Singular trilinear forms and covariant (bi)differential operators

Jean-Louis Clerc

Srni, January 18-25, 2014

Poles and Residues

Recall that for $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{C}^{3}, \mathcal{K}_{\boldsymbol{\alpha}}$ is the trilinear form (obtained by meromorphic continuation of)
$\mathcal{K}_{\alpha}\left(f_{1}, f_{2}, f_{3}\right)=\int_{S \times S \times S}|x-y|^{\alpha_{3}}|y-z|^{\alpha_{1}}|z-x|^{\alpha_{2}} f_{1}(x) f_{2}(y) f_{3}(z) d x d y d z$

Poles and Residues

Recall that for $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{C}^{3}, \mathcal{K}_{\boldsymbol{\alpha}}$ is the trilinear form (obtained by meromorphic continuation of)
$\mathcal{K}_{\alpha}\left(f_{1}, f_{2}, f_{3}\right)=\int_{S \times S \times S}|x-y|^{\alpha_{3}}|y-z|^{\alpha_{1}}|z-x|^{\alpha_{2}} f_{1}(x) f_{2}(y) f_{3}(z) d x d y d z$
The meromorphic continuation has simple poles along four families of planes in \mathbb{C}^{3}, given by

$$
\begin{aligned}
& \alpha_{j}=-(n-1)-2 k, \text { for } k \in \mathbb{N}, j=1,2,3 \\
& \alpha_{1}+\alpha_{2}+\alpha_{3}=-2(n-1)-2 l, \text { for } l \in \mathbb{N}
\end{aligned}
$$

Poles and Residues

Recall that for $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{C}^{3}, \mathcal{K}_{\boldsymbol{\alpha}}$ is the trilinear form (obtained by meromorphic continuation of)
$\mathcal{K}_{\alpha}\left(f_{1}, f_{2}, f_{3}\right)=\int_{S \times S \times S}|x-y|^{\alpha_{3}}|y-z|^{\alpha_{1}}|z-x|^{\alpha_{2}} f_{1}(x) f_{2}(y) f_{3}(z) d x d y d z$
The meromorphic continuation has simple poles along four families of planes in \mathbb{C}^{3}, given by

- $\alpha_{j}=-(n-1)-2 k$, for $k \in \mathbb{N}, j=1,2,3$
- $\alpha_{1}+\alpha_{2}+\alpha_{3}=-2(n-1)-2 I$, for $I \in \mathbb{N}$
- A pole is said to be generic if it belongs to only one plane of poles.
- A (generic) pole is said to be of type I if it belongs to a plane from the three first families, and of type $/ /$ if its belongs to a plane from the fourth family.

Residue at a pole of type I

Let $\boldsymbol{\alpha}^{0}=\left(\alpha_{1}^{0}, \alpha_{2}^{0},-(n-1)-2 k\right)$ be a generic pole of type I.
The residue at α^{0} is

$$
\operatorname{Res}\left(\mathcal{K}_{\boldsymbol{\alpha}}, \boldsymbol{\alpha}^{0}\right)\left(f_{1}, f_{2}, f_{3}\right)=\lim _{\alpha_{3} \rightarrow-(n-1)-2 k}\left(\frac{\alpha_{3}}{2}+\rho+k\right) \mathcal{K}_{\alpha}\left(f_{1}, f_{2}, f_{3}\right)
$$

Residue at a pole of type I

Let $\boldsymbol{\alpha}^{0}=\left(\alpha_{1}^{0}, \alpha_{2}^{0},-(n-1)-2 k\right)$ be a generic pole of type I. The residue at α^{0} is
$\operatorname{Res}\left(\mathcal{K}_{\alpha}, \boldsymbol{\alpha}^{0}\right)\left(f_{1}, f_{2}, f_{3}\right)=\lim _{\alpha_{3} \rightarrow-(n-1)-2 k}\left(\frac{\alpha_{3}}{2}+\rho+k\right) \mathcal{K}_{\alpha}\left(f_{1}, f_{2}, f_{3}\right)$
The singularity of $\mathcal{K}_{\boldsymbol{\alpha}}$ at $\boldsymbol{\alpha}^{0}$ comes from the factor $|x-y|^{\alpha_{3}}$ in the kernel of \mathcal{K}_{α}, which becomes singular on $\{x=y\}$, a submanifold of dimension $2(n-1)$. The residue is a distribution supported in this set.

Residue at a pole of type I

Let $\boldsymbol{\alpha}^{0}=\left(\alpha_{1}^{0}, \alpha_{2}^{0},-(n-1)-2 k\right)$ be a generic pole of type I. The residue at α^{0} is
$\operatorname{Res}\left(\mathcal{K}_{\boldsymbol{\alpha}}, \boldsymbol{\alpha}^{0}\right)\left(f_{1}, f_{2}, f_{3}\right)=\lim _{\alpha_{3} \rightarrow-(n-1)-2 k}\left(\frac{\alpha_{3}}{2}+\rho+k\right) \mathcal{K}_{\alpha}\left(f_{1}, f_{2}, f_{3}\right)$
The singularity of $\mathcal{K}_{\boldsymbol{\alpha}}$ at $\boldsymbol{\alpha}^{0}$ comes from the factor $|x-y|^{\alpha_{3}}$ in the kernel of \mathcal{K}_{α}, which becomes singular on $\{x=y\}$, a submanifold of dimension $2(n-1)$. The residue is a distribution supported in this set.
To express it at near a point $\left(x^{0}, y^{0}, z^{0}\right)$ where $x^{0}=y^{0}$, we need to chose a transverse submanifold. Our choice is

$$
\mathcal{N}_{x^{0}, y^{0}, z^{0}}=\left\{\left(x, y^{0}, z^{0}\right), x \in S\right\}
$$

Residue at a pole of type I

Let $\boldsymbol{\alpha}^{0}=\left(\alpha_{1}^{0}, \alpha_{2}^{0},-(n-1)-2 k\right)$ be a generic pole of type I. The residue at α^{0} is
$\operatorname{Res}\left(\mathcal{K}_{\boldsymbol{\alpha}}, \boldsymbol{\alpha}^{0}\right)\left(f_{1}, f_{2}, f_{3}\right)=\lim _{\alpha_{3} \rightarrow-(n-1)-2 k}\left(\frac{\alpha_{3}}{2}+\rho+k\right) \mathcal{K}_{\alpha}\left(f_{1}, f_{2}, f_{3}\right)$
The singularity of \mathcal{K}_{α} at α^{0} comes from the factor $|x-y|^{\alpha_{3}}$ in the kernel of \mathcal{K}_{α}, which becomes singular on $\{x=y\}$, a submanifold of dimension $2(n-1)$. The residue is a distribution supported in this set.
To express it at near a point $\left(x^{0}, y^{0}, z^{0}\right)$ where $x^{0}=y^{0}$, we need to chose a transverse submanifold. Our choice is

$$
\mathcal{N}_{x^{0}, y^{0}, z^{0}}=\left\{\left(x, y^{0}, z^{0}\right), x \in S\right\}
$$

So the residue will be "of the form"

$$
\int_{S \times S} f_{3}(z) f_{2}(y)\left(D\left(y, z, \frac{\partial}{\partial x}\right) f_{1}\right)(y) d y d z
$$

Recall that Δ_{k} is the differential operator on S defined by

$$
\Delta_{k}=\prod_{j=1}^{k}(\Delta-(\rho+j-1)(\rho-j))
$$

where Δ is the Laplacian on S. It satisfies the covariance relation

$$
\Delta_{k} \circ \pi_{-k}(g)=\pi_{k}(g) \circ \Delta_{k}
$$

For $\alpha_{1}, \alpha_{2} \in \mathbb{C}^{2}$ set

$$
\begin{gathered}
\mathcal{T}_{\alpha_{1}, \alpha_{2}}^{3, k}\left(f_{1}, f_{2}, f_{3}\right)=\mathcal{T}^{k}\left(f_{1}, f_{2}, f_{3}\right)= \\
\int_{S \times S} f_{3}(z) f_{2}(y) \Delta_{k}\left[f_{1}(.)|z-.|^{\alpha_{2}}\right](y)|z-y|^{\alpha_{1}} d y d z
\end{gathered}
$$

For $\alpha_{1}, \alpha_{2} \in \mathbb{C}^{2}$ set

$$
\begin{gathered}
\mathcal{T}_{\alpha_{1}, \alpha_{2}}^{3, k}\left(f_{1}, f_{2}, f_{3}\right)=\mathcal{T}^{k}\left(f_{1}, f_{2}, f_{3}\right)= \\
\int_{S \times S} f_{3}(z) f_{2}(y) \Delta_{k}\left[f_{1}(.)|z-.|^{\alpha_{2}}\right](y)|z-y|^{\alpha_{1}} d y d z
\end{gathered}
$$

Theorem

The trilinear form $\mathcal{T}^{k}=\mathcal{T}_{\alpha_{1}, \alpha_{2}}^{3, k}$ originally defined as a convergent integral for $\Re \alpha_{1}$ and $\Re \alpha_{2}$ large enough, can be extended meromorphically to \mathbb{C}^{2}, with simple poles contained in the family of lines

$$
\alpha_{1}+\alpha_{2}=-(n-1)+2 k-2 I, I \in \mathbb{N} .
$$

The trilinear form \mathcal{T}_{k} is invariant w.r.t. $\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$, where $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is the spectral parameter associated to $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2},-(n-1)-2 k\right)$.

Theorem

Let $\boldsymbol{\alpha} \in \mathbb{C}^{3}$ such that $\alpha_{3}=-(n-1)-k$ for some $k \in \mathbb{N}$, and $\alpha_{1}+\alpha_{2} \notin-(n-1)+2 k-2 \mathbb{N}$. Then the residue of \mathcal{K}_{α} is equal to

$$
\operatorname{Res}\left(\mathcal{K}_{\alpha}, \alpha_{3}=-(n-1)-2 k\right)=\frac{\pi^{\rho} 4^{-k}}{\Gamma(\rho+k) k!} \mathcal{T}_{\alpha_{1}, \alpha_{2}}^{3, k} .
$$

Theorem

Let $\boldsymbol{\alpha} \in \mathbb{C}^{3}$ such that $\alpha_{3}=-(n-1)-k$ for some $k \in \mathbb{N}$, and $\alpha_{1}+\alpha_{2} \notin-(n-1)+2 k-2 \mathbb{N}$. Then the residue of \mathcal{K}_{α} is equal to

$$
\operatorname{Res}\left(\mathcal{K}_{\alpha}, \alpha_{3}=-(n-1)-2 k\right)=\frac{\pi^{\rho} 4^{-k}}{\Gamma(\rho+k) k!} \mathcal{T}_{\alpha_{1}, \alpha_{2}}^{3, k} .
$$

Remark 1. The condition $\alpha_{1}+\alpha_{2}=2 k-2 l$ is equivalent to $\alpha_{1}+\alpha_{2}+(-(n-1)-2 k)=-2(n-1)-2 l$. Otherwise said, poles of \mathcal{T}^{k} correspond to non generic poles of $\mathcal{K}_{\boldsymbol{\alpha}}$ lying in the intersection of a plane of poles of type I and a plane of poles of type II.

Theorem

Let $\boldsymbol{\alpha} \in \mathbb{C}^{3}$ such that $\alpha_{3}=-(n-1)-k$ for some $k \in \mathbb{N}$, and $\alpha_{1}+\alpha_{2} \notin-(n-1)+2 k-2 \mathbb{N}$. Then the residue of \mathcal{K}_{α} is equal to

$$
\operatorname{Res}\left(\mathcal{K}_{\alpha}, \alpha_{3}=-(n-1)-2 k\right)=\frac{\pi^{\rho} 4^{-k}}{\Gamma(\rho+k) k!} \mathcal{T}_{\alpha_{1}, \alpha_{2}}^{3, k} .
$$

Remark 1. The condition $\alpha_{1}+\alpha_{2}=2 k-2 /$ is equivalent to $\alpha_{1}+\alpha_{2}+(-(n-1)-2 k)=-2(n-1)-21$. Otherwise said, poles of \mathcal{T}^{k} correspond to non generic poles of \mathcal{K}_{α} lying in the intersection of a plane of poles of type I and a plane of poles of type II.
Remark 2. There is no pole of \mathcal{T}^{k} corresponding to α in the intersection of two planes of poles of type I .

Residue at a pole of type II

- At a generic pole of type II, the residue of \mathcal{K}_{α}, viewed as a distribution on $S \times S \times S$ is supported on the diagonal $\mathcal{O}_{4}=\{(x, x, x), x \in S\}$.

Residue at a pole of type II

- At a generic pole of type II, the residue of \mathcal{K}_{α}, viewed as a distribution on $S \times S \times S$ is supported on the diagonal $\mathcal{O}_{4}=\{(x, x, x), x \in S\}$.
- A bi-differential operator D on S is a continuous map $D: \mathcal{C}^{\infty}(S \times S) \longrightarrow \mathcal{C}^{\infty}(S)$ which can be written locally as

$$
D(f)(z)=\sum_{l, J} a_{l, J}(z)\left(\partial_{x}^{l} \partial_{y}^{J} f\right)(z, z)
$$

where the $a_{l, J}$ (uniquely determined) are smooth.

Residue at a pole of type II

- At a generic pole of type II, the residue of \mathcal{K}_{α}, viewed as a distribution on $S \times S \times S$ is supported on the diagonal $\mathcal{O}_{4}=\{(x, x, x), x \in S\}$.
- A bi-differential operator D on S is a continuous map $D: \mathcal{C}^{\infty}(S \times S) \longrightarrow \mathcal{C}^{\infty}(S)$ which can be written locally as

$$
D(f)(z)=\sum_{l, J} a_{l, J}(z)\left(\partial_{x}^{\prime} \partial_{y}^{J} f\right)(z, z)
$$

where the $a_{l, J}$ (uniquely determined) are smooth.

- Let $\lambda_{1}, \lambda_{2}, \mu \in \mathbb{C}$. A bi-differential operator D on S is said to be covariant w.r.t. $\left(\pi_{\lambda_{1}} \otimes \pi_{\lambda_{2}}, \pi_{\mu}\right)$ if

$$
D \circ\left(\pi_{\lambda_{1}} \otimes \pi_{\lambda_{2}}\right)(g)=\pi_{\mu}(g) \circ D
$$

Proposition

Let \mathcal{T} be a trilinear form on $\mathcal{C}^{\infty}(S)$, invariant w.r.t.
$\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$. Assume that, as a distribution on $S \times S \times S$, \mathcal{T} is supported in the diagonal \mathcal{O}_{4}. Then there exists a bi-differential operator D, covariant w.r.t. $\left(\pi_{\lambda_{1}} \otimes \pi_{\lambda_{2}}, \pi_{-\lambda_{3}}\right)$ such that

$$
\mathcal{T}(f \otimes g)=\int_{S} D f(x) g(x) d x
$$

for $f \in \mathcal{C}^{\infty}(S \times S), g \in \mathcal{C}^{\infty}(S)$.
Remark. The converse statement is clear.

Residue at a "first pole" of type II

We say that $\boldsymbol{\alpha}$ is a first pole of type II if

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}=-2(n-1)
$$

Proposition
Let $\boldsymbol{\alpha}$ be a generic first pole of type II. Then

$$
\operatorname{Res}\left(\mathcal{K}_{\boldsymbol{\alpha}} f, \boldsymbol{\alpha}\right)=c(\boldsymbol{\alpha}) \int_{S} f(x, x, x) d x
$$

where

$$
c(\boldsymbol{\alpha})=c_{n} \frac{\Gamma\left(\frac{\alpha_{1}}{2}+\rho\right) \Gamma\left(\frac{\alpha_{2}}{2}+\rho\right) \Gamma\left(\frac{\alpha_{3}}{2}+\rho\right)}{\Gamma\left(-\frac{\alpha_{1}}{2}\right) \Gamma\left(-\frac{\alpha_{2}}{2}\right) \Gamma\left(-\frac{\alpha_{3}}{2}\right)}
$$

A Bernstein-Sato identity

- Use a stereographic projection to move to the noncompact realization of the principal series. The kernel of the basic invariant trilinear form becomes (for $x, y, z \in \mathbb{R}^{n-1}$)

$$
I_{\alpha}(x, y, z)=|x-y|^{\alpha_{3}}|y-z|^{\alpha_{1}}|z-x|^{\alpha_{2}}
$$

- For $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, let $\boldsymbol{\alpha}+2_{1}=\left(\alpha_{1}+2, \alpha_{2}, \alpha_{3}\right)$.

A Bernstein-Sato identity

- Use a stereographic projection to move to the noncompact realization of the principal series. The kernel of the basic invariant trilinear form becomes (for $\left.x, y, z \in \mathbb{R}^{n-1}\right)$

$$
I_{\alpha}(x, y, z)=|x-y|^{\alpha_{3}}|y-z|^{\alpha_{1}}|z-x|^{\alpha_{2}}
$$

- For $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, let $\boldsymbol{\alpha}+2_{1}=\left(\alpha_{1}+2, \alpha_{2}, \alpha_{3}\right)$.
- Bernstein-Sato identity

$$
B\left(y, z, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \boldsymbol{\alpha}\right) I_{\alpha+2_{1}}=b(\boldsymbol{\alpha}) I_{\alpha}
$$

where

$$
\begin{gathered}
B\left(y, z, \frac{\partial}{\partial z}, \frac{\partial}{\partial y}, \boldsymbol{\alpha}\right)=|y-z|^{2} \Delta_{y} \Delta_{z} \\
+2\left(\alpha_{3}+\alpha_{1}+2 \rho\right) \sum_{j=1}^{n-1}\left(z_{j}-y_{j}\right) \frac{\partial}{\partial y_{j}} \Delta_{z}+2\left(\alpha_{2}+\alpha_{1}+2 \rho\right) \sum_{j=1}^{n-1}\left(y_{j}-z_{j}\right) \frac{\partial}{\partial z_{j}} \Delta_{y} \\
+\left(\alpha_{3}+\alpha_{1}+2 \rho\right)\left(\alpha_{3}+\alpha_{1}+2\right) \Delta_{z}+\left(\alpha_{2}+\alpha_{1}+2 \rho\right)\left(\alpha_{2}+\alpha_{1}+2\right) \Delta_{y} \\
-2\left(\alpha_{3}+\alpha_{1}+2 \rho\right)\left(\alpha_{2}+\alpha_{1}+2 \rho\right) \sum_{j=1}^{n-1} \frac{\partial^{2}}{\partial y_{j} \partial z_{j}}, \\
b(\boldsymbol{\alpha})=\left(\alpha_{1}+2 \rho\right)\left(\alpha_{1}+2\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+4 \rho\right)\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+2 \rho+2\right) .
\end{gathered}
$$

Sketch of the proof

- For $\lambda \in \mathbb{C}$, denote by \mathcal{F}_{λ} the image of $\mathcal{C}^{\infty}(S)$ (viewed as $\left(\frac{1}{2}+\frac{\lambda}{n-1}\right)$-densities) under the stereographic projection.

Sketch of the proof

- For $\lambda \in \mathbb{C}$, denote by \mathcal{F}_{λ} the image of $\mathcal{C}^{\infty}(S)$ (viewed as $\left(\frac{1}{2}+\frac{\lambda}{n-1}\right)$-densities) under the stereographic projection.
- Let M be the operator defined on $\mathcal{C}^{\infty}\left(\mathbb{R}^{n-1} \times \mathbb{R}^{n-1}\right)$ by

$$
(M f)(x, y)=|x-y|^{2} f(x, y)
$$

Sketch of the proof

- For $\lambda \in \mathbb{C}$, denote by \mathcal{F}_{λ} the image of $\mathcal{C}^{\infty}(S)$ (viewed as $\left(\frac{1}{2}+\frac{\lambda}{n-1}\right)$-densities) under the stereographic projection.
- Let M be the operator defined on $\mathcal{C}^{\infty}\left(\mathbb{R}^{n-1} \times \mathbb{R}^{n-1}\right)$ by

$$
(M f)(x, y)=|x-y|^{2} f(x, y)
$$

- By the conformal covariance property of the Euclidean distance

$$
M: \mathcal{F}_{\lambda} \otimes \mathcal{F}_{\mu} \longrightarrow \mathcal{F}_{\lambda-1} \otimes \mathcal{F}_{\mu-1}
$$

is an intertwining operator for $\left(\pi_{\lambda} \otimes \pi_{\mu}, \pi_{\lambda-1} \otimes \pi_{\mu-1}\right)$

- Define $N_{\lambda, \mu}$ by the following diagram :

$$
\begin{aligned}
& \mathcal{F}_{-\lambda} \otimes \mathcal{F}_{-\mu} \xrightarrow{M} \mathcal{F}_{-\lambda-1} \otimes \mathcal{F}_{-\mu-1} \\
& \uparrow J_{\lambda} \otimes J_{\mu} \quad \downarrow J_{-\lambda-1} \otimes J_{-\mu-1} \\
& \mathcal{F}_{\lambda} \otimes \mathcal{F}_{\mu} \quad \xrightarrow{N_{\lambda, \mu}} \quad \mathcal{F}_{\lambda+1} \otimes \mathcal{F}_{\mu+1}
\end{aligned}
$$

- Define $N_{\lambda, \mu}$ by the following diagram :

$$
\begin{aligned}
\mathcal{F}_{-\lambda} & \otimes \mathcal{F}_{-\mu} \\
& \xrightarrow{M} \mathcal{F}_{-\lambda-1}
\end{aligned} \otimes \mathcal{F}_{-\mu-1} .
$$

- $N_{\lambda, \mu}$ intertwines $\pi_{\lambda} \otimes \pi_{\mu}$ and $\pi_{\lambda+1} \otimes \pi_{\mu+1}$
- Define $N_{\lambda, \mu}$ by the following diagram :

$$
\begin{aligned}
\mathcal{F}_{-\lambda} & \otimes \mathcal{F}_{-\mu} \\
& \xrightarrow{M} \mathcal{F}_{-\lambda-1}
\end{aligned} \otimes \mathcal{F}_{-\mu-1} .
$$

- $N_{\lambda, \mu}$ intertwines $\pi_{\lambda} \otimes \pi_{\mu}$ and $\pi_{\lambda+1} \otimes \pi_{\mu+1}$
- Fact : $N_{\lambda, \mu}$ is a differential operator on $\mathbb{R}^{n-1} \times \mathbb{R}^{n-1}$!
- Define $N_{\lambda, \mu}$ by the following diagram :

$$
\begin{aligned}
\mathcal{F}_{-\lambda} & \otimes \mathcal{F}_{-\mu} \\
& \xrightarrow{M} \mathcal{F}_{-\lambda-1}
\end{aligned} \otimes \mathcal{F}_{-\mu-1} .
$$

- $N_{\lambda, \mu}$ intertwines $\pi_{\lambda} \otimes \pi_{\mu}$ and $\pi_{\lambda+1} \otimes \pi_{\mu+1}$
- Fact: $N_{\lambda, \mu}$ is a differential operator on $\mathbb{R}^{n-1} \times \mathbb{R}^{n-1}$!
- The proof is by Euclidean Fourier transform. The Knapp-Stein operators are convolution operators, hence correspond to multiplications on the Fourier side and M corresponds to the constant coefficient differential operator

$$
-\Delta_{x}-\Delta_{y}+2 \sum_{j=1}^{n-1} \frac{\partial^{2}}{\partial x_{j} \partial y_{j}}
$$

- Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{C}^{3}$.
- Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{C}^{3}$.
- The trilinear form

$$
\mathcal{K}^{\lambda_{1}, \lambda_{2}+1, \lambda_{3}+1}\left(f_{1} \otimes N_{\lambda_{2}, \lambda_{3}}\left(f_{2} \otimes f_{3}\right)\right)
$$

is invariant with respect to $\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$.

- Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{C}^{3}$.
- The trilinear form

$$
\mathcal{K}^{\lambda_{1}, \lambda_{2}+1, \lambda_{3}+1}\left(f_{1} \otimes N_{\lambda_{2}, \lambda_{3}}\left(f_{2} \otimes f_{3}\right)\right)
$$

is invariant with respect to $\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$.

- By the generic uniqueness theorem, for generic $\boldsymbol{\lambda}$, this trilinear form has to be proportional to $\mathcal{K}^{\boldsymbol{\lambda}}$.
- Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{C}^{3}$.
- The trilinear form

$$
\mathcal{K}^{\lambda_{1}, \lambda_{2}+1, \lambda_{3}+1}\left(f_{1} \otimes N_{\lambda_{2}, \lambda_{3}}\left(f_{2} \otimes f_{3}\right)\right)
$$

is invariant with respect to $\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$.

- By the generic uniqueness theorem, for generic $\boldsymbol{\lambda}$, this trilinear form has to be proportional to $\mathcal{K}^{\boldsymbol{\lambda}}$.
- Let $\boldsymbol{\alpha}$ be the geometric parameter associated to $\boldsymbol{\lambda}$. Then $\left(\lambda_{1}, \lambda_{2}+1, \lambda_{3}+1\right)$ is the spectral parameter associated to $\boldsymbol{\alpha}+2{ }_{1}$.
- Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{C}^{3}$.
- The trilinear form

$$
\mathcal{K}^{\lambda_{1}, \lambda_{2}+1, \lambda_{3}+1}\left(f_{1} \otimes N_{\lambda_{2}, \lambda_{3}}\left(f_{2} \otimes f_{3}\right)\right)
$$

is invariant with respect to $\left(\pi_{\lambda_{1}}, \pi_{\lambda_{2}}, \pi_{\lambda_{3}}\right)$.

- By the generic uniqueness theorem, for generic $\boldsymbol{\lambda}$, this trilinear form has to be proportional to $\mathcal{K}^{\boldsymbol{\lambda}}$.
- Let $\boldsymbol{\alpha}$ be the geometric parameter associated to $\boldsymbol{\lambda}$. Then $\left(\lambda_{1}, \lambda_{2}+1, \lambda_{3}+1\right)$ is the spectral parameter associated to $\boldsymbol{\alpha}+2{ }_{1}$.
- Viewing trilinear forms as distributions, this yields

$$
N_{\lambda_{2}, \lambda_{3}}^{t} k_{\alpha+2_{1}}=b(\boldsymbol{\alpha}) k_{\alpha}
$$

which is essentially the desired Bernstein-Sato identity.

Application to covariant bi-differential operators

- Let $\boldsymbol{\alpha}$ be of type II, say $\alpha_{1}+\alpha_{2}+\alpha_{3}=-2(n-1)-2 k$. Then $\left(\alpha_{1}+2 k, \alpha_{2}, \alpha_{3}\right)$ belongs to the first plane of poles of type II. The residue at $\boldsymbol{\alpha}$ is obtained by k repeated integration by parts using the Bernstein-Sato identity.

Application to covariant bi-differential operators

- Let $\boldsymbol{\alpha}$ be of type II, say $\alpha_{1}+\alpha_{2}+\alpha_{3}=-2(n-1)-2 k$. Then $\left(\alpha_{1}+2 k, \alpha_{2}, \alpha_{3}\right)$ belongs to the first plane of poles of type II. The residue at $\boldsymbol{\alpha}$ is obtained by k repeated integration by parts using the Bernstein-Sato identity.
- This yields a bi-differential operator covariant w.r.t. $\left(\pi_{\lambda_{1}} \otimes \pi_{\lambda_{2}}, \pi_{\lambda_{1}+\lambda_{2}+\rho+2 k}\right)$.

Application to covariant bi-differential operators

- Let $\boldsymbol{\alpha}$ be of type II, say $\alpha_{1}+\alpha_{2}+\alpha_{3}=-2(n-1)-2 k$. Then $\left(\alpha_{1}+2 k, \alpha_{2}, \alpha_{3}\right)$ belongs to the first plane of poles of type II. The residue at $\boldsymbol{\alpha}$ is obtained by k repeated integration by parts using the Bernstein-Sato identity.
- This yields a bi-differential operator covariant w.r.t. $\left(\pi_{\lambda_{1}} \otimes \pi_{\lambda_{2}}, \pi_{\lambda_{1}+\lambda_{2}+\rho+2 k}\right)$.
- Explicitly, let

$$
\begin{aligned}
& F_{\lambda, \mu}=|y-z|^{2} \Delta_{y} \Delta_{z} \\
& +4(\mu+1) \sum_{j=1}^{n-1}\left(z_{j}-y_{j}\right) \frac{\partial}{\partial z_{j}} \Delta_{y}+4(\lambda+1) \sum_{j=1}^{n-1}\left(y_{j}-z_{j}\right) \frac{\partial}{\partial y_{j}} \Delta_{z} \\
& +4(\mu+1)(\mu+\rho) \Delta_{y}+4(\lambda+1)(\lambda+\rho) \Delta_{z} \\
& -8(\lambda+1)(\mu+1) \sum_{j=1}^{n-1} \frac{\partial}{\partial y_{j}} \frac{\partial}{\partial z_{j}}
\end{aligned}
$$

- Denote by restr (=restriction to the diagonal) the operator from $\mathcal{C}^{\infty}\left(\mathbb{R}^{n-1} \times \mathbb{R}^{n-1}\right)$ to $\mathcal{C}^{\infty}\left(\mathbb{R}^{n-1}\right)$ given by $(\operatorname{restr} f)(x)=f(x, x)$.
- Denote by restr (=restriction to the diagonal) the operator from $\mathcal{C}^{\infty}\left(\mathbb{R}^{n-1} \times \mathbb{R}^{n-1}\right)$ to $\mathcal{C}^{\infty}\left(\mathbb{R}^{n-1}\right)$ given by $(\operatorname{restr} f)(x)=f(x, x)$.

$$
F_{\lambda, \mu}^{(k)}=\operatorname{restr} \circ F_{\lambda+k-1, \mu+k-1} \circ \cdots \circ F_{\lambda, \mu}
$$

is a bidifferential operator covariant w.r.t.

$$
\left(\pi_{\lambda} \otimes \pi_{\mu}, \pi_{\lambda+\mu+\rho+2 k}\right)
$$

- Denote by restr (=restriction to the diagonal) the operator from $\mathcal{C}^{\infty}\left(\mathbb{R}^{n-1} \times \mathbb{R}^{n-1}\right)$ to $\mathcal{C}^{\infty}\left(\mathbb{R}^{n-1}\right)$ given by $(\operatorname{restr} f)(x)=f(x, x)$.

$$
F_{\lambda, \mu}^{(k)}=\operatorname{restr} \circ F_{\lambda+k-1, \mu+k-1} \circ \cdots \circ F_{\lambda, \mu}
$$

is a bidifferential operator covariant w.r.t.
$\left(\pi_{\lambda} \otimes \pi_{\mu}, \pi_{\lambda+\mu+\rho+2 k}\right)$.

- Example : for $k=1$, with $R=\sum_{j=1}^{n-1} \frac{\partial^{2}}{\partial y_{j} \partial z_{j}}$
$F_{\lambda, \mu}^{(1)}=4(\mu+1)(\mu+\rho) \Delta_{y}-8(\lambda+1)(\mu+1) R+4(\lambda+1)(\lambda+\rho) \Delta_{z}$
is covariant w.r.t. $\left(\pi_{\lambda} \otimes \pi_{\mu}, \pi_{\lambda+\mu+\rho+2}\right)$.

Thank you for your attention!

