rho=\frac{n-1}{2}$.

Invariant trilinear forms

- Recall the definition of the principal series representation π_{λ}

$$
\pi_{\lambda}(g) f(x)=\kappa\left(g^{-1}, x\right)^{\rho+\lambda} f\left(g^{-1}(x)\right)
$$

where $f \in \mathcal{C}^{\infty}(S), g \in G, x \in S$ and $\rho=\frac{n-1}{2}$.

- Let $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C}$. A continuous trilinear form \mathcal{T} on $\mathcal{C}^{\infty}(S) \times \mathcal{C}^{\infty}(S) \times \mathcal{C}^{\infty}(S)$ is invariant with respect to $\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$ if

$$
\mathcal{T}\left(\pi_{\lambda_{1}}(g) f_{1}, \pi_{\lambda_{2}}(g) f_{2}, \pi_{\lambda_{1}}(g) f_{3}\right)=\mathcal{T}\left(f_{1}, f_{2}, f_{3}\right)
$$

for $f_{1}, f_{2}, f_{3} \in \mathcal{C}^{\infty}(S)$ and $g \in G$.

Invariant trilinear forms

- Recall the definition of the principal series representation π_{λ}

$$
\pi_{\lambda}(g) f(x)=\kappa\left(g^{-1}, x\right)^{\rho+\lambda} f\left(g^{-1}(x)\right)
$$

where $f \in \mathcal{C}^{\infty}(S), g \in G, x \in S$ and $\rho=\frac{n-1}{2}$.

- Let $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C}$. A continuous trilinear form \mathcal{T} on $\mathcal{C}^{\infty}(S) \times \mathcal{C}^{\infty}(S) \times \mathcal{C}^{\infty}(S)$ is invariant with respect to $\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$ if

$$
\mathcal{T}\left(\pi_{\lambda_{1}}(g) f_{1}, \pi_{\lambda_{2}}(g) f_{2}, \pi_{\lambda_{1}}(g) f_{3}\right)=\mathcal{T}\left(f_{1}, f_{2}, f_{3}\right)
$$

for $f_{1}, f_{2}, f_{3} \in \mathcal{C}^{\infty}(S)$ and $g \in G$.

- A trilinear form \mathcal{T} can also be regarded as a distribution on $S \times S \times S$, and when convenient, we use the notation $\mathcal{T}(f)$ for $f \in \mathcal{C}^{\infty}(S \times S \times S)$ or $\mathcal{T}\left(f_{1} \otimes f_{2} \otimes f_{3}\right)$ instead of $\mathcal{T}\left(f_{1}, f_{2}, f_{3}\right)$.

Formal construction

Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{C}^{3}$, and let
$\mathcal{K}_{\alpha}\left(f_{1}, f_{2}, f_{3}\right)=\int_{S \times S \times S}|x-y|^{\alpha_{3}}|y-z|^{\alpha_{1}}|z-x|^{\alpha_{2}} f_{1}(x) f_{2}(y) f_{3}(z) d x d y d z$
This integral makes sense if $\Re \alpha_{j}$ large enough for $j=1,2,3$, or if $\operatorname{Supp}\left(f_{1}\right) \cap \operatorname{Supp}\left(f_{2}\right) \cap \operatorname{Supp}\left(f_{3}\right)=\emptyset$.

Formal construction

Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{C}^{3}$, and let
$\mathcal{K}_{\alpha}\left(f_{1}, f_{2}, f_{3}\right)=\int_{S \times S \times S}|x-y|^{\alpha_{3}}|y-z|^{\alpha_{1}}|z-x|^{\alpha_{2}} f_{1}(x) f_{2}(y) f_{3}(z) d x d y d z$
This integral makes sense if $\Re \alpha_{j}$ large enough for $j=1,2,3$, or if $\operatorname{Supp}\left(f_{1}\right) \cap \operatorname{Supp}\left(f_{2}\right) \cap \operatorname{Supp}\left(f_{3}\right)=\emptyset$.
Proposition
Let $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C}$, and define $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ by

$$
\begin{aligned}
& \alpha_{1}=-\rho-\lambda_{1}+\lambda_{2}+\lambda_{3} \\
& \alpha_{2}=-\rho+\lambda_{1}-\lambda_{2}+\lambda_{3} \\
& \alpha_{3}=-\rho+\lambda_{1}+\lambda_{2}-\lambda_{3} .
\end{aligned}
$$

Then the trilinear form \mathcal{K}_{α} is invariant w.r.t. $\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}$, whenever it makes sense.

- The proof of the invariance amounts to the change of variable $x^{\prime}=g^{-1}(x), y^{\prime}=g^{-1}(y), z^{\prime}=g^{-1}(z)$ in the integral. It uses the covariance property of the Euclidean distance on S, namely

$$
|g(x)-g(y)|=\kappa(g, x)^{\frac{1}{2}}|x-y| \kappa(g, y)^{\frac{1}{2}}
$$

- The proof of the invariance amounts to the change of variable $x^{\prime}=g^{-1}(x), y^{\prime}=g^{-1}(y), z^{\prime}=g^{-1}(z)$ in the integral. It uses the covariance property of the Euclidean distance on S, namely

$$
|g(x)-g(y)|=\kappa(g, x)^{\frac{1}{2}}|x-y| \kappa(g, y)^{\frac{1}{2}}
$$

- Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$. The correspondance $\boldsymbol{\lambda} \mapsto \boldsymbol{\alpha}$ can be inverted,

$$
\lambda_{1}=\rho+\frac{\alpha_{2}+\alpha_{3}}{2}, \quad \lambda_{2}=\rho+\frac{\alpha_{3}+\alpha_{1}}{2}, \quad \lambda_{3}=\rho+\frac{\alpha_{3}+\alpha_{1}}{2} .
$$

- We also use the notation $\mathcal{K}^{\boldsymbol{\lambda}}=\mathcal{K}_{\boldsymbol{\alpha}}$, and call $\boldsymbol{\alpha}$ the geometric parameter and $\boldsymbol{\lambda}$ the spectral parameter of the trilinear form.

Convergence, meromorphic continuation of \mathcal{K}_{α}

- The integral defining the trilinear form \mathcal{K}_{α} is convergent iff
- $\Re\left(\alpha_{j}\right)>-(n-1), \quad j=1,2,3$
- $\Re\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)>-2(n-1)$

Convergence, meromorphic continuation of \mathcal{K}_{α}

- The integral defining the trilinear form \mathcal{K}_{α} is convergent iff
- $\Re\left(\alpha_{j}\right)>-(n-1), \quad j=1,2,3$
- $\Re\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)>-2(n-1)$
- If $\boldsymbol{\lambda}$ satisfies $0 \leq \Re\left(\lambda_{j}\right)<\rho$ for $j=1,2,3$, then the conditions for convergence are satisfied. This covers the case where the three representations are irreducible and unitary.

Convergence, meromorphic continuation of \mathcal{K}_{α}

- The integral defining the trilinear form \mathcal{K}_{α} is convergent iff
- $\Re\left(\alpha_{j}\right)>-(n-1), \quad j=1,2,3$
- $\Re\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)>-2(n-1)$
- If $\boldsymbol{\lambda}$ satisfies $0 \leq \Re\left(\lambda_{j}\right)<\rho$ for $j=1,2,3$, then the conditions for convergence are satisfied. This covers the case where the three representations are irreducible and unitary.
- The map $\boldsymbol{\alpha} \longmapsto \mathcal{K}_{\boldsymbol{\alpha}}$ can be meromorphically extended to \mathbb{C}^{3} with simple poles along four families of planes:

$$
\begin{aligned}
& -\alpha_{j}=-(n-1)-2 k, \text { for } k \in \mathbb{N} \\
& \quad \alpha_{1}+\alpha_{2}+\alpha_{3}=-2(n-1)-2 l \text {, for } I \in \mathbb{N}
\end{aligned}
$$

- The renormalized form $\widetilde{\mathcal{K}}_{\alpha}$ defined by

$$
\widetilde{\mathcal{K}}_{\boldsymbol{\alpha}}=\frac{1}{\Gamma\left(\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{2}+2 \rho\right) \prod_{1 \leq j \leq 3} \Gamma\left(\frac{\alpha_{j}}{2}+\rho\right)} \mathcal{K}_{\alpha}
$$

extends holomorphically to all of \mathbb{C}^{3} (use Hartog's prolongation principle).

- The renormalized form $\widetilde{\mathcal{K}}_{\alpha}$ defined by

$$
\widetilde{\mathcal{K}}_{\boldsymbol{\alpha}}=\frac{1}{\Gamma\left(\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{2}+2 \rho\right) \prod_{1 \leq j \leq 3} \Gamma\left(\frac{\alpha_{j}}{2}+\rho\right)} \mathcal{K}_{\alpha}
$$

extends holomorphically to all of \mathbb{C}^{3} (use Hartog's prolongation principle).

- Question : for which values of α is $\widetilde{\mathcal{K}}_{\boldsymbol{\alpha}} \not \equiv 0$?
- The renormalized form $\widetilde{\mathcal{K}}_{\alpha}$ defined by

$$
\tilde{\mathcal{K}}_{\alpha}=\frac{1}{\Gamma\left(\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{2}+2 \rho\right) \prod_{1 \leq j \leq 3} \Gamma\left(\frac{\alpha_{j}}{2}+\rho\right)} \mathcal{K}_{\alpha}
$$

extends holomorphically to all of \mathbb{C}^{3} (use Hartog's prolongation principle).

- Question: for which values of α is $\widetilde{\mathcal{K}}_{\alpha} \not \equiv 0$? If α is not a pole, then certainly $\widetilde{\mathcal{K}}_{\alpha} \not \equiv 0$, by testing on functions $\left(f_{1}, f_{2}, f_{3}\right)$ where $\operatorname{Supp}\left(f_{i}\right) \cap \operatorname{Supp}\left(f_{j}\right)=\emptyset$ for $1 \leq i \neq j \leq 3$.

The generic uniqueness theorem

Theorem
Let $n \geq 3$. Let $\boldsymbol{\lambda} \in \mathbb{C}^{3}$, not a pole of $\mathcal{K}^{\boldsymbol{\lambda}}$. Then a continuous trilinear form on $\mathcal{C}^{\infty}(S)$ which is invariant w.r.t. $\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$ is proportional to \mathcal{K}^{λ}.

The generic uniqueness theorem

Theorem
Let $n \geq 3$. Let $\boldsymbol{\lambda} \in \mathbb{C}^{3}$, not a pole of $\mathcal{K}^{\boldsymbol{\lambda}}$. Then a continuous trilinear form on $\mathcal{C}^{\infty}(S)$ which is invariant w.r.t. $\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$ is proportional to \mathcal{K}^{λ}.
Sketch of the proof.

- $\mathcal{O}_{0}=\{(x, y, z), x, y, z \in S, x \neq y, y \neq z, z \neq x\}$ is a single orbit under G.

The generic uniqueness theorem

Theorem
Let $n \geq 3$. Let $\boldsymbol{\lambda} \in \mathbb{C}^{3}$, not a pole of $\mathcal{K}^{\boldsymbol{\lambda}}$. Then a continuous trilinear form on $\mathcal{C}^{\infty}(S)$ which is invariant w.r.t. $\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$ is proportional to \mathcal{K}^{λ}.
Sketch of the proof.

- $\mathcal{O}_{0}=\{(x, y, z), x, y, z \in S, x \neq y, y \neq z, z \neq x\}$ is a single orbit under G.
[If $n=2$, there are two open orbits, due to the orientation index of three points on the circle]

The generic uniqueness theorem

Theorem
Let $n \geq 3$. Let $\boldsymbol{\lambda} \in \mathbb{C}^{3}$, not a pole of $\mathcal{K}^{\boldsymbol{\lambda}}$. Then a continuous trilinear form on $\mathcal{C}^{\infty}(S)$ which is invariant w.r.t. $\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$ is proportional to \mathcal{K}^{λ}.
Sketch of the proof.

- $\mathcal{O}_{0}=\{(x, y, z), x, y, z \in S, x \neq y, y \neq z, z \neq x\}$ is a single orbit under G.
[If $n=2$, there are two open orbits, due to the orientation index of three points on the circle] Consequence: viewing a continuous trilinear form as a distribution (say T) on $S \times S \times S$, on $\mathcal{O}_{0} T$ has to coincide with a multiple of \mathcal{K}^{λ}.

The generic uniqueness theorem

Theorem
Let $n \geq 3$. Let $\boldsymbol{\lambda} \in \mathbb{C}^{3}$, not a pole of $\mathcal{K}^{\boldsymbol{\lambda}}$. Then a continuous trilinear form on $\mathcal{C}^{\infty}(S)$ which is invariant w.r.t. $\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$ is proportional to \mathcal{K}^{λ}.
Sketch of the proof.

- $\mathcal{O}_{0}=\{(x, y, z), x, y, z \in S, x \neq y, y \neq z, z \neq x\}$ is a single orbit under G.
[If $n=2$, there are two open orbits, due to the orientation index of three points on the circle]
Consequence : viewing a continuous trilinear form as a distribution (say T) on $S \times S \times S$, on $\mathcal{O}_{0} T$ has to coincide with a multiple of \mathcal{K}^{λ}.
- Have to prove : there is no invariant distribution supported on the (closed) subset $\mathcal{O}_{0}{ }^{c}$.
- There are four other G-orbits in $S \times S \times S$:
$\mathcal{O}_{1}=\{x \neq y=z\}, \quad \mathcal{O}_{2}=\{y \neq z=x\}, \quad \mathcal{O}_{3}=\{z \neq y=x\}$ and the diagonal $\mathcal{O}_{4}=\{(x, x, x), x \in S\}$.
- There are four other G-orbits in $S \times S \times S$:

$$
\mathcal{O}_{1}=\{x \neq y=z\}, \quad \mathcal{O}_{2}=\{y \neq z=x\}, \quad \mathcal{O}_{3}=\{z \neq y=x\}
$$

and the diagonal $\mathcal{O}_{4}=\{(x, x, x), x \in S\}$.

- Now \mathcal{O}_{1} is a closed submanifold of the open subset $\mathcal{O}_{0} \cup \mathcal{O}_{1}$. If T is a distribution on $S \times S \times S$, supported in $\cup_{1 \leq j \leq 4} \mathcal{O}_{j}$, then the restriction of T to $\mathcal{O}_{0} \cup \mathcal{O}_{1}$ is supported in \mathcal{O}_{1}.
- There are four other G-orbits in $S \times S \times S$:

$$
\mathcal{O}_{1}=\{x \neq y=z\}, \quad \mathcal{O}_{2}=\{y \neq z=x\}, \quad \mathcal{O}_{3}=\{z \neq y=x\}
$$

and the diagonal $\mathcal{O}_{4}=\{(x, x, x), x \in S\}$.

- Now \mathcal{O}_{1} is a closed submanifold of the open subset $\mathcal{O}_{0} \cup \mathcal{O}_{1}$. If T is a distribution on $S \times S \times S$, supported in $\cup_{1 \leq j \leq 4} \mathcal{O}_{j}$, then the restriction of T to $\mathcal{O}_{0} \cup \mathcal{O}_{1}$ is supported in \mathcal{O}_{1}.
- Using Bruhat's necessary condition for the existence of an invariant distribution supported on a closed submanifold, one obtain that $T_{\mid O_{0} \cup \mathcal{O}_{1}}$ has to be 0 .
- Same procedure for \mathcal{O}_{2} and \mathcal{O}_{3}, and finally for \mathcal{O}_{4} which is a closed orbit in $S \times S \times S$.

A consequence of the generic uniqueness

For $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and $f_{1}, f_{2}, f_{3} \in \mathcal{C}^{\infty}(S)$

$$
\widetilde{\mathcal{K}}^{\left(-\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}\left(\widetilde{J}_{\lambda_{1}} f_{1}, f_{2}, f_{3}\right)=\frac{\pi^{\rho}}{\Gamma\left(-\lambda_{1}+\rho\right)} \widetilde{\mathcal{K}}^{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}\left(f_{1}, f_{2}, f_{3}\right) .
$$

A consequence of the generic uniqueness

For $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and $f_{1}, f_{2}, f_{3} \in \mathcal{C}^{\infty}(S)$

$$
\widetilde{\mathcal{K}}^{\left(-\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}\left(\widetilde{J}_{\lambda_{1}} f_{1}, f_{2}, f_{3}\right)=\frac{\pi^{\rho}}{\Gamma\left(-\lambda_{1}+\rho\right)} \widetilde{\mathcal{K}}^{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}\left(f_{1}, f_{2}, f_{3}\right)
$$

Remark.

$$
\frac{1}{\Gamma\left(-\lambda_{1}+\rho\right)}=0 \Longleftrightarrow \lambda_{1}=\rho+k
$$

for some $k \in \mathbb{N}$. In which case $\pi_{-\lambda_{1}}$ is reducible and admits a finite dimensional invariant subspace.

Evaluation of an integral

$$
\begin{aligned}
& \mathcal{K}_{\alpha}(1,1,1)=\int_{S \times S \times S}|x-y|^{\alpha_{3}}|y-z|^{\alpha_{1}}|z-x|^{\alpha_{2}} d x d y d z \\
& =\left(\frac{\pi}{2}\right)^{\frac{3}{2}(n-1)} 2^{\alpha_{1}+\alpha_{2}+\alpha_{3}} \frac{\Gamma\left(\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{2}+2 \rho\right) \circlearrowleft \Gamma\left(\frac{\alpha_{1}}{2}+\rho\right)}{O \Gamma\left(\frac{\alpha_{1}+\alpha_{2}}{2}+2 \rho\right)}
\end{aligned}
$$

Evaluation of an integral

$$
\begin{aligned}
& \mathcal{K}_{\alpha}(1,1,1)=\int_{S \times S \times S}|x-y|^{\alpha_{3}}|y-z|^{\alpha_{1}}|z-x|^{\alpha_{2}} d x d y d z \\
& =\left(\frac{\pi}{2}\right)^{\frac{3}{2}(n-1)} 2^{\alpha_{1}+\alpha_{2}+\alpha_{3}} \frac{\Gamma\left(\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{2}+2 \rho\right) \circlearrowleft \Gamma\left(\frac{\alpha_{1}}{2}+\rho\right)}{\circlearrowleft \Gamma\left(\frac{\alpha_{1}+\alpha_{2}}{2}+2 \rho\right)}
\end{aligned}
$$

- When $n=2$ the computation is due to I. Bernstein \& A. Reznikov (using mainly geometry!), the general case was obtained by A. Deitmar (using changes of variables and induction over n) and by JLC \& B. Ørsted (using spherical harmonic analysis), further generalized by JLC, T. Kobayashi, B. Ørsted and M. Pevzner.

Evaluation of an integral

$$
\begin{aligned}
& \mathcal{K}_{\alpha}(1,1,1)=\int_{S \times S \times S}|x-y|^{\alpha_{3}}|y-z|^{\alpha_{1}}|z-x|^{\alpha_{2}} d x d y d z \\
& =\left(\frac{\pi}{2}\right)^{\frac{3}{2}(n-1)} 2^{\alpha_{1}+\alpha_{2}+\alpha_{3}} \frac{\Gamma\left(\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{2}+2 \rho\right) \circlearrowleft \Gamma\left(\frac{\alpha_{1}}{2}+\rho\right)}{\circlearrowleft \Gamma\left(\frac{\alpha_{1}+\alpha_{2}}{2}+2 \rho\right)}
\end{aligned}
$$

- When $n=2$ the computation is due to I . Bernstein \& A. Reznikov (using mainly geometry!), the general case was obtained by A. Deitmar (using changes of variables and induction over n) and by JLC \& B. Ørsted (using spherical harmonic analysis), further generalized by JLC, T. Kobayashi, B. Ørsted and M. Pevzner.
- $\mathcal{K}_{\alpha}(1,1,1)$ has exactly the poles predicted by the general theory for \mathcal{K}_{α}.
- $\mathcal{K}_{\alpha}(1,1,1)=0$ if and only if, up to permutation of the indices, $\frac{\alpha_{1}+\alpha_{2}}{2}+2 \rho \in-\mathbb{N}$, which is equivalent to $\lambda_{3} \in-\rho-\mathbb{N}$, i.e. $\pi_{\lambda_{3}}$ is reducible and admits a finite dimensional subspace.

Where does $\widetilde{\mathcal{K}}_{\alpha} \equiv 0$?

Theorem
$\widetilde{\mathcal{K}}_{\alpha} \equiv 0$ if and only if either of the following two (non exclusive) possibilities is satisfied:

- $\boldsymbol{\alpha}$ belong to two planes of poles of type I
- $\boldsymbol{\alpha}$ is a pole of type II

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}=-2(n-1)-2 k, \quad \text { for some } k \in \mathbb{N}
$$

and (up to permutation of $1,2,3$)

$$
\alpha_{1}+\alpha_{2}=-2(n-1)-2 l, \quad \text { for some } I \in \mathbb{N}
$$

with $k \leq 1$.

Theorem (bis)
Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$. Then $\widetilde{\mathcal{K}}^{\boldsymbol{\lambda}} \equiv 0$ if and only if (at least) one of the following properties (up to permutation of the indices) is satisfied

- $\lambda_{3}=-\rho-p, \quad \lambda_{1}-\lambda_{2}=m$,
$p \in \mathbb{N}, m \in \mathbb{Z}, \quad|m| \leq p, \quad p \equiv m(2)$.
- $\lambda_{3}=-\rho-p, \quad \lambda_{1}+\lambda_{2}=m$, $p \in \mathbb{N}, m \in \mathbb{Z}, \quad|m| \leq p, \quad p \equiv m(2)$.

Elements of the proof

- An invariant trilinear functional \mathcal{T} is K-invariant, hence it is enough to test it against K-invariant functions on $S \times S \times S$.
- K-invariant polynomial functions ($=$ restriction to $S \times S \times S$ of polynomials on $E \times E \times E)$ are dense in K-invariant functions.

Elements of the proof

- An invariant trilinear functional \mathcal{T} is K-invariant, hence it is enough to test it against K-invariant functions on $S \times S \times S$.
- K-invariant polynomial functions ($=$ restriction to $S \times S \times S$ of polynomials on $E \times E \times E)$ are dense in K-invariant functions.
- As a consequence of the first fundamental theorem, the algebra of K-invariant polynomial functions is generated by the restrictions to $S \times S \times S$ of

$$
|x|^{2},|y|^{2},|z|^{2}, \quad<x, y>, \quad<y, z>, \quad<z, x>
$$

or equivalently

$$
1, \quad|x-y|^{2}, \quad|y-z|^{2}, \quad|z-x|^{2}
$$

- For $a_{1}, a_{2}, a_{3} \in \mathbb{N}$, let

$$
p_{a_{1}, a_{2}, a_{3}}(x, y, z)=|x-y|^{2 a_{3}}|y-z|^{2 a_{1}}|z-x|^{2 a_{2}} .
$$

- For $a_{1}, a_{2}, a_{3} \in \mathbb{N}$, let

$$
p_{a_{1}, a_{2}, a_{3}}(x, y, z)=|x-y|^{2 a_{3}}|y-z|^{2 a_{1}}|z-x|^{2 a_{2}} .
$$

$$
\mathcal{T} \equiv 0 \Longleftrightarrow \mathcal{T}\left(p_{a_{1}, a_{2}, a_{3}}\right)=0 \text { for all } a_{1}, a_{2}, a_{3} \in \mathbb{N} .
$$

- For $a_{1}, a_{2}, a_{3} \in \mathbb{N}$, let

$$
p_{a_{1}, a_{2}, a_{3}}(x, y, z)=|x-y|^{2 a_{3}}|y-z|^{2 a_{1}}|z-x|^{2 a_{2}} .
$$

$$
\mathcal{T} \equiv 0 \Longleftrightarrow \mathcal{T}\left(p_{a_{1}, a_{2}, a_{3}}\right)=0 \text { for all } a_{1}, a_{2}, a_{3} \in \mathbb{N} .
$$

$$
\mathcal{K}_{\alpha}\left(p_{a_{1}, a_{2}, a_{3}}\right)=\mathcal{K}_{\alpha_{1}+2 a_{1}, \alpha_{2}+2 a_{2}, \alpha_{3}+2 a_{3}}(1,1,1),
$$

- For $a_{1}, a_{2}, a_{3} \in \mathbb{N}$, let

$$
p_{a_{1}, a_{2}, a_{3}}(x, y, z)=|x-y|^{2 a_{3}}|y-z|^{2 a_{1}}|z-x|^{2 a_{2}} .
$$

$$
\mathcal{T} \equiv 0 \Longleftrightarrow \mathcal{T}\left(p_{a_{1}, a_{2}, a_{3}}\right)=0 \text { for all } a_{1}, a_{2}, a_{3} \in \mathbb{N} .
$$

$$
\mathcal{K}_{\alpha}\left(p_{a_{1}, a_{2}, a_{3}}\right)=\mathcal{K}_{\alpha_{1}+2 a_{1}, \alpha_{2}+2 a_{2}, \alpha_{3}+2 a_{3}}(1,1,1),
$$

$$
\begin{gathered}
\widetilde{\mathcal{K}}_{\alpha}\left(p_{a_{1}, a_{2}, a_{3}}\right)=\left(\frac{\pi}{2}\right)^{\frac{3}{2}(n-1)} 2^{\alpha_{1}+\alpha_{2}+\alpha_{3}} \\
\frac{\left(\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{2}+2 \rho\right)_{a_{1}+a_{2}+a_{3}} \circlearrowleft\left(\frac{\alpha_{1}}{2}+\rho\right)_{a_{1}}}{\circlearrowleft \Gamma\left(\frac{\alpha_{1}+\alpha_{2}}{2}+2 \rho+a_{1}+a_{2}\right)} .
\end{gathered}
$$

where $(x)_{k}=x(x+1) \ldots(x+k-1)$ (Pochhammer's symbol).

To conclude, and for further study...

- For $\boldsymbol{\lambda}$ outside of a denumerable union of complex lines, there is a non trivial trilinear form $\widetilde{\mathcal{K}}^{\boldsymbol{\lambda}}$ which is invariant w.r.t. $\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$.
- If the three representations $\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}$ are irreducible, then $\widetilde{\mathcal{K}}^{\boldsymbol{\lambda}} \not \equiv 0$.
- For $\boldsymbol{\lambda}$ such that $\widetilde{\mathcal{K}}^{\boldsymbol{\lambda}} \equiv 0$, then any partial derivative $\frac{\partial}{\partial \lambda_{j}} \widetilde{\mathcal{K}}^{\boldsymbol{\lambda}}$ is still invariant w.r.t. $\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$. This should yield (generically) two linearly independent invariant forms...

