Covariant differential operators as singular intertwining operators

Jean-Louis Clerc
Professeur émérite, Université de Lorraine

Srni, January 18-25, 2014

Summary

- I. Knapp-Stein intertwining operators and covariant differential operators on the sphere

Summary

- I. Knapp-Stein intertwining operators and covariant differential operators on the sphere
- II. Conformally invariant trilinear forms on the sphere

Summary

- I. Knapp-Stein intertwining operators and covariant differential operators on the sphere
- II. Conformally invariant trilinear forms on the sphere
- III. Singular invariant trilinear forms and covariant (bi-)differential operators

Based on

- J-L. Clerc \& B. Ørsted, Conformally invariant trilinear forms on the sphere, Ann. Instit. Fourier, 61 (2011), 1807-1838

Based on

- J-L. Clerc \& B. Ørsted, Conformally invariant trilinear forms on the sphere, Ann. Instit. Fourier, 61 (2011), 1807-1838
- J-L. Clerc, T. Kobayashi, B. Ørsted \& M. Pevzner, Generalized Bernstein-Reznikov integrals, Math. Annalen 349 (2011), 395-431

Based on

- J-L. Clerc \& B. Ørsted, Conformally invariant trilinear forms on the sphere, Ann. Instit. Fourier, 61 (2011), 1807-1838
- J-L. Clerc, T. Kobayashi, B. Ørsted \& M. Pevzner, Generalized Bernstein-Reznikov integrals, Math. Annalen 349 (2011), 395-431
- R. Beckmann \& J-L. Clerc, Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group, J. Funct. Anal. 262 (2012), 4341-4376

Based on

- J-L. Clerc \& B. Ørsted, Conformally invariant trilinear forms on the sphere, Ann. Instit. Fourier, 61 (2011), 1807-1838
- J-L. Clerc, T. Kobayashi, B. Ørsted \& M. Pevzner, Generalized Bernstein-Reznikov integrals, Math. Annalen 349 (2011), 395-431
- R. Beckmann \& J-L. Clerc, Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group, J. Funct. Anal. 262 (2012), 4341-4376
- J-L. Clerc, Singular conformally invariant trilinear forms on the sphere, in preparation

Some related references

- J. Bernstein \& A. Reznikov, Estimates of automorphic functions, Mosc. Math. J. 4 (2004), 19-37

Some related references

- J. Bernstein \& A. Reznikov, Estimates of automorphic functions, Mosc. Math. J. 4 (2004), 19-37
- T. Kobayashi and B. Speh, Symmetry breaking for representations of rank one orthogonal groups, posted on arXiv (2013)

Some related references

- J. Bernstein \& A. Reznikov, Estimates of automorphic functions, Mosc. Math. J. 4 (2004), 19-37
- T. Kobayashi and B. Speh, Symmetry breaking for representations of rank one orthogonal groups, posted on arXiv (2013)
- P. Somberg, Rankin-Cohen brackets for orthogonal Lie algebras and bilinear conformally invariant differential operators, posted on arXiv (2013)

Knapp-Stein intertwining operators and covariant differential operators on the sphere

Jean-Louis Clerc

The geometric context

- $S=S^{n-1}$ the unit sphere in $E=\mathbb{R}^{n}$
$\mathbf{1}=(1,0, \ldots, 0)$
$S \simeq K / M$, where $K=S O(n), M \simeq S O(n-1)$

The geometric context

- $S=S^{n-1}$ the unit sphere in $E=\mathbb{R}^{n}$
$\mathbf{1}=(1,0, \ldots, 0)$
$S \simeq K / M$, where $K=S O(n), M \simeq S O(n-1)$
- $\mathcal{S}=$ set of isotropic lines in the Lorentz space $E^{1, n}$.

$$
S \ni x \longmapsto \mathbb{R}(1, x) \in \mathcal{S}
$$

is a 1-1 correspondence, and so G acts on S.

- The Lorentz group $G=S O_{0}(1, n)$ acts on \mathcal{S}, hence on S. $S \simeq G / P$, where P the stabilizer of $\mathbf{1}$ in G is a parabolic subgroup of G.
- The action of G is conformal, i.e. for any tangent vector ξ to S at x

$$
|D g(x) \xi|=\kappa(g, x)|\xi|
$$

where $\kappa(g, x)$ is the conformal factor of g at x.

- The action of G is conformal, i.e. for any tangent vector ξ to S at x

$$
|D g(x) \xi|=\kappa(g, x)|\xi|
$$

where $\kappa(g, x)$ is the conformal factor of g at x.

- Covariance property of the Euclidean distance on S :

$$
|g(x)-g(y)|=\kappa(g, x)^{\frac{1}{2}}|x-y| \kappa(g, y)^{\frac{1}{2}}
$$

for $x, y \in S$ and $g \in G$.

The principal series

- The group G acts naturally on the spaces of smooth densities on S, thus defining the (scalar) principal series of representations of G.
- Let $d x$ be the Lebesgue measure on the sphere, use it to identify smoth densities with \mathcal{C}^{∞} functions. For $\lambda \in \mathbb{C}$, we obtain the following representation of G on $\mathcal{C}^{\infty}(S)$

$$
\pi_{\lambda}(g) f(x)=\kappa\left(g^{-1}, x\right)^{\frac{n-1}{2}+\lambda} f\left(g^{-1}(x)\right)
$$

[The shift by $\rho=\frac{n-1}{2}$ is to have π_{λ} unitary for pure imaginary λ]

The principal series

- The group G acts naturally on the spaces of smooth densities on S, thus defining the (scalar) principal series of representations of G.
- Let $d x$ be the Lebesgue measure on the sphere, use it to identify smoth densities with \mathcal{C}^{∞} functions. For $\lambda \in \mathbb{C}$, we obtain the following representation of G on $\mathcal{C}^{\infty}(S)$

$$
\pi_{\lambda}(g) f(x)=\kappa\left(g^{-1}, x\right)^{\frac{n-1}{2}+\lambda} f\left(g^{-1}(x)\right) .
$$

[The shift by $\rho=\frac{n-1}{2}$ is to have π_{λ} unitary for pure imaginary λ]

- The duality relation between π_{λ} and $\pi_{-\lambda}$

$$
\int_{S} \pi_{\lambda}(g) \varphi(x) \psi(x) d x=\int_{S} \varphi(x) \pi_{-\lambda}\left(g^{-1}\right) \psi(x) d x
$$

The Knapp-Stein intertwining operators

- Knapp-Stein operator (formal)

$$
J_{\lambda} f(x)=\int_{S}|x-y|^{-(n-1)+2 \lambda} f(y) d y
$$

- intertwining relation

$$
J_{\lambda} \circ \pi_{\lambda}(g)=\pi_{-\lambda}(g) \circ J_{\lambda}, \quad \text { for any } g \in G
$$

The Knapp-Stein intertwining operators

- Knapp-Stein operator (formal)

$$
J_{\lambda} f(x)=\int_{S}|x-y|^{-(n-1)+2 \lambda} f(y) d y
$$

- intertwining relation

$$
J_{\lambda} \circ \pi_{\lambda}(g)=\pi_{-\lambda}(g) \circ J_{\lambda}, \quad \text { for any } g \in G .
$$

- convergent for $\Re \lambda>0$
- look for analytic continuation of J_{λ} for $\lambda \in \mathbb{C}$

Bernstein-Sato identity

For f a given real analytic function everywhere ≥ 0

$$
D\left(x, \frac{\partial}{\partial x}, s\right) f^{s+1}(x)=b(s) f^{s}(x)
$$

valid on $\{x, f(x) \neq 0\}$.

- $D\left(x, \frac{\partial}{\partial x}, s\right)$ is a differential operator with smooth coefficients, polynomial in the parameter $s \in \mathbb{C}$.
- $b(s)$ a polynomial

Bernstein-Sato identity

For f a given real analytic function everywhere ≥ 0

$$
D\left(x, \frac{\partial}{\partial x}, s\right) f^{s+1}(x)=b(s) f^{s}(x)
$$

valid on $\{x, f(x) \neq 0\}$.

- $D\left(x, \frac{\partial}{\partial x}, s\right)$ is a differential operator with smooth coefficients, polynomial in the parameter $s \in \mathbb{C}$.
- b(s) a polynomial
- example : BS identity for $|\mathbf{1}-x|^{2}$ on S

$$
\left(\Delta+\left(\frac{s}{2}+1\right)\left(\frac{s}{2}+n-1\right)\right)|\mathbf{1}-x|^{s+2}=(s+2)(s+n-1)|\mathbf{1}-x|^{s}
$$

where Δ is the Laplacian on S.

Bernstein-Sato identity

For f a given real analytic function everywhere ≥ 0

$$
D\left(x, \frac{\partial}{\partial x}, s\right) f^{s+1}(x)=b(s) f^{s}(x)
$$

valid on $\{x, f(x) \neq 0\}$.

- $D\left(x, \frac{\partial}{\partial x}, s\right)$ is a differential operator with smooth coefficients, polynomial in the parameter $s \in \mathbb{C}$.
- $b(s)$ a polynomial
- example : BS identity for $|\mathbf{1}-x|^{2}$ on S

$$
\left(\Delta+\left(\frac{s}{2}+1\right)\left(\frac{s}{2}+n-1\right)\right)|\mathbf{1}-x|^{s+2}=(s+2)(s+n-1)|1-x|^{s}
$$

where Δ is the Laplacian on S.
Hint: $|\mathbf{1}-x|^{2}=2\left(1-x_{1}\right)$ and

$$
\Delta \varphi\left(x_{1}\right)=\left(1-x_{1}^{2}\right) \varphi^{\prime \prime}\left(x_{1}\right)-(n-1) \varphi^{\prime}\left(x_{1}\right) .
$$

Meromorphic continuation of $\int_{S}|x-y|^{S} f(y) d y$

- from the previous Bernstein-Sato identity

$$
|x-y|^{s}=\frac{1}{(s+2)(s+n-1)}\left(\Delta_{y}+\left(\frac{s}{2}+1\right)\left(\frac{s}{2}+n-1\right)\right)|x-y|^{s+2}
$$

Meromorphic continuation of $\int_{S}|x-y|^{S} f(y) d y$

- from the previous Bernstein-Sato identity

$$
|x-y|^{s}=\frac{1}{(s+2)(s+n-1)}\left(\Delta_{y}+\left(\frac{s}{2}+1\right)\left(\frac{s}{2}+n-1\right)\right)|x-y|^{s+2}
$$

- integrate by parts to get

$$
\begin{gathered}
\int_{S}|x-y|^{s} f(y) d y= \\
\frac{1}{(s+2)(s+n-1)} \int_{S}|x-y|^{s+2}\left(\Delta_{y}+\left(\frac{s}{2}+1\right)\left(\frac{s}{2}+n-1\right) f\right)(y) d y
\end{gathered}
$$

Meromorphic continuation of $\int_{S}|x-y|^{S} f(y) d y$

- from the previous Bernstein-Sato identity

$$
|x-y|^{s}=\frac{1}{(s+2)(s+n-1)}\left(\Delta_{y}+\left(\frac{s}{2}+1\right)\left(\frac{s}{2}+n-1\right)\right)|x-y|^{s+2}
$$

- integrate by parts to get

$$
\begin{gathered}
\int_{S}|x-y|^{s} f(y) d y= \\
\frac{1}{(s+2)(s+n-1)} \int_{S}|x-y|^{s+2}\left(\Delta_{y}+\left(\frac{s}{2}+1\right)\left(\frac{s}{2}+n-1\right) f\right)(y) d y
\end{gathered}
$$

- this allows the meromorphic continuation, poles occurring for $s=-(n-1),-(n-1)-2, \ldots,-(n-1)-2 k, \ldots$

Meromorphic continuation of J_{λ}

- Letting $s=-(n-1)+2 \lambda$, the operator-valued function $\lambda \rightarrow J_{\lambda}$ can be continued meromorphically to \mathbb{C} with poles at $-k, k \in \mathbb{N}$.

Meromorphic continuation of J_{λ}

- Letting $s=-(n-1)+2 \lambda$, the operator-valued function $\lambda \rightarrow J_{\lambda}$ can be continued meromorphically to \mathbb{C} with poles at $-k, k \in \mathbb{N}$.
- for $\lambda \sim 0$, write $J_{\lambda} f(x)=\int_{S}|x-y|^{-(n-1)+2 \lambda} f(y) d y$ as

$$
\int_{S}|x-y|^{-(n-1)+2 \lambda}(f(y)-f(x)) d y+f(x) \int_{S}|x-y|^{-(n-1)+2 \lambda} d y
$$

Meromorphic continuation of J_{λ}

- Letting $s=-(n-1)+2 \lambda$, the operator-valued function $\lambda \rightarrow J_{\lambda}$ can be continued meromorphically to \mathbb{C} with poles at $-k, k \in \mathbb{N}$.
- for $\lambda \sim 0$, write $J_{\lambda} f(x)=\int_{S}|x-y|^{-(n-1)+2 \lambda} f(y) d y$ as

$$
\int_{S}|x-y|^{-(n-1)+2 \lambda}(f(y)-f(x)) d y+f(x) \int_{S}|x-y|^{-(n-1)+2 \lambda} d y
$$

- $f(x)-f(y)=O(|x-y|)$, hence no problem with the first integral

$$
\int_{S}|x-y|^{s} d y=\int_{S}|\mathbf{1}-y|^{s} d y=(2 \sqrt{\pi})^{n-1} 2^{\frac{\Gamma\left(\frac{s}{2}+\rho\right)}{\Gamma\left(\frac{s}{2}+2 \rho\right)}}
$$

Meromorphic continuation of J_{λ}

- Letting $s=-(n-1)+2 \lambda$, the operator-valued function $\lambda \rightarrow J_{\lambda}$ can be continued meromorphically to \mathbb{C} with poles at $-k, k \in \mathbb{N}$.
- for $\lambda \sim 0$, write $J_{\lambda} f(x)=\int_{S}|x-y|^{-(n-1)+2 \lambda} f(y) d y$ as

$$
\int_{S}|x-y|^{-(n-1)+2 \lambda}(f(y)-f(x)) d y+f(x) \int_{S}|x-y|^{-(n-1)+2 \lambda} d y
$$

- $f(x)-f(y)=O(|x-y|)$, hence no problem with the first integral

$$
\int_{S}|x-y|^{s} d y=\int_{S}|\mathbf{1}-y|^{s} d y=(2 \sqrt{\pi})^{n-1} 2^{\frac{\Gamma\left(\frac{s}{2}\right.}{\Gamma\left(\frac{2}{2}+2 \rho\right)}},
$$

- hence

$$
\operatorname{Res}\left(J_{\lambda} f(x), \lambda=0\right)=\frac{\pi^{\rho}}{\Gamma(\rho)} f(x)
$$

- for $\lambda \sim-1$, use BS identity, integrate by parts, take residues at -1 on both sides to get

$$
\operatorname{Res}\left(J_{\lambda} f(x), \lambda=-1\right)=\frac{\pi^{\rho} 4^{-1}}{\Gamma(\rho+1)} \Delta_{1} f(x)
$$

where $\Delta_{1}=\Delta-\frac{1}{4}(n-1)(n-3)$ is the conformal Laplacian (Yamabe operator) on S.

- for $\lambda \sim-1$, use BS identity, integrate by parts, take residues at -1 on both sides to get

$$
\operatorname{Res}\left(J_{\lambda} f(x), \lambda=-1\right)=\frac{\pi^{\rho} 4^{-1}}{\Gamma(\rho+1)} \Delta_{1} f(x)
$$

where $\Delta_{1}=\Delta-\frac{1}{4}(n-1)(n-3)$ is the conformal Laplacian (Yamabe operator) on S.

- iterating the argument

$$
\operatorname{Res}\left(J_{\lambda}, \lambda=-k\right)=\frac{\pi^{\rho} 4^{-k}}{\Gamma(\rho+k)} \Delta_{k}
$$

where

$$
\Delta_{k}=\prod_{j=1}^{k}(\Delta-(\rho+j-1)(\rho-j))
$$

Covariant differential operators for densities on S

The intertwining property satisfied by J_{λ} between $\pi_{\lambda}, \pi_{-\lambda}$ extends to the residues and yields

$$
\Delta_{k} \circ \pi_{-k}(g)=\pi_{k}(g) \circ \Delta_{k}
$$

usually know as the covariance property for Δ_{k}.

It can be shown that there are no more covariant differential operators between spaces of densities. The proof uses results on homomorphisms of (generalized) Verma modules.

Sketch of a down-to-earth proof

- Use the noncompact picture \mathbb{R}^{n-1}.
- Let D be a differential operator on \mathbb{R}^{n-1} covariant w.r.t. $\left(\pi_{\lambda}, \pi_{\mu}\right)$.

Sketch of a down-to-earth proof

- Use the noncompact picture \mathbb{R}^{n-1}.
- Let D be a differential operator on \mathbb{R}^{n-1} covariant w.r.t. $\left(\pi_{\lambda}, \pi_{\mu}\right)$.
- The action of \bar{N} is by translations, hence D has to be a constant coefficients differential operator.

Sketch of a down-to-earth proof

- Use the noncompact picture \mathbb{R}^{n-1}.
- Let D be a differential operator on \mathbb{R}^{n-1} covariant w.r.t. $\left(\pi_{\lambda}, \pi_{\mu}\right)$.
- The action of \bar{N} is by translations, hence D has to be a constant coefficients differential operator.
- The action of $M \simeq S O(n-1)$ is by rotation, hence D has to be of the form $D=\sum a_{k} \Delta^{k}$, where Δ is the Laplacian on \mathbb{R}^{n-1}.

Sketch of a down-to-earth proof

- Use the noncompact picture \mathbb{R}^{n-1}.
- Let D be a differential operator on \mathbb{R}^{n-1} covariant w.r.t. $\left(\pi_{\lambda}, \pi_{\mu}\right)$.
- The action of \bar{N} is by translations, hence D has to be a constant coefficients differential operator.
- The action of $M \simeq S O(n-1)$ is by rotation, hence D has to be of the form $D=\sum a_{k} \Delta^{k}$, where Δ is the Laplacian on \mathbb{R}^{n-1}.
- A acts by dilation on \mathbb{R}^{n-1}, hence D has to be homogeneous. So $D=a_{k} \Delta^{k}$ for some $k \in \mathbb{N}$, and $\mu=\lambda+2 k$.

Sketch of a down-to-earth proof

- Use the noncompact picture \mathbb{R}^{n-1}.
- Let D be a differential operator on \mathbb{R}^{n-1} covariant w.r.t. $\left(\pi_{\lambda}, \pi_{\mu}\right)$.
- The action of \bar{N} is by translations, hence D has to be a constant coefficients differential operator.
- The action of $M \simeq S O(n-1)$ is by rotation, hence D has to be of the form $D=\sum a_{k} \Delta^{k}$, where Δ is the Laplacian on \mathbb{R}^{n-1}.
- A acts by dilation on \mathbb{R}^{n-1}, hence D has to be homogeneous. So $D=a_{k} \Delta^{k}$ for some $k \in \mathbb{N}$, and $\mu=\lambda+2 k$.
- If D is non trivial, then the Casimir operator acts on both spaces by the same scalar. This forces $\lambda=-\mu=-k$. Q.E.D.

End of part I

Thank you for your attention!

