Fundamental theorems of invariant theory for classical and quantum groups - 3

R. B. Zhang

University of Sydney

Winter School on Geometry and Physics

Jan 18 - 25, 2014, Prague

Invariant theory of Lie superalgebras

Based on joint work with Gus Lehrer.

Gus Lehrer and Ruibin Zhang, The first fundamental theorem of invariant theory for the orthosymplectic supergroup. Preprint, 2014.

A \mathbb{Z}_2 -graded vector space V is

 $V = V_{\overline{0}} \oplus V_{\overline{1}}, \quad V_{\overline{0}}$, even subspace, $V_{\overline{1}}$, odd subspace.

If V and W are \mathbb{Z}_2 -graded vector spaces, $V \otimes_{\mathbb{C}} W$ has a natural \mathbb{Z}_2 -grading:

$$(V \otimes_{\mathbb{C}} W)_{\bar{0}} = V_{\bar{0}} \otimes_{\mathbb{C}} W_{\bar{0}} \oplus V_{\bar{1}} \otimes_{\mathbb{C}} W_{\bar{1}}, (V \otimes_{\mathbb{C}} W)_{\bar{1}} = V_{\bar{0}} \otimes_{\mathbb{C}} W_{\bar{1}} \oplus V_{\bar{1}} \otimes_{\mathbb{C}} W_{\bar{0}}.$$

The space $\operatorname{Hom}_{\mathbb{C}}(V, W)$ of homomorphisms is also \mathbb{Z}_2 -graded with

$$\begin{split} \operatorname{Hom}_{\mathbb{C}}(V,W)_{\bar{0}} &= \operatorname{Hom}_{\mathbb{C}}(V_{\bar{0}},W_{\bar{0}}) \oplus \operatorname{Hom}_{\mathbb{C}}(V_{\bar{1}},W_{\bar{1}}), \\ \operatorname{Hom}_{\mathbb{C}}(V,W)_{\bar{1}} &= \operatorname{Hom}_{\mathbb{C}}(V_{\bar{0}},W_{\bar{1}}) \oplus \operatorname{Hom}_{\mathbb{C}}(V_{\bar{1}},W_{\bar{0}}). \end{split}$$

▲■ ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Superdimension: sdim $V = (\dim V_{\overline{0}} | \dim V_{\overline{1}})$.

Choose ordered homogeneous basis for V such that even elements precede odd ones. If $\operatorname{sdim} V = m|n)$, then $V \cong \mathbb{C}^{m|n}$.

Space $\mathcal{M}(k|l \times m|n; \mathbb{C})$ of $(k+l) \times (m+n)$ matrices is \mathbb{Z}_2 -graded. *m n* Write each matrix in block form $\begin{array}{c}k\\l\\ W\end{array} \begin{pmatrix} X & \Phi\\ \Psi & Y \end{pmatrix}$, then

$$\mathcal{M}(k|l \times m|n; \mathbb{C})_{\bar{0}} = \left\{ \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} \right\},$$
$$\mathcal{M}(k|l \times m|n; \mathbb{C})_{\bar{1}} = \left\{ \begin{pmatrix} 0 & \Phi \\ \Psi & 0 \end{pmatrix} \right\}.$$

Parity: $[v] = \overline{\alpha}$ if $v \in V_{\overline{\alpha}}$.

ヨト イヨト イヨト

The general linear Lie superalgebra $\mathfrak{gl}(V)$ over \mathbb{C} is $\operatorname{End}_{\mathbb{C}}(V)$ endowed with a bilinear Lie sperbracket

$$[X, Y] = XY - (-1)^{[X][Y]}YX, \quad X, Y \in \mathfrak{gl}(V).$$

For sdim V = (m|n), identify $\operatorname{End}_{\mathbb{C}}(V)$ with $\mathcal{M}(m|n) = \mathcal{M}(m|n \times m|n)$.

$$\begin{split} \mathfrak{gl}(V)_{\bar{0}} &= \left\{ \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} \right\} = \mathfrak{gl}(V_{\bar{0}}) \oplus \mathfrak{gl}(V_{\bar{1}}), \\ \mathfrak{gl}(V)_{\bar{1}} &= \left\{ \begin{pmatrix} 0 & \Phi \\ \Psi & 0 \end{pmatrix} \right\}. \end{aligned}$$

 $GL(V)_0 := GL(V_{\overline{0}}) \times GL(V_{\overline{1}})$ acts on $\mathfrak{gl}(V)$ by conjugation; $GL(V)_0$ action on V is compatible with that of $\mathfrak{gl}(V)$. $(GL(V)_0, \mathfrak{gl}(V))$ is a "Harish-Chandra" pair. Assume that V admits a non-degenerate even bilinear form

$$(.,.): V \times V \longrightarrow \mathbb{C},$$

that is supersymmetric

$$(u, v) = (-1)^{[u][v]}(v, u), \quad u, v \in V.$$

Call this an orthosymplectic form.

The orthosymplectic Lie superalgebra $\mathfrak{osp}(V)$ is the Lie sub-superalgebra of $\mathfrak{gl}(V)$ given by

$$\mathfrak{osp}(V) = \{X \in \mathfrak{gl}(V) \mid (Xv, w) + (-1)^{[X][v]}(v, Xw) = 0, \ \forall v, w \in V\}.$$

Let $\operatorname{OSp}(V)_0 = \operatorname{O}(V_{\overline{0}}) \times \operatorname{Sp}(V_{\overline{1}})$. We have the Harish-Chandra pair $(\operatorname{OSp}(V)_0, \mathfrak{osp}(V))$.

伺 とう ヨン うちょう

FFT for $\mathfrak{gl}(V)$

$$V^{\otimes r} = \underbrace{V \otimes \cdots \otimes V}_{r}.$$

The $\operatorname{GL}(V)_0$ action on $V^{\otimes r}$: for all $w = w_1 \otimes ... \otimes w_r$ and $g \in \operatorname{GL}(V)_0$,

 $g.w = gw_1 \otimes ... \otimes gw_r.$

The $\mathfrak{gl}(V)$ -action on $V^{\otimes r}$: for all $X \in \mathfrak{gl}(V)$,

$$\begin{aligned} X.w &= Xw_1 \otimes w_2 \otimes \cdots \otimes w_r + (-1)^{[w_1][X]} w_1 \otimes Xw_2 \otimes \cdots \otimes w_r \\ &+ \cdots + (-1)^{[X] \sum_{i=1}^{r-1} [w_i]} w_1 \otimes w_2 \otimes \cdots \otimes Xw_r. \end{aligned}$$

Denote the associated rep of $(GL(V)_0, \mathfrak{gl}(V))$ on $V^{\otimes r}$ by ρ_r .

向下 イヨト イヨト

3

The permutation

$$au: V\otimes V \longrightarrow V\otimes V, \quad v\otimes w\mapsto (-1)^{[v][w]}w\otimes v.$$

Define a representation ν_r of Sym_r on $V^{\otimes r}$ such that the simple reflections $s_i = (i, i + 1)$ are mapped to

$$\nu_r(s_i): w \mapsto w_1 \otimes \cdots \otimes \tau(w_i \otimes w_{i+1}) \otimes \cdots \otimes w_r.$$

Lemma

The actions of $\mathbb{C}Sym_r$ and $(GL(V)_0, \mathfrak{gl}(V))$ on $V^{\otimes r}$ commute.

 $\operatorname{End}_{(\operatorname{GL}(V)_0,\mathfrak{gl}(V))}(V^{\otimes r}) \subset \operatorname{End}_{\mathbb{C}}(V^{\otimes r})$ such that any element ϕ satisfies

$$\rho_r(g)\phi = \phi\rho_r(g), \qquad \rho_r(X)\phi = \phi\rho_r(X), \\ \forall g \in \mathrm{GL}(V)_0, \ X \in \mathfrak{gl}(V).$$

We have $\operatorname{End}_{(\operatorname{GL}(V)_0,\mathfrak{gl}(V))}(V^{\otimes r}) = \operatorname{End}_{\mathfrak{gl}(V)}(V^{\otimes r}).$

FFT for $\mathfrak{gl}(V)$ Theorem (Berele - Regev)

 $\operatorname{End}_{\mathfrak{gl}(V)}(V^{\otimes r}) = \nu_r(\mathbb{C}\operatorname{Sym}_r); \quad \operatorname{End}_{\operatorname{Sym}_r}(V^{\otimes r}) = \rho_r(U(\mathfrak{gl}(V))).$

An application. Under the joint action of $\mathfrak{gl}(V)$ and Sym_r ,

$$V^{\otimes r} = \bigoplus_{\lambda} L(\lambda^{\sharp}) \otimes D_{\lambda},$$

 $L(\lambda^{\sharp})$, simple $\mathfrak{gl}(V)$ -module with highest weight λ^{\sharp} , D_{λ} , simple Sym_{r} -module associated with partition λ of r,

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \dots);$$

for sdim V = (m|n), $\lambda \vdash r$ appears in the sum iff $\lambda_{m+1} \leq n$; let $\mu = (\lambda_{m+1}, \lambda_{m+2}, ...)$, and let μ' be its transpose; then $\lambda^{\sharp} = (\lambda_1, ..., \lambda_m, \mu')$ as $\mathfrak{gl}_m \times \mathfrak{gl}_n$ -weight.

(日本)(日本)(日本)

FFT for $\mathfrak{osp}(V)$

Assume that V has an orthsymplectic form and sdim V = (m|2n). Let $\{b_i\}$ be a homogeneous basis of V, and let $\{\bar{b}_i\}$ be the dual basis such that $(\bar{b}_i, b_j) = \delta_{ij}$. Then

$$c_0 = \sum_{i=1}^{m+2n} b_i \otimes \bar{b}_i$$

is an $(\operatorname{OSp}(V)_0, \mathfrak{osp}(V))$ - inavraint in $V \otimes V$. Define linear maps

$$egin{array}{ll} \check{\mathcal{C}}:\mathbb{C}\longrightarrow\mathcal{V}\otimes\mathcal{V},&1\mapsto c_0,\ \hat{\mathcal{C}}:\mathcal{V}\otimes\mathcal{V}\longrightarrow\mathbb{C},& extstyle w\mapsto(v,w). \end{array}$$

Both maps are clearly $(OSp(V)_0, \mathfrak{osp}(V))$ -module homomorphisms. Let

$$e = \check{C} \circ \hat{C} : V \otimes V \longrightarrow V \otimes V.$$

Note that $e^2 = (m - 2n)e$.

Lemma

There is a representation of the Brauer algebra $\nu_r : B_r(m-2n) \longrightarrow \operatorname{End}_{\mathbb{C}}(V^{\otimes r})$ defined by

$$\nu_r(s_i) = (\mathrm{id}_V)^{\otimes (i-1)} \otimes \tau \otimes (\mathrm{id}_V)^{\otimes (r-i-1)},$$

$$\nu_r(e_i) = (\mathrm{id}_V)^{\otimes (i-1)} \otimes e \otimes (\mathrm{id}_V)^{\otimes (r-i-1)}.$$

FFT for $\mathfrak{osp}(V)$ Theorem (Lehrer-Zhang) Assume sdim V = (m|2n). Then

$$\operatorname{End}_{(\operatorname{OSp}(V)_0,\mathfrak{osp}(V))}(V^{\otimes r}) = \nu_r(B_r(m-2n))$$

as associative superalgebra for all r.

- ▶ Remark. FFTs for O_n and Sp_{2n} are special cases of this result.
- Remark. The rest of the lecture explains the proof of the result. For this, we need to work with Lie supergroups.

Classical supergroups

$$\begin{split} &\Lambda(N), \text{ the exterior algebra of an N-dimensional vector space;} \\ &\text{ an associative superalgebra with} \\ &\Lambda(N)_{\bar{0}} \text{ consisting of the even degree elements,} \\ &\Lambda(N)_{\bar{1}} \text{ consisting of the odd degree elements.} \\ &\text{ Call this superalgebra the Grassmann algebra of degree N.} \end{split}$$

The Grassmann algebra of infinite degree is the direct limit

$$\Lambda := \lim_{\longrightarrow} \Lambda(N).$$

Let $V_{\Lambda} = V \otimes \Lambda$ for any \mathbb{Z}_2 -graded vector space V; regard V_{Λ} as a Λ -bimodule: for $v \in V$, $\lambda, \mu \in \Lambda$,

$$(\mathbf{v}\otimes\mu)\lambda = \mathbf{v}\otimes\mu\lambda = (-1)^{[\lambda]([\mathbf{v}]+[\mu])}\lambda(\mathbf{v}\otimes\mu).$$

 $\operatorname{Hom}_{\Lambda}(V_{\Lambda}, W_{\Lambda})$ consists of Λ -bimodule maps $\phi: V_{\Lambda} \longrightarrow W_{\Lambda}$

$$\phi(\mathbf{v}\lambda) = \phi(\mathbf{v})\lambda, \quad \mathbf{v} \in V_{\lambda}, \ \lambda \in \Lambda.$$

 $V^*_{\Lambda} := \operatorname{Hom}_{\Lambda}(V_{\Lambda}, \Lambda) = V^* \otimes \Lambda.$

イロト イポト イヨト イヨト

The general linear supergroup $GL(V_{\Lambda})$ is

$$\operatorname{GL}(V_{\Lambda}) = \{g \in \operatorname{End}_{\Lambda}(V_{\Lambda})_{\overline{0}} \mid g \text{ invertible}\}$$

with multiplication being the composition of endomorphisms. If sdim V = (m|n), then $\operatorname{End}_{\Lambda}(V_{\Lambda})_{\overline{0}} \cong \mathcal{M}(m|n; \Lambda)_{\overline{0}}$

$$\mathcal{M}(m|n;\Lambda)_{\bar{0}} = \left\{ \begin{array}{ccc} m & n \\ m \begin{pmatrix} A & \Phi \\ n & \Psi & B \end{pmatrix} \middle| \begin{array}{c} A, B & \text{entries are in } \Lambda_{\bar{0}} \\ \Phi, \Psi & \text{entries are in } \Lambda_{\bar{1}} \end{array} \right\}$$

Matrix $\begin{pmatrix} A & \Phi \\ \Psi & B \end{pmatrix} \in \mathcal{M}(m|n; \Lambda)_{\overline{0}}$ is invertible iff A^{-1} and B^{-1} exist.

.

If V admits an orthosymplectic form (. , .), extend it to a Λ -bilinear form $(-, -) : V_{\Lambda} \times V_{\Lambda} \longrightarrow \Lambda$, by

$$(\lambda v, w) = \lambda(v, w), \quad (v, \lambda w) = (-1)^{[\lambda][v]} \lambda(v, w).$$

The orthosymplectic supergroup of V_{Λ} is the subgroup of $\operatorname{GL}(V_{\Lambda})$ given by

$$\mathrm{OSp}(V_{\Lambda}) := \{g \in \mathrm{GL}(V_{\Lambda}) \mid (gv, gw) = (v, w), \ \forall v, w \in V_{\Lambda}\}$$

向下 イヨト イヨト

3

Invariant theory over Λ

Sym_r acts on $T^r(V_{\Lambda}) := V_{\Lambda}^{\otimes_{\Lambda} r}$ and $T^r(V_{\Lambda}^*) := V_{\Lambda}^{*\otimes_{\Lambda} r}$ by permuting factors with appropriate signs.

 $GL(V_{\Lambda})$ -action on V_{Λ}^* : for $\bar{v} \in V_{\Lambda}^*$, $g \in \operatorname{GL}(V_{\Lambda})$,

$$g.ar{v}(w) = ar{v}(g^{-1}w), \quad \forall w \in V_{\Lambda}.$$

This extends to $T'(V_{\Lambda}^*)$ diagonally. Denote the corresponding representation by ρ_r^* .

Denote by $\gamma : T^r(V^*_{\Lambda}) \otimes_{\Lambda} T^r(V_{\Lambda}) \longrightarrow \Lambda$ the natural pairing:

$$\gamma: \overline{\mathbf{v}} \otimes \mathbf{w} \mapsto (-1)^{J(\mathbf{v},\mathbf{w})} \overline{v}_1(w_1) \overline{v}_2(w_2) ... \overline{v}_r(w_r),$$

for $\overline{\mathbf{v}} = \overline{v}_1 \otimes ... \otimes \overline{v}_r$ and $\mathbf{w} = w_1 \otimes ... \otimes w_r$, where $J(v, w) = \sum_{\mu=1}^r d_\mu$ with $d_r = 0$ and $d_\mu = [w_\mu]([\overline{v}_{\mu+1}] + [\overline{v}_{\mu+2}] + \cdots + [\overline{v}_r]).$

・ 同 ト ・ ヨ ト ・ ヨ ト …

FFT for $GL(V_{\Lambda})$

Theorem

Let $\Phi : T^r(V_{\Lambda}^*) \otimes_{\Lambda} T^s(V_{\Lambda}) \longrightarrow \Lambda$ be a Λ -linear $\operatorname{GL}(V_{\Lambda})$ -invariant function. Then $\Phi \neq 0$ only when r = s, and in this case, Φ belongs to the Λ -span of functions $\gamma_{\pi} = \gamma \circ (\operatorname{id} \otimes \pi)$, where $\pi \in \operatorname{Sym}_r$.

This can be easily deduced from FFT for $\mathfrak{gl}(V)$.

伺 ト イヨト イヨト

Key Lemma for $OSp(V_{\Lambda})$

For any W_{Λ} , regard $(W_{\Lambda}^*)_{\bar{0}}$ as $\Lambda_{\bar{0}}$ -module. Let $S((W_{\Lambda}^*)_{\bar{0}})$ be the symmetric algebra of $(W_{\Lambda}^*)_{\bar{0}}$ over $\Lambda_{\bar{0}}$. Let

 $\mathcal{P}[(W_{\Lambda})_{\bar{0}}] := S((W^*_{\Lambda})_{\bar{0}}) \otimes_{\Lambda_{\bar{0}}} \Lambda.$

For $f \in \mathcal{P}[(W_{\Lambda})_{\bar{0}}]$ homogeneous of degree r,

$$f: w \mapsto f(\underbrace{w \otimes \cdots \otimes w}_{r}), \quad w \in (W_{\Lambda})_{\bar{0}}.$$

Call $\mathcal{P}[(W_{\Lambda})_{\bar{0}}]$ the superalgebra of polynomial functions on $(W_{\Lambda})_{\bar{0}}$. Assume that V_{Λ} is an orthosymplectic superspace.

 $\operatorname{OSp}(V_{\Lambda})$ action on $\mathcal{P}[\operatorname{End}_{\Lambda}(V_{\Lambda})_{\overline{0}}]$: for any $f \in \mathcal{P}[\operatorname{End}_{\Lambda}(V_{\Lambda})_{\overline{0}}]$ and $g \in \operatorname{OSp}(V_{\Lambda})$,

$$(g \cdot f)(A) = f(g^{-1}A), \quad \forall A \in \operatorname{End}_{\Lambda}(V_{\Lambda})_{\bar{0}},$$

where $g^{-1}A$ is the composition of g^{-1} and A_{a} , and A_{a}

The Key Lemma

Lemma (Lehrer-Zhang)

Let $G = OSp(V_{\Lambda})$ and $\mathcal{P} = \mathcal{P}[End_{\Lambda}(V_{\Lambda})_{\overline{0}}]$. Denote by \mathcal{P}^{G} the subalgebra of \mathcal{P} consisting of *G*-invariant functions. Given any $f \in \mathcal{P}^{G}$, we have a polynomial function Φ such that $f(A) = \Phi(A^{\dagger}A)$, where A^{\dagger} is the adjoint of A wrt the orthosymplectic form.

Remarks:

- ► Most of the work in proving FFT for osp(V) lies in establishing the Key Lemma.
- ► One proof generalises to OSp(V_Λ) an analogous result for the orthogonal group in Atiyah-Bott-Patodi (1973).
- This proof will be sketched at the end.

伺 とう ヨン うちょう

Define the Λ -linear map

$$\delta: T^{2d}(V_{\Lambda}) \longrightarrow \Lambda, \quad \mathbf{v} \mapsto \prod_{1 \leq i \leq d}^{\rightarrow} (v_{2i-1}, v_{2i}),$$

where

$$\mathbf{v} = v_1 \otimes v_2 \otimes \cdots \otimes v_{2d},$$
$$\prod_{1 \leq i \leq d}^{\rightarrow} (v_{2i-1}, v_{2i}) = (v_1, v_2)(v_3, v_4)(v_{2d-1}, v_{2d}).$$

Corresponding to each $\pi \in \operatorname{Sym}_{2d}$, we have the function

$$\delta \circ \pi : T^{2d}(V_{\Lambda}) \longrightarrow \Lambda.$$

白 ト イヨト イヨト

æ

FFT for $OSp(V_{\Lambda})$

Theorem (Lehrer-Zhang, Sergeev)

Let $G = OSp(V_{\Lambda})$. Set $W = T^{r}(V_{\Lambda}^{*})$ and denote by W^{G} the Λ -submodule of G-invariants of W.

1. If r is odd, then $W^{G} = 0$.

2. If
$$r = 2d$$
 is even, then W^G is spanned over Λ by $\{\delta \circ \pi \mid \pi \in \operatorname{Sym}_{2d}\}.$

Remark. The theorem is proved by combining the Key Lemma with FFT for $GL(V_{\Lambda})$ then doing gymnastics with $OSp(V_{\Lambda})$ -actions and unusal $GL(V_{\Lambda})$ -actions on $\mathcal{P}[End_{\Lambda}(V_{\Lambda})_{\bar{0}}]$ and $\mathcal{P}[End_{\Lambda}(V_{\Lambda})_{\bar{0}}] \otimes T(V_{\Lambda}^{*})$.

Stripping off Λ from FFT for $OSp(V_{\Lambda})$, we obtain

$$\left(V^{*\otimes 2d}\right)^{(G_0,\mathfrak{osp}(V))} = \mathbb{C}\operatorname{-span}\{\delta_0 \circ \pi \mid \pi \in \operatorname{Sym}_{2d}\},\$$

where δ_0 is the function δ restricted to $V^{\otimes r}$.

As vector spaces

$$\operatorname{End}_{(G_0,\mathfrak{osp}(V))}(V^{\otimes d}) \cong \left(V^{*\otimes 2d}\right)^{(G_0,\mathfrak{osp}(V))}.$$

This enables us to prove FFT for $\mathfrak{osp}(V)$.

Image: A image: A

Some Remarks

- Neither the osp(V)-action nor the Br(m − 2n)-action on V^{⊗r} is semi-simple in general. Thus the decomposition of V^{⊗r} with respect to the (osp(V), Br(m − 2n))-action will be much more complicated than in the gl(V) case.
- ► The Baruer algebra Br(k) is a cellular algebra in the sense of Graham-Lehrer. Its representation theory has been studied extensively in recent years.
- Results on gl(V) and osp(V) reported here have been generalised to the corresponding quantum supergroups [Lehrer-H.Zhang -R.Zhang] at generic q.

・ 同 ト ・ ヨ ト ・ ヨ ト

Now we go back to the Key Lemma.

By identifying $\operatorname{End}(V_{\Lambda})$ with $\mathcal{M}(m|n; \Lambda)$, we can reformulate the Key Lemma in terms of matrices.

Let $\mathcal{SA}(\Lambda)_{\bar{0}}$ be the set of the self-adjoint even matrices. Let

$$S = (s_{kl}) = \frac{m}{2n} \begin{pmatrix} m & 2n \\ (x_{ab}) & (z_{ji}) \\ (z_{ij}) & (y_{cd}) \end{pmatrix}$$

be the "generic" self-adjoint even matrix. That is, x_{ab} and y_{cd} are variables taking values in $\Lambda_{\bar{1}}$, and z_{jj} taking values in $\Lambda_{\bar{1}}$.

(日本)(日本)(日本)

Definition

- 1. Define the superalgebra $\mathcal{R}_{\mathbb{C}} := R \otimes_{\mathbb{C}} \wedge (\sum \mathbb{C} z_{ij})$, where $R := \mathbb{C}[x_{ab}, y_{cd}]$. Let $\widetilde{\Lambda} = \wedge (\sum \mathbb{C} z_{ij}) \otimes_{\mathbb{C}} \Lambda$.
- 2. $\Lambda_R := R \otimes \widetilde{\Lambda}$ may be identificed with the superalgebra $\mathcal{P}[S\mathcal{A}_{\overline{0}}]$ of polynomial functions on $S\mathcal{A}(\Lambda)_{\overline{0}}$.
- 3. K is the quotient field of R.
- L ⊇ K is the splitting field of the polynomial det(t² − (x_{ab}))_{1≤a,b≤m} over K.

5.
$$\Lambda_K := K \otimes_R \Lambda_R = K \otimes_{\mathbb{C}} \widetilde{\Lambda},$$

 $\Lambda_L := L \otimes_K \Lambda_K = L \otimes_{\mathbb{C}} \widetilde{\Lambda}.$

If $\alpha : \Lambda_R \to \Lambda$ is a Λ -algebra homomorphism, we say that $\alpha(S) = (\alpha(s_{kl}))$ is a *specialisation* of *S*.

Lemma

Let $S = (s_{kl})$ be the 'generic matrix' in $S\mathcal{A}(\Lambda_R)_{\bar{0}} \subseteq S\mathcal{A}(\Lambda_L)_{\bar{0}}$. For any subring R' of Λ_L , write $Q : \mathcal{M}(m|2n; R') \longrightarrow S\mathcal{A}(R')$ for the quadratic map given by $Q(A) = A^{\dagger}A$.

- 1. There is a matrix $X \in \mathcal{M}(m|2n; \Lambda_L)_{\bar{0}}$ such that Q(X) = S.
- 2. Given two such matrices X, X', there is an element $g \in OSp(\Lambda_L)$ such that X' = gX.

Remark. The field *L* is designed to make part (1) of the lemma hold. Notation: $OSp(\Lambda) = OSp(V_{\Lambda})$, $OSp(\Lambda_L) = OSp(V_{\Lambda_L})$ etc.

(4月) (4日) (4日) 日

Suppose that $f : \mathcal{M}(m|2n; \Lambda)_{\overline{0}} \longrightarrow \Lambda$ is a polynomial function such that f(gA) = f(A) for all $A \in \mathcal{M}(m|2n; \Lambda)_{\overline{0}}$ and $g \in OSp(\Lambda)$.

Lemma

The function f has a unique extension $f_L : \mathcal{M}(m|2n; \Lambda_L)_{\bar{0}} \longrightarrow \Lambda_L$ such that for $A \in \mathcal{M}(m|2n; \Lambda_L)_{\bar{0}}$ and $g \in OSp(\Lambda_L)$, $f_L(gA) = f_L(A)$.

Proof.

The function f clearly has an extension to $\mathcal{M}(m|2n; \Lambda_L)_{\bar{0}}$. Consider $d : OSp(\Lambda_L) \times \mathcal{M}(m|2n; \Lambda_L)_{\bar{0}} \longrightarrow \Lambda_L$, given by $d(g, A) = f_L(gA) - f_L(A)$. Then d vanishes on the Λ -points of the domain, and this implies that d = 0.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Lemma

If $X \in \mathcal{M}(m|2n; \Lambda_L)_{\bar{0}}$ is such that Q(X) = S, then $f_L(X) \in \Lambda_K$.

Proof.

The Galois group $\operatorname{Gal}(L/K)$ acts on $\Lambda_L = L \otimes_{\mathbb{C}} \widetilde{\Lambda}$ by application to the first factor (L), and has fixed subalgebra Λ_K .

Applying $\sigma \in \operatorname{Gal}(L/K)$ to the equation $X^{\dagger}X = S$, we see that $X' = \sigma(X)$ also satisfies $(X')^{\dagger}X' = S$, whence by earlier lemma, we have X' = gX for some $g \in \operatorname{OSp}(\Lambda_L)$.

Therefore, $f_L(\sigma(X)) = f_L(gX) = f_L(X)$. That is, for each $\sigma \in \operatorname{Gal}(L/K)$, $\sigma(f_L(X)) = f_L(X)$, and so $f_L(X) \in \Lambda_K$.

It follows from the last Lemma that $f_L(X)$ is a finite sum of terms of the form $\frac{f_1^{\theta}}{f_2^{\theta}} \otimes \theta$, where θ runs over a set of linearly independent elements of $\widetilde{\Lambda}_{\overline{1}}$, and $f_i^{\theta} \in R = \mathbb{C}[x_{ab}, y_{cd}]$.

Now let $\alpha : \Lambda_R \to \Lambda$ be a Λ -algebra homomorphism such that $\alpha(x_{ab})$ and $\alpha(y_{cd}) \in \Lambda_{\overline{0}}$, $\alpha(z_{ij}) \in \Lambda_{\overline{1}}$ and satisfies other appropriate conditions, in particular, the matrix X explicitly constructed from S earlier has a specialisation $X_0 := \alpha(X)$. All such specialisations of X define a Zariski-dense subset of $\mathcal{SA}(\Lambda)_{\overline{0}}$. Write $S_0 = \alpha(S) \in \mathcal{SA}(\Lambda)_{\overline{0}}$.

Thus if $A \in \mathcal{M}(m|2n; \Lambda)_{\overline{0}}$ is such that $Q(A) = \alpha(S) = S_0$, then $A = gX_0$ for some $g \in OSp(\Lambda)$, whence $f(A) = f(X_0) = \sum_{\theta} \frac{f_1^{\theta}(X_0)}{f_2^{\theta}(X_0)} \otimes \alpha(\theta)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Fix a $\theta_0 \in \widetilde{\Lambda}_{\overline{1}}$. Since $f(X_0)f_2^{\theta_0}(X_0) = \sum_{\theta} \frac{f_1^{\theta}(X_0)f_2^{\theta_0}(X_0)}{f_2^{\theta}(X_0)} \otimes \alpha(\theta)$, we see that $f_2^{\theta_0}(X_0) = 0$ implies that $f_1^{\theta_0}(X_0) = 0$. As this is true for a Zariski-dense set of X_0 , this shows that $\frac{f_1^{\theta}}{f_0^{\theta}} \in R$.

We have now shown that for A in a Zariski-dense subset of $\mathcal{M}(m|2n;\Lambda)_{\bar{0}}$, the $\mathrm{OSp}(\Lambda)$ invariant function f(A) is a polynomial in the entries of Q(A). It follows from density that this is true for all $A \in \mathcal{M}(m|2n;\Lambda)_{\bar{0}}$.

This completes the proof of the Key Lemma.

Remark. We also have a more down to earth proof of the Key Lemma, which uses only a generalised Gram-Schmidt process for orthosymplectic superspaces and some density arguments.

伺 と く き と く き と

Thank you for your attention!

E + 4 E +

æ