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The geometric context

» S = 5"! the unit sphere in E = R"
1=(1,0,...,0)
S~ K/M, where K = SO(n), M ~ SO(n—1)

» S = set of isotropic lines in the Lorentz space E%".

S>sx—R(1,x) €S
is a 1-1 correspondence, and so G acts on S.

» The Lorentz group G = SOy(1, n) acts on S, hence on S.
S ~ G/P, where P the stabilizer of 1 in G is a parabolic
subgroup of G.



» The action of G is conformal, i.e. for any tangent vector
£toS at x

|Dg(x)¢| = w(g, x)¢l

where (g, x) is the conformal factor of g at x.



» The action of G is conformal, i.e. for any tangent vector
£toS at x
|Dg(x)¢| = r(g. x)¢]

where (g, x) is the conformal factor of g at x.

» Covariance property of the Euclidean distance on S :
1 1
g(x) — g(¥)| = K(g,x)? |x — y| x(g.¥)? ,

for x,y € Sand g € G.



The principal series

» The group G acts naturally on the spaces of smooth
densities on S, thus defining the (scalar) principal series
of representations of G.

» Let dx be the Lebesgue measure on the sphere, use it to
identify smoth densities with C* functions. For A € C,
we obtain the following representation of G on C*(S)

g7 (x)) -

[The shift by p = "%1 is to have 7, unitary for pure
imaginary |
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m(8)f(x) = k(g



The principal series

The group G acts naturally on the spaces of smooth
densities on S, thus defining the (scalar) principal series
of representations of G.

Let dx be the Lebesgue measure on the sphere, use it to
identify smoth densities with C* functions. For A € C,
we obtain the following representation of G on C*(S)

g7 (x)) -

[The shift by p = "%1 is to have 7, unitary for pure
imaginary |

,17 X) ngl

m(8)f(x) = k(g

The duality relation between 7, and 7_)

/ (&) (x)(x)dx = / ()T (g ) (x)dx
S

S



The Knapp-Stein intertwining operators

» Knapp-Stein operator (formal)

) = [ =y 2y )dy
s
» intertwining relation

Homi(g) =7m_xr(g) oI, forany g € G .
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The Knapp-Stein intertwining operators

Knapp-Stein operator (formal)

) = [ =y 2y )dy
s
intertwining relation

Homi(g) =7m_xr(g) oI, forany g € G .

convergent for RA > 0
look for analytic continuation of J\ for A € C
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Bernstein-Sato identity

For f a given real analytic function everywhere > 0

D(x, 215) 7+ (x) = b(s) F(x) .

valid on {x f(x) # 0}.

» D(x,£,s) is a differential operator with smooth
coefficients, polynomial in the parameter s € C.

» b(s) a polynomial
» example : BS identity for |1 — x| on S

(A—i—(%—i—l)(g—i—n—l))]l x| = (s42)(s+n—1) [1—-x]*

where A is the Laplacian on S.
Hint : |1 — x> =2(1 — x;) and

Ap(x) = (1—x)¢"(a) — (n = 1)¢'(x) -



Meromorphic continuation of [ |x — y|*f(y)dy

» from the previous Bernstein-Sato identity
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Meromorphic continuation of [ |x — y|*f(y)dy

» from the previous Bernstein-Sato identity

s _ 1 S s s+2
=yl = (s+2)(s+n—1) (Ay+(§+1)(§+n—1)> =y

» integrate by parts to get

/ x — y[*F(y)dy =
S
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Meromorphic continuation of [ |x — y|*f(y)dy

» from the previous Bernstein-Sato identity

s 1 s s 512
=yl = (s+2)(s+n—1) (Ay+(2+1)(2+n 1)) =y
» integrate by parts to get
[ Ix=yedy =
1 s s
_ |52 e Zip—
TG L (A GG 7 )

» this allows the meromorphic continuation, poles occurring
fors=—(n—1),—(n—1)—2,...,—(n—1) — 2k,...
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Meromorphic continuation of J)

Letting s = —(n — 1) 4 2\, the operator-valued function
A — Jy can be continued meromorphically to C with
poles at —k, k € N.

for A ~ 0, write J\f(x) = [ |x — y[~("" D22 f(y)dy as

/5|X_y|—(n—1)+2,\(f(y)—f(x))dy+f(x)/‘X_y’—(n—1)+2xdy'
S

f(x) — f(y) = O(|x — y|), hence no problem with the
first integral

s S n— S rg
JsIx —yldy = [4|1 = y|*dy = (2/7)"""2 r((;fzpp)) )
hence
Res(Jyf(x),A=0) = ——

|
~
—~

X
~



» for A ~ —1, use BS identity, integrate by parts, take
residues at —1 on both sides to get

Res(yf(x), A = —1) = %Alf(x)

where Ay = A — 2(n —1)(n — 3) is the conformal
Laplacian (Yamabe operator) on S.



for A ~ —1, use BS identity, integrate by parts, take
residues at —1 on both sides to get

P41

Res(J\f(x),A = —1) = oD

Al f(X)

where Ay = A — 2(n —1)(n — 3) is the conformal
Laplacian (Yamabe operator) on S.

iterating the argument

P4k

RE‘S(J)\7 A= —k) = m

where

(p+Ji—1)(p—1J)) -

||:j>



Covariant differential operators for densities on S

The intertwining property satisfied by J, between 7y, m_»
extends to the residues and yields

Ayom_i(g) =mi(g)o Ak,

usually know as the covariance property for Ay.

It can be shown that there are no more covariant differential
operators between spaces of densities. The proof uses results
on homomorphisms of (generalized) Verma modules.
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Sketch of a down-to-earth proof

Use the noncompact picture R"1.

Let D be a differential operator on R"~! covariant w.r.t.
(7xs 7).

The action of N is by translations, hence D has to be a
constant coefficients differential operator.

The action of M ~ SO(n — 1) is by rotation, hence D has
to be of the form D = >~ a, A, where A is the Laplacian
on R™ 1.

A acts by dilation on R™ !, hence D has to be
homogeneous. So D = a,A* for some k € N, and
=X+ 2k.

If D is non trivial, then the Casimir operator acts on both

spaces by the same scalar. This forces A = —u = —k.
Q.E.D.



End of part |
Thank you for your attention !



