Fundamental theorems of invariant theory for classical and quantum groups - 1

R. B. Zhang

University of Sydney

Winter School on Geometry and Physics

Jan 18 - 25, 2014, Prague

SFT in endomorphism algebra setting

Based on the following joint papers with Gus Lehrer

- [1] Gus Lehrer and Ruibin Zhang, The second fundamental theorem of invariant theory for the orthogonal group. Annals of Math. 176 (2012), no. 3, 2031-2054.
- [2] Gus Lehrer and Ruibin Zhang, The Brauer category and invariant theory. arXiv (2012).

ヨット イヨット イヨッ

Basic problem in classical invariant theory for, e.g., a group G: One wants to describe generators (FFT) & relations (SFT) of invariants of G actions.

Typically, for some G-module M, find the generators & relations of

- M^G as vector space,
- $S(M^*)^G$ as a commutative algebra,
- $\operatorname{End}_{G}(M) = \operatorname{End}(M)^{G}$ as an associative algebra,
- i.e., find a presentation for $\operatorname{End}_{G}(M)$.

We mostly consider the third case, which involves some interesting algebras.

(日本)(日本)(日本)

Classical groups

Work over field *K* of characteristic 0, e.g., $K = \mathbb{C}$. *V*, finite dimensional vector space; $V^{\otimes r} = \underbrace{V \otimes \cdots \otimes V}_{r}$. The case of G = GL(V). $V^{\otimes r}$ is a *G*-module for any *r*, with the action defined, for any $g \in G$ and $\mathbf{v} = v_1 \otimes v_2 \otimes \cdots \otimes v_r \in V^{\otimes r}$, by $g.\mathbf{v} = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_r$.

The symmetric group Sym_r of degree r acts on $V^{\otimes r}$ by

$$\sigma.\mathbf{v}=v_{\sigma(1)}\otimes v_{\sigma(2)}\otimes\cdots\otimes v_{\sigma(r)},\quad \sigma\in\mathrm{Sym}_r.$$

Denote by ν_r this representation of Sym_r . Clearly

$$g.(\sigma.\mathbf{v}) = gv_{\sigma(1)} \otimes gv_{\sigma(2)} \otimes \cdots \otimes gv_{\sigma(r)}$$

= $\sigma.(gv_1 \otimes gv_2 \otimes \cdots \otimes gv_r)$
= $\sigma.(g.\mathbf{v}), \quad \text{for all } g \in G, \sigma \in \operatorname{Sym}_r$

Hence $\nu_r(K \operatorname{Sym}_r) \subseteq \operatorname{End}_{\mathcal{G}}(V^{\otimes r}).$

• FFT for G = GL(V) (Schur, 1901): There is a surjection of *K*-algebras

$$\nu_r: KSym_r \longrightarrow End_G(V^{\otimes r}).$$

Let $m = \dim_{\mathcal{K}} V$. As $GL(V) \times \operatorname{Sym}_{r}$ -module,

$$V^{\otimes r} = \bigoplus_{\lambda} L(\lambda) \otimes D_{\lambda},$$

where the sum is over partitions of r of the form

$$\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m);$$

 D_{λ} , simple Sym_{r} -module associated with λ ; $L(\lambda)$, simple GL(V)-module with highest weight λ . $KSym_r$ is semi-simple. Inspection of the simple Sym_r -modules appearing in the decomposition leads to:

if $r \leq m$ then $\operatorname{Ker}(\nu_r) = 0$, if r > m then $\operatorname{Ker}(\nu_r) = \operatorname{sum}$ of ideals corresponding to D_{λ} with $\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r), \quad \lambda_{m+1} > 0.$

Let

$$\Sigma(m+1) := \sum_{\sigma \in \operatorname{Sym}_{m+1}} (-1)^{\ell(\sigma)} \sigma,$$

where $\ell(\sigma)$ is the length of σ . Then

$$\Sigma(m+1)(V^{\otimes (m+1)}) = \{0\}.$$

 $\mathrm{Sym}_{m+1} \hookrightarrow \mathrm{Sym}_r \text{ as the subgroup permuting the first } m+1$ letters for any r > m+1.

•SFT: if $r \leq m$, then ν_r is bijective; if r > m, then $\operatorname{Ker}(\nu_r)$ as a 2-sided ideal of $K\operatorname{Sym}_r$ is generated by $\Sigma(m+1)$.

向下 イヨト イヨト

• FFT for G = O(V) or Sp(V) (Brauer, 1937): there is a surjection of K-algebras

$$\nu_r: B_r(\epsilon m) \longrightarrow \operatorname{End}_G(V^{\otimes r}),$$

where $B_r(\epsilon m)$ is the Brauer algebra of degree r with parameter ϵm , $m = \dim_K V$, $\epsilon = \epsilon(G)$, $\epsilon(O) = 1$, $\epsilon(Sp) = -1$

• SFT: describe generators of $\text{Ker}(\nu_r)$ as an ideal of $B_r(\epsilon m)$. This is only known recently [Lehrer-Zhang].

Remarks:

Weyl's SFT for S(V ⊕ · · · ⊕ V)^G is not enough for describing Ker(ν_r) as an ideal of B_r(εm).
 B_r(εm) is not semi-simple unless r is very small [Pui Si]

(2). $B_r(\epsilon m)$ is not semi-simple unless r is very small [Rui-Si].

(日本)(日本)(日本)

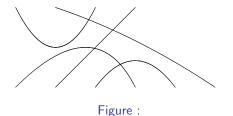
We describe the Brauer algebra categorically.

Definition

For any pair $k, \ell \in \mathbb{N}$, a (k, ℓ) Brauer diagram is a partitioning of the set $\{1, 2, \ldots, k + \ell\}$ as a disjoint union of pairs.

This is thought of as a diagram where $k + \ell$ points are placed on two parallel horizontal lines, k on the lower line and ℓ on the upper, with arcs drawn to join points which are paired. The pairs will be called *arcs*.

A (6, 4) Brauer diagram:



There is just one Brauer (0,0)-diagram, the empty diagram.

Composition and tensor product

Let K be a commutative ring with identity, and fix $\delta \in K$. $B_k^{\ell}(\delta)$, free K-module with basis consisting of (k, ℓ) diagrams. $B_k^{\ell}(\delta) \neq 0$ if and only if $k + \ell$ is even, $B_0^0(\delta) = K$.

Two K-bilinear operations on diagrams.

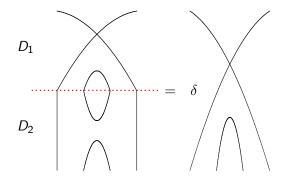
composition \circ : $B_{\ell}^{p}(\delta) \times B_{k}^{\ell}(\delta) \longrightarrow B_{k}^{p}(\delta),$ tensor product \otimes : $B_{p}^{q}(\delta) \times B_{k}^{\ell}(\delta) \longrightarrow B_{k+p}^{q+\ell}(\delta)$

同下 イヨト イヨト ニヨ

Composition of diagrams:

The composite D_1D_2 of the Brauer diagrams $D_1 \in B_\ell^p(\delta)$ and $D_2 \in B_k^\ell(\delta)$ is defined as follows. First, the concatenation $D_1 \# D_2$ is obtained by placing D_1 above D_2 , and identifying the ℓ lower nodes of D_1 with the corresponding upper nodes of D_2 . Then $D_1 \# D_2$ is the union of a Brauer (k, p) diagram D with a certain number, $f(D_1, D_2)$ say, of free loops. The composite D_1D_2 is the element $\delta^{f(D_1, D_2)}D \in B_k^p(\delta)$.

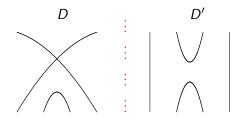
・ 同 ト ・ ヨ ト ・ ヨ ト …



・ロ・・(四・・)を注・・(注・・)注

Tensor product of diagrams:

The tensor product $D \otimes D'$ of any two Brauer diagrams $D \in B^q_p(\delta)$ and $D' \in B^\ell_k(\delta)$ is the $(p + k, q + \ell)$ diagram obtained placing D'on the right of D without overlapping.



Definition

The category $\mathcal{B}(\delta)$ of Brauer diagrams is the following tensor category (with tensor product denoted by \otimes):

- the set of objects is N = {0, 1, 2, ...}; Hom_{B(δ)}(k, l) = B^l_k(δ) for any k, l ∈ N; composition of morphisms is given by the composition of Brauer diagrams;
- the identity object is Ø; tensor product of objects: k ⊗ l = k + l; tensor product of morphisms is given by the tensor product of Brauer diagrams.

Remark

 $\mathcal{B}(\delta)$ is a quotient category of the category of tangles defined by Turaev and others.

向下 イヨト イヨト

Involutions

Duality functor $^* : \mathcal{B}(\delta) \to \mathcal{B}(\delta)^{\text{op}}$, taking each object to itself, and each diagram to its reflection in a horizontal line.

Involution $\sharp : \mathcal{B}(\delta) \to \mathcal{B}(\delta)$, taking objects to themselves, but a diagram D to its reflection in a vertical line.

Contravariant functor $D \mapsto *D := D^{*\circ \sharp}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Theorem

1. The four elementary Brauer diagrams

generate all Brauer diagrams by composition and tensor product.

Denote these generators by I, X, A and U respectively.

 A complete set of relations among these four generators is given by the following, and their transforms under * and [‡].

$$I \circ I = I, \quad (I \otimes I) \circ X = X, \tag{1}$$

$$A \circ (I \otimes I) = A, \quad (I \otimes I) \circ U = U,$$
 (2)

$$X \circ X = I \otimes I, \tag{3}$$

$$(X \otimes I) \circ (I \otimes X) \circ (X \otimes I) = (I \otimes X) \circ (X \otimes I) \circ (I \otimes X),$$
(4)
$$A \circ X = A,$$
(5)

$$A \circ U = \delta, \tag{6}$$

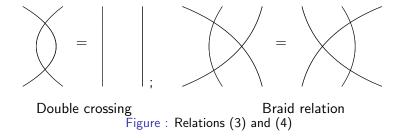
→ 同 → → 目 → → 目 →

æ

$$(A \otimes I) \circ (I \otimes X) = (I \otimes A) \circ (X \otimes I)$$
(7)

$$(A \otimes I) \circ (I \otimes U) = I.$$
(8)

The relations (3)-(8) are depicted diagrammatically below.

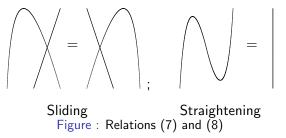


< ≣⇒

De-looping Loop Removal Figure : Relations (5) and (6)

< ≣ >

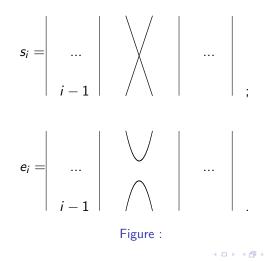
< ≣⇒



< ≣⇒

The Brauer algebra

The Brauer algebra $B_r(\delta)$ is $B_r^r(\delta)$ with multiplication given by composition of diagrams. For i = 1, ..., r - 1, let



 $B_r(\delta)$ has the following presentation as *K*-algebra with anti-involution *:

The generators are $\{s_i, e_i \mid i = 1, 2, ..., r - 1\}$; the relations are the following (and their images under *)

$$s_i s_j = s_j s_i, \ s_i e_j = e_j s_i, \ e_i e_j = e_j e_i, \quad \text{if } |i - j| \ge 2,$$

 $s_i^2 = 1, \ s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1},$
 $s_i e_i = e_i s_i = e_i,$
 $e_i^2 = \delta e_i,$
 $e_i e_{i\pm 1} e_i = e_i,$
 $s_i e_{i+1} e_i = s_{i+1} e_i,$

where the last five relations being valid for all applicable *i*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Remarks:

The elements s_1, \ldots, s_{r-1} generate a $KSym_r$ subalgebra of $B_r(\delta)$. If δ is integral, $B_r(\delta)$ is not semi-simple unless r is very small [Rui-Si].

高 とう ヨン うまと

Category of tensor representations

Non-degenerate bilinear form $(-, -) : V \times V \longrightarrow K$, which is either symmetric or skew symmetric.

 $G = \{g \in GL(V) \mid (gv, gw) = (v, w), \forall v, w \in V\}$ is the orthogonal group O(V) if the form is symmetric, the symplectic group Sp(V) if the form is skew symmetric.

Definition

Denote by $\mathcal{T}_G(V)$ the full subcategory of *G*-modules with objects $V^{\otimes r}$ $(r \in \mathbb{N})$, where $V^{\otimes 0} = K$.

The usual tensor product of *G*-modules and of *G*-equivariant maps is a bi-functor $\mathcal{T}_G(V) \times \mathcal{T}_G(V) \longrightarrow \mathcal{T}_G(V)$.

Call $\mathfrak{T}_G(V)$ the category of tensor representations of G.

This is a tensor category with K being the identity object. Note that $\operatorname{Hom}_{G}(V^{\otimes r}, V^{\otimes t}) = 0$ unless r + t is even; the zero module is not an object of $\mathcal{T}_{G}(V)$.

・ロン ・回 と ・ 回 と ・ 回 と

G-module isomorphisms

$$\operatorname{End}_{\mathcal{K}}(V) \xrightarrow{\sim} V \otimes V^* \xrightarrow{\sim} V \otimes V.$$

Let $c_0 \in V \otimes V$ be the image of id_V .

Define maps

$$P: V \otimes V \longrightarrow V \otimes V, \quad v \otimes w \mapsto w \otimes v,$$

$$\check{C}: K \longrightarrow V \otimes V, \quad 1 \mapsto c_0,$$

$$\hat{C}: V \otimes V \longrightarrow K, \quad v \otimes w \mapsto (v, w).$$
(9)

向下 イヨト イヨト

Lemma

The maps P, \check{C} and \hat{C} are all G-equivariant, and

$$P^2 = \mathrm{id}^{\otimes 2},\tag{10}$$

$$(P \otimes id)(id \otimes P)(P \otimes id) = (id \otimes P)(P \otimes id)(id \otimes P), \quad (11)$$
$$P\check{C} = \epsilon\check{C}, \qquad \hat{C}P = \epsilon\hat{C}, \qquad (12)$$

$$\hat{C}\check{C} = \epsilon m,$$
 (13)

向下 イヨト イヨト

$$(\hat{C} \otimes \mathrm{id})(\mathrm{id} \otimes \check{C}) = \mathrm{id} = (\mathrm{id} \otimes \hat{C})(\check{C} \otimes \mathrm{id}),$$
 (14)

$$(\hat{C} \otimes \mathrm{id}) \circ (\mathrm{id} \otimes P) = (\mathrm{id} \otimes \hat{C}) \circ (P \otimes \mathrm{id}), \tag{15}$$

$$(P \otimes \mathrm{id}) \circ (\mathrm{id} \otimes \check{C}) = (\mathrm{id} \otimes P) \circ (\check{C} \otimes \mathrm{id}).$$
(16)

Theorem

There exists a tensor functor $F : \mathcal{B}(\epsilon m) \longrightarrow \mathcal{T}_G(V)$ such that F sends object r to $V^{\otimes r}$, morphism $D : k \to \ell$ to $F(D) : V^{\otimes k} \longrightarrow V^{\otimes l}$, where F is defined on the elementary diagrams by

$$F\left(\begin{array}{c} \\ \\ \end{array}\right) = \operatorname{id}_{V}, \quad F\left(\begin{array}{c} \\ \\ \end{array}\right) = \epsilon P,$$

$$F\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = \check{C}, \quad F\left(\begin{array}{c} \\ \\ \end{array}\right) = \hat{C}.$$
(17)

伺 ト イミト イミト

As a tensor functor, F respects tensor product. For any objects r, r' and morphisms D, D' in $\mathcal{B}(\epsilon m)$,

$$F(r \otimes r') = V^{\otimes r} \otimes V^{\otimes r'} = F(r) \otimes F(r'),$$

$$F(D \otimes D') = F(D) \otimes F(D').$$

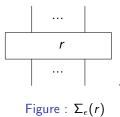
向下 イヨト イヨト

Fundamental theorems

We assume that K is a field of characteristic zero. Let $\Sigma_{\epsilon}(r) \in B_r(\delta)$ with $\epsilon = \pm 1$ be defined by

$$\Sigma_{\epsilon}(r) = \sum_{\sigma \in \operatorname{Sym}_r} (-\epsilon)^{\ell(\sigma)} \sigma.$$

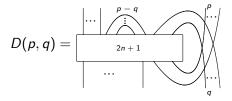
Represent $\Sigma_{\epsilon}(r)$ pictorially by



Denote by $\langle \Sigma_{\epsilon}(m+1) \rangle$ the subspace of $\bigoplus_{k,\ell} B_k^{\ell}(\epsilon m)$ spanned by the morphisms generated by $\Sigma_{\epsilon}(m+1)$ by composition and tensor product.

Set
$$\langle \Sigma_{\epsilon}(m+1) \rangle_{k}^{\ell} = \langle \Sigma_{\epsilon}(m+1) \rangle \cap B_{k}^{\ell}(\epsilon m).$$

E.g., when $\epsilon = -1$,



belongs to $\langle \Sigma_{\epsilon}(m+1) \rangle_{k}^{k}$ with k = 2n - p + q.

Theorem

Assume that K has characteristic 0. Write d = m if G = O(V), and $d = \frac{m}{2}$ if G = Sp(V).

- The functor F : B(εm) → ℑ_G(V) is full. That is, F is surjective on Hom spaces.
- 2. The map $F_k^{\ell} = F|_{B_k^{\ell}(\epsilon m)}$ is bijective if $k + \ell \leq 2d$, and $\operatorname{Ker} F_k^{\ell} = \langle \Sigma_{\epsilon}(m+1) \rangle_k^{\ell}$ if $k + \ell > 2d$.

Proof.

Part 1 follows from Brauer's result.

Part 2 is deduced from Weyl's SFT.

Lecture 2

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Summary of Lecture 1

- G = O(V) or Sp(V). There exists a surjection of algebras $\nu_r : B_r(\epsilon m) \longrightarrow \operatorname{End}_G(V^{\otimes r})$. We want to describe $Ker(\nu_r)$.
- Introduced the category $\mathfrak{B}(\delta)$ of Brauer diagrams such that $B_r(\delta) = Hom(r, r)$; constructed a tensor functor $F : \mathfrak{B}(\epsilon m) \longrightarrow \mathfrak{T}_G(V)$, where $\mathfrak{T}_G(V)$ is the category of tensor modules for G.
- Theorem
 - 1. The functor $F : \mathbb{B}(\epsilon m) \longrightarrow \mathbb{T}_G(V)$ is full. That is, F is surjective on Hom spaces.
 - 2. The map $F_k^{\ell} = F|_{B_k^{\ell}(\epsilon m)}$ is bijective if $k + \ell \leq 2d$, and $\operatorname{Ker} F_k^{\ell} = \langle \Sigma_{\epsilon}(m+1) \rangle_k^{\ell}$ if $k + \ell > 2d$.

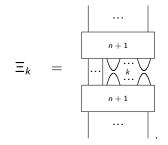
Problem. The construction of $\langle \Sigma_{\epsilon}(m+1) \rangle_{k}^{k}$ used operations not defined in the Brauer algebra $B_{k}(\epsilon m)$.

(4月) イヨト イヨト

Endomorphism algebras in Sp(V) case

Take G = Sp(V) with $m = \dim V = 2n$. The element $\Phi \in B_{n+1}^{n+1}(-2n)$:

$$\Phi = \sum_{k=0}^{\left[\frac{n+1}{2}\right]} a_k \Xi_k \quad \text{with} \quad a_k = \frac{1}{(2^k k!)^2 (n+1-2k)!}, \qquad (18)$$



물 제 문 제 문 제

Note that

$$\Xi_{k} = \Sigma_{-1}(n+1)E(k)\Sigma_{-1}(n+1),$$
$$E(k) = \prod_{j=1}^{k} e_{n+2-2j}, \quad E(0) = 1.$$

Lemma

The element Φ is the sum of all (n + 1, n + 1) Brauer diagrams. It has the following properties:

1.
$$e_i \Phi = \Phi e_i = 0$$
 for all $e_i \in B^{n+1}_{n+1}(-2n)$;

2.
$$\Phi^2 = (n+1)!\Phi;$$

3. $\Phi \in \operatorname{Ker} F_{n+1}^{n+1}$.

• 3 >

For s < r, natural embedding of associative algebras:

$$B_s^s(-2n) \hookrightarrow B_r^r(-2n), \quad b \mapsto b \otimes I_{r-s}.$$

Regard $B_s^s(-2n)$ as the subalgebra of $B_r^r(-2n)$.

Definition

Let $\langle \Phi \rangle_r$ be the 2-sided ideal of $B_r^r(-2n)$ generated by Φ if r > n.

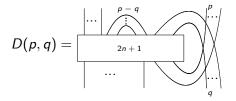
Theorem

- If $r \leq n$, $F_r^r : B_r^r(-2n) \longrightarrow \operatorname{End}_{\operatorname{Sp}(V)}(V^{\otimes r})$ is bijective.
- If r > n, $\operatorname{Ker} F_r^r$ is generated by Φ as a 2-sided ideal of $B_r^r(-2n)$. In particular, $\Sigma_{-1}(2n+1) \in \langle \Phi \rangle_{2n+1}$.

向下 イヨト イヨト

Sketch of proof of main theorem

 $D(p,q) \in B_k^k(-2n)$ with k = 2n + 1 - p + q:



Proposition

Assume that r > n. (1). As a two-sided ideal of the Brauer algebra $B_r^r(-2n)$, $\operatorname{Ker} F_r^r$ is generated by D(p,q) and *D(p,q) with $p + q \le r$ and $p \le n$. (11). D(p,q) and *D(p,q) all belong to $\langle \Phi \rangle_r$.

Endomorphism algebras in O(V) case

Figure :

The elements E_k are \mathbb{Z} -linear combinations of Brauer diagrams. Formulae for E_k are given in next slide.

ヨット イヨット イヨッ

If $1 \le k < l$, write $A(k, l) := \sum_{i=1}^{l} (Sym_{\{k,k+1,\dots,l\}})$ for the total antisymmetriser in $Sym_{\{k,k+1,\dots,l\}}$. Let

$$F_p = A(1, m+1-p)A(m+2-p, m+1).$$

For j = 0, 1, 2, ..., i, define

$$e_i(j) = e_{i,i+1}e_{i-1,i+2}\dots e_{i-j+1,i+j}$$

Lemma

For i = 0, 1, ..., m + 1, let $min_i = min(i, m + 1 - i)$. Then

$$E_{i} = \sum_{j=0}^{\min_{i}} (-1)^{j} c_{i}(j) \Xi_{i}(j) \quad \text{with} \quad \Xi_{i}(j) = F_{i} e_{i}(j) F_{i}, \tag{19}$$

where $c_i(j) = ((i-j)!(m+1-i-j)!(j!)^2)^{-1}$.

向下 イヨト イヨト

Lemma

1.
$$*E_p = E_{m+1-p}$$
 for all p .
2. $F_pE_p = E_pF_p = p!(m+1-p)!E_p$.
3. $e_iE_p = E_pe_i = 0$ for all $i \le m$.
4. $E_p^2 = p!(m+1-p)!E_p$.

Note that $E_0 = E_{m+1} = \Sigma_{+1}(m+1)$.

Lemma

Let
$$\ell = \left[\frac{m+1}{2}\right]$$
. As two-sided ideals in $B_r^r(m)$,

 $\langle E_0 \rangle \subset \langle E_1 \rangle \subset \cdots \subset \langle E_{\ell-1} \rangle \subset \langle E_\ell \rangle \supset \langle E_{\ell+1} \rangle \supset \cdots \supset \langle E_m \rangle \supset \langle E_{m+1} \rangle.$

伺い イヨン イヨン

3

The main theorem

Theorem If $r \leq m$, $F_r^r : B_r^r(m) \longrightarrow \operatorname{End}_{O(V)}(V^{\otimes r})$ is bijective.

If r > m, $\operatorname{Ker} F_r^r$ as a two-sided ideal of $B_r^r(m)$ is generated by E_{ℓ} .

This follows from the Lemma and

Proposition

Assume r > m. Ker F_r^r , as a two-sided ideal of $B_r^r(m)$, is generated by E_p for all $0 \le p \le m + 1$.

Continue to invariant theory of quantum groups...