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Poles and Residues
Recall that for α = (α1, α2, α3) ∈ C3, Kα is the trilinear form
(obtained by meromorphic continuation of)

Kα(f1, f2, f3) =

∫
S×S×S
|x−y |α3|y−z |α1|z−x |α2f1(x)f2(y)f3(z) dx dy dz

The meromorphic continuation has simple poles along four
families of planes in C3, given by

I αj = −(n − 1)− 2k , for k ∈ N, j = 1, 2, 3

I α1 + α2 + α3 = −2(n − 1)− 2l , for l ∈ N

I A pole is said to be generic if it belongs to only one plane
of poles.

I A (generic) pole is said to be of type I if it belongs to a
plane from the three first families, and of type II if its
belongs to a plane from the fourth family.
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Residue at a pole of type I
Let α0 = (α0

1, α
0
2,−(n − 1)− 2k) be a generic pole of type I.

The residue at α0 is

Res(Kα,α
0)(f1, f2, f3) = lim

α3→−(n−1)−2k
(
α3

2
+ρ+k)Kα(f1, f2, f3)

The singularity of Kα at α0 comes from the factor |x − y |α3 in
the kernel of Kα, which becomes singular on {x = y}, a
submanifold of dimension 2(n − 1). The residue is a
distribution supported in this set.
To express it at near a point (x0, y 0, z0) where x0 = y 0, we
need to chose a transverse submanifold . Our choice is

Nx0,y0,z0 = {(x , y 0, z0), x ∈ S} .

So the residue will be ”of the form”∫
S×S

f3(z)f2(y)
(
D(y , z ,

∂

∂x
)f1
)
(y) dy dz .
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Recall that ∆k is the differential operator on S defined by

∆k =
k∏

j=1

(
∆− (ρ + j − 1)(ρ− j)

)
where ∆ is the Laplacian on S . It satisfies the covariance
relation

∆k ◦ π−k(g) = πk(g) ◦∆k .



For α1, α2 ∈ C2 set

T 3,k
α1,α2

(f1, f2, f3) = T k(f1, f2, f3) =∫
S×S

f3(z)f2(y) ∆k [f1(.)|z − .|α2](y) |z − y |α1 dy dz .

Theorem
The trilinear form T k = T 3,k

α1,α2
originally defined as a

convergent integral for <α1 and <α2 large enough, can be
extended meromorphically to C2, with simple poles contained
in the family of lines

α1 + α2 = −(n − 1) + 2k − 2l , l ∈ N .

The trilinear form Tk is invariant w.r.t. (πλ1 , πλ2 , πλ3), where
λ = (λ1, λ2, λ3) is the spectral parameter associated to
α = (α1, α2,−(n − 1)− 2k).
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Theorem
Let α ∈ C3 such that α3 = −(n− 1)− k for some k ∈ N, and
α1 + α2 /∈ −(n − 1) + 2k − 2N. Then the residue of Kα is
equal to

Res
(
Kα, α3 = −(n − 1)− 2k

)
=

πρ 4−k

Γ(ρ + k)k!
T 3,k
α1,α2

.

Remark 1. The condition α1 + α2 = 2k − 2l is equivalent to
α1 + α2 + (−(n− 1)− 2k) = −2(n− 1)− 2l . Otherwise said,
poles of T k correspond to non generic poles of Kα lying in the
intersection of a plane of poles of type I and a plane of poles
of type II.

Remark 2. There is no pole of T k corresponding to α in the
intersection of two planes of poles of type I.
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Residue at a pole of type II

I At a generic pole of type II, the residue of Kα, viewed as
a distribution on S × S × S is supported on the diagonal
O4 = {(x , x , x), x ∈ S}.

I A bi-differential operator D on S is a continuous map
D : C∞(S × S) −→ C∞(S) which can be written locally
as

D(f )(z) =
∑
I ,J

aI ,J(z)
(
∂Ix ∂

J
y f
)
(z , z)

where the aI ,J (uniquely determined) are smooth.

I Let λ1, λ2, µ ∈ C. A bi-differential operator D on S is
said to be covariant w.r.t. (πλ1 ⊗ πλ2 , πµ) if

D ◦ (πλ1 ⊗ πλ2)(g) = πµ(g) ◦ D
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Proposition
Let T be a trilinear form on C∞(S), invariant w.r.t.
(πλ1 , πλ2 , πλ3). Assume that, as a distribution on S × S × S,
T is supported in the diagonal O4. Then there exists a
bi-differential operator D, covariant w.r.t. (πλ1 ⊗ πλ2 , π−λ3)
such that

T (f ⊗ g) =

∫
S

Df (x)g(x)dx

for f ∈ C∞(S × S), g ∈ C∞(S).

Remark. The converse statement is clear.



Residue at a ”first pole” of type II

We say that α is a first pole of type II if

α1 + α2 + α3 = −2(n − 1)

Proposition
Let α be a generic first pole of type II. Then

Res(Kαf ,α) = c(α)

∫
S

f (x , x , x)dx

where

c(α) = cn
Γ(α1

2
+ ρ) Γ(α2

2
+ ρ) Γ(α3

2
+ ρ)

Γ(−α1

2
) Γ(−α2

2
) Γ(−α3

2
)



A Bernstein-Sato identity

I Use a stereographic projection to move to the
noncompact realization of the principal series. The kernel
of the basic invariant trilinear form becomes (for
x , y , z ∈ Rn−1)

lα(x , y , z) = |x − y |α3|y − z |α1|z − x |α2

I For α = (α1, α2, α3), let α + 21 = (α1 + 2, α2, α3).

I Bernstein-Sato identity

B(y , z ,
∂

∂y
,
∂

∂z
,α) lα+21 = b(α) lα

where
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B(y , z ,
∂

∂z
,
∂

∂y
,α) = |y − z |2∆y∆z

+2(α3+α1+2ρ)
n−1∑
j=1

(zj−yj)
∂

∂yj
∆z + 2(α2+α1+2ρ)

n−1∑
j=1

(yj−zj)
∂

∂zj
∆y

+(α3+α1+2ρ)(α3+α1+2)∆z + (α2+α1+2ρ)(α2+α1+2)∆y

−2(α3 + α1 + 2ρ)(α2 + α1 + 2ρ)
n−1∑
j=1

∂2

∂yj∂zj
,

b(α) = (α1+2ρ)(α1+2)(α1+α2+α3+4ρ)(α1+α2+α3+2ρ+2) .



Sketch of the proof

I For λ ∈ C, denote by Fλ the image of C∞(S) (viewed as
(1
2

+ λ
n−1)-densities) under the stereographic projection.

I Let M be the operator defined on C∞(Rn−1 × Rn−1) by

(Mf )(x , y) = |x − y |2f (x , y)

I By the conformal covariance property of the Euclidean
distance

M : Fλ ⊗Fµ −→ Fλ−1 ⊗Fµ−1
is an intertwining operator for (πλ ⊗ πµ, πλ−1 ⊗ πµ−1)
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I Define Nλ,µ by the following diagram :

F−λ ⊗F−µ
M−−−→ F−λ−1 ⊗F−µ−1xJλ⊗Jµ

yJ−λ−1⊗J−µ−1

Fλ ⊗Fµ
Nλ,µ−−−→ Fλ+1 ⊗Fµ+1

I Nλ,µ intertwines πλ ⊗ πµ and πλ+1 ⊗ πµ+1

I Fact : Nλ,µ is a differential operator on Rn−1 × Rn−1 !

I The proof is by Euclidean Fourier transform. The
Knapp-Stein operators are convolution operators, hence
correspond to multiplications on the Fourier side and M
corresponds to the constant coefficient differential
operator

−∆x −∆y + 2
n−1∑
j=1

∂2

∂xj∂yj
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I Let λ = (λ1, λ2, λ3) ∈ C3.

I The trilinear form

Kλ1, λ2+1, λ3+1
(
f1 ⊗ Nλ2,λ3(f2 ⊗ f3)

)
is invariant with respect to (πλ1 , πλ2 , πλ3).

I By the generic uniqueness theorem, for generic λ, this
trilinear form has to be proportional to Kλ.

I Let α be the geometric parameter associated to λ. Then
(λ1, λ2 + 1, λ3 + 1) is the spectral parameter associated
to α + 21.

I Viewing trilinear forms as distributions, this yields

N t
λ2,λ3

kα+21 = b(α) kα

which is essentially the desired Bernstein-Sato identity.
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Application to covariant bi-differential operators
I Let α be of type II, say α1 + α2 + α3 = −2(n − 1)− 2k .

Then (α1 + 2k , α2, α3) belongs to the first plane of poles
of type II. The residue at α is obtained by k repeated
integration by parts using the Bernstein-Sato identity.

I This yields a bi-differential operator covariant w.r.t.
(πλ1 ⊗ πλ2 , πλ1+λ2+ρ+2k).

I Explicitly, let

Fλ,µ = |y − z |2∆y∆z

+ 4(µ + 1)
n−1∑
j=1

(zj − yj)
∂

∂zj
∆y + 4(λ + 1)

n−1∑
j=1

(yj − zj)
∂

∂yj
∆z

+ 4(µ + 1)(µ + ρ)∆y + 4(λ + 1)(λ + ρ)∆z

− 8(λ + 1)(µ + 1)
n−1∑
j=1

∂

∂yj

∂

∂zj
.
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Application to covariant bi-differential operators
I Let α be of type II, say α1 + α2 + α3 = −2(n − 1)− 2k .

Then (α1 + 2k , α2, α3) belongs to the first plane of poles
of type II. The residue at α is obtained by k repeated
integration by parts using the Bernstein-Sato identity.

I This yields a bi-differential operator covariant w.r.t.
(πλ1 ⊗ πλ2 , πλ1+λ2+ρ+2k).
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I Denote by restr (=restriction to the diagonal) the
operator from C∞(Rn−1 × Rn−1) to C∞(Rn−1) given by
(restr f )(x) = f (x , x).

I

F
(k)
λ,µ = restr ◦Fλ+k−1, µ+k−1 ◦ · · · ◦ Fλ, µ

is a bidifferential operator covariant w.r.t.
(πλ ⊗ πµ, πλ+µ+ρ+2k).

I Example : for k = 1, with R =
∑n−1

j=1
∂2

∂yj∂zj

F
(1)
λ,µ = 4(µ+1)(µ+ρ)∆y−8(λ+1)(µ+1)R+4(λ+1)(λ+ρ)∆z

is covariant w.r.t. (πλ ⊗ πµ, πλ+µ+ρ+2).
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Thank you for your attention !


