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covariant differential operators on the

sphere

Jean-Louis Clerc



The geometric context

I S = Sn−1 the unit sphere in E = Rn

1 = (1, 0, . . . , 0)
S ' K/M , where K = SO(n), M ' SO(n − 1)

I S = set of isotropic lines in the Lorentz space E 1,n.

S 3 x 7−→ R(1, x) ∈ S

is a 1-1 correspondence, and so G acts on S .

I The Lorentz group G = SO0(1, n) acts on S, hence on S .
S ' G/P , where P the stabilizer of 1 in G is a parabolic
subgroup of G .
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I The action of G is conformal, i.e. for any tangent vector
ξ to S at x

|Dg(x)ξ| = κ(g , x)|ξ| ,

where κ(g , x) is the conformal factor of g at x .

I Covariance property of the Euclidean distance on S :

|g(x)− g(y)| = κ(g , x)
1
2 |x − y |κ(g , y)

1
2 ,

for x , y ∈ S and g ∈ G .
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The principal series

I The group G acts naturally on the spaces of smooth
densities on S , thus defining the (scalar) principal series
of representations of G .

I Let dx be the Lebesgue measure on the sphere, use it to
identify smoth densities with C∞ functions. For λ ∈ C,
we obtain the following representation of G on C∞(S)

πλ(g)f (x) = κ(g−1, x)
n−1

2
+λf (g−1(x)) .

[The shift by ρ = n−1
2

is to have πλ unitary for pure
imaginary λ]

I The duality relation between πλ and π−λ∫
S

πλ(g)ϕ (x)ψ(x)dx =

∫
S

ϕ(x)π−λ(g−1)ψ (x)dx .
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The Knapp-Stein intertwining operators

I Knapp-Stein operator (formal)

Jλf (x) =

∫
S

|x − y |−(n−1)+2λf (y)dy

I intertwining relation

Jλ ◦ πλ(g) = π−λ(g) ◦ Jλ, for any g ∈ G .

I convergent for <λ > 0

I look for analytic continuation of Jλ for λ ∈ C
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Bernstein-Sato identity
For f a given real analytic function everywhere ≥ 0

D(x ,
∂

∂x
, s) f s+1(x) = b(s) f s(x) ,

valid on {x , f (x) 6= 0}.
I D(x , ∂

∂x
, s) is a differential operator with smooth

coefficients, polynomial in the parameter s ∈ C.

I b(s) a polynomial

I example : BS identity for |1− x |2 on S(
∆+(

s

2
+1)(

s

2
+n−1)

)
|1−x |s+2 = (s+2)(s+n−1) |1−x |s

where ∆ is the Laplacian on S .

Hint : |1− x |2 = 2(1− x1) and

∆ϕ(x1) = (1− x2
1 )ϕ′′(x1)− (n − 1)ϕ′(x1) .
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Meromorphic continuation of
∫

S |x − y |sf (y)dy

I from the previous Bernstein-Sato identity

|x−y |s =
1

(s + 2)(s + n − 1)

(
∆y+(

s

2
+1)(

s

2
+n−1)

)
|x−y |s+2

I integrate by parts to get∫
S

|x − y |s f (y)dy =

1

(s + 2)(s + n − 1)

∫
S

|x−y |s+2
(

∆y+(
s

2
+1)(

s

2
+n−1) f

)
(y)dy

I this allows the meromorphic continuation, poles occurring
for s = −(n − 1),−(n − 1)− 2, . . . ,−(n − 1)− 2k , . . .
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Meromorphic continuation of Jλ
I Letting s = −(n − 1) + 2λ, the operator-valued function
λ→ Jλ can be continued meromorphically to C with
poles at −k , k ∈ N.

I for λ ∼ 0, write Jλf (x) =
∫
S
|x − y |−(n−1)+2λf (y)dy as∫

S

|x−y |−(n−1)+2λ
(
f (y)−f (x)

)
dy + f (x)

∫
S

|x−y |−(n−1)+2λdy .

I f (x)− f (y) = O(|x − y |), hence no problem with the
first integral

I ∫
S
|x − y |sdy =

∫
S
|1− y |sdy = (2

√
π)n−12s Γ( s

2
+ρ)

Γ( s
2

+2ρ)
,

I hence

Res(Jλf (x), λ = 0) =
πρ

Γ(ρ)
f (x) .
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I for λ ∼ −1, use BS identity, integrate by parts, take
residues at −1 on both sides to get

Res(Jλf (x), λ = −1) =
πρ4−1

Γ(ρ + 1)
∆1f (x)

where ∆1 = ∆− 1
4
(n − 1)(n − 3) is the conformal

Laplacian (Yamabe operator) on S .

I iterating the argument

Res(Jλ, λ = −k) =
πρ4−k

Γ(ρ + k)
∆k ,

where

∆k =
k∏

j=1

(
∆− (ρ + j − 1)(ρ− j)

)
.
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Covariant differential operators for densities on S

The intertwining property satisfied by Jλ between πλ, π−λ
extends to the residues and yields

∆k ◦ π−k(g) = πk(g) ◦∆k ,

usually know as the covariance property for ∆k .

It can be shown that there are no more covariant differential
operators between spaces of densities. The proof uses results
on homomorphisms of (generalized) Verma modules.



Sketch of a down-to-earth proof
I Use the noncompact picture Rn−1.
I Let D be a differential operator on Rn−1 covariant w.r.t.

(πλ, πµ).

I The action of N is by translations, hence D has to be a
constant coefficients differential operator.

I The action of M ' SO(n− 1) is by rotation, hence D has
to be of the form D =

∑
ak∆k , where ∆ is the Laplacian

on Rn−1.
I A acts by dilation on Rn−1, hence D has to be

homogeneous. So D = ak∆k for some k ∈ N, and
µ = λ + 2k .

I If D is non trivial, then the Casimir operator acts on both
spaces by the same scalar. This forces λ = −µ = −k .
Q.E.D.
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End of part I

Thank you for your attention !


