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Observation:

e d multitude of different spinorial field equations, related to different
geometric structures and geometric questions

Goal:
e Uniform description of different types of spinor fields

e applications



The Riemannian Dirac operator

(M™, g): compact Riemannian spin mnfd, >: spin bdle

Classical Riemannian Dirac operator DY:
Dfn : DI: T'(X) —T(X), D% = > e Vi
Properties:

e DY is elliptic differential operator of first order, essentially self-adjoint on
L?(X), pure point spectrum

e Of equal fundamental importance than the Laplacian

e In dimension 4: index(Dg) = U(M4)/8 [Atiyah-Singer, ~ 1963]

e Schradinger (1932), Lichnerowicz (1962): (D9)* = A + XScal’

~ "‘root of the Laplacian”’ for Scal? = 0



Spinors and Riemannian eigenvalue estimates

SL formula = EV of (D9)%: X\ > 1Scal?

e optimal only for spinors with (A1, v¢) = ||[V9%9||? = 0, i. e. parallel spinors
Thm. (M, g) has parallel spinors iff Holy(M) = SU(n), Sp(n), G2, Spin(7),

and then Ric? = 0. [Wang, 1989]

Thm. Optimal EV estimate: A\ > e Scal? . [Friedrich, 1980]
4(n . 1) 1min

o "="if there exists a Killing spinor (KS) «: V%1% =const- X -¢p VX

Link to special geometries:

Thm. 3 KS < n=5: (M,g) is Sasaki-Einstein mnfd [€ contact str ]
< n==6:(M,g) nearly Kahler mnfd
< n="7:(M,g) nearly parallel G5 mnfd

[Friedrich, Kath, Grunewald. . .| 4



Killing spinors and submanifolds

Thm. Suppose (M, g) is Sasaki-Einstein (n = 5), nearly Kahler (n = 6), or
nearly parallel G3 (n=7). Then the metric cone

(M, g) := (M x Rﬂi?ﬂgz + dr?)

has a V9-parallel spinor; in particular, it is Ricci-flat of Riemannian holonomy
SU(3), Go, resp. Spin(7). [Bryant 1987, B-Salamon 1989, Bir 1993 (+ Wang 1989)]

Observe: Construction relies on existence of a Killing spinor

Thm. Let (M, g) be a spin manifold with a V9-parallel spinor ¢y, N C M
a codimension one hypersurface. Then ¢ = MN is a generalized Killing
spinor on N, i.e. V%p = A(X) - ¢ for a symmetric endomorphism A
(Weingarten map). [Friedrich 1998, Bar-Gauduchon-Moroianu 2005]

Observe: Generalizes the WeierstraB representation of minimal surfaces,
based on ideas of Eisenhardt (1909)



Parallel spinors and GG-structures

Observe: Sasaki-Einstein , nearly Kahler, or nearly parallel Go-manifolds
are not the most general SU(2)-, SU(3)- or Ga-manifolds.

Q: What can be said for more general G-manifolds?

Given a mnfd M™ with G-structure (G C SO(n)), replace V9 by a metric
connection NV with torsion that preserves the geometric structure!

torsion: T(X,Y,Z) = g(VxY —VyX — [X,Y], 2)

Special case: require T' € A3(M™) (< same geodesics as V)

= g(VxY,Z) = g(V4Y,2)+3T(X,Y,Z)

e If existent, such a connection is unique and called the ‘characteristic
connection’ [Fr-lvanov 2002, A-Fr-Hall 2013]

e If G is contained in the stabilizer of a generic spinor field, then there exists
a V-parallel spinor, Vi =0 (n =5: SU(2), n=6: SU3), n=7":
Ga, n =38 : Spin(7)).



Spin structures and topology in dimension 6 and 7

Observation:

Any 8-dim. real vector bundle over a n-dimensional manifold (n = 6,7)
admits a section of length one

= a 6-dim. oriented Riemannian manifold admits a spin structure iff it
admits a reduction from Spin(6) = SU(4) to SU(3)

= a 7-dim. oriented Riemannian manifold admits a spin structure iff it
admits a reduction from Spin(7) to G5

Use this to give a uniform spinor description of SU(3)-manifolds and
(Go-manifolds!



Spin linear algebra in dimension 6 and 7

e In n = 6,7, the spin representations are real and 23 = 8-dimensional, they
coincide as vector spaces, call it A := RS,

n==~6 [A-Fr-Chiossi-Holl, 2014]

e A admits a Spin(6)-invariant cplx structure j (because Spin(6) = SU(4))
e any real spinor 0 # ¢ € A decomposes A into three pieces,

A=R-¢dR-j@)d{X ¢ : X cR%} (%)

~—
~R6. the base space

e the following formula defines an orthogonal cplx str. on the last piece,
Jo(X)- ¢ = j(X-¢)

e the spinor defines a 3-form by ¥4(X,Y,Z) :=—(X -Y - Z - ¢, ).

Exa. Consider ¢ = (0,0,0,0,0,0,0,1) € A = R®. Then:

Jp = —e12 + €34 + €56, Yy = €135 — €146 + €236 + €245.



Spin linear algebra in dimension 6 and 7
Thm. The following is a 1-1 correspondence: (well-known)

e SU(3)-structures on R® «— real spinors of length one (modZs,),
SO(6)/SU(3) = {SU(3)-structures on RS} = P(A) = RP".
n=>=1

e any real spinor 0 # ¢ € A decomposes A into two pieces,

A:R-gb@iX-gb:XEIR?k ()

-~
~R7, the base space

e the spinor defines again a 3-form 4, which turns out to be stable
(i.e. open GL-orbit); but no analogue of neither j nor J,

Thm. The following is a 1-1 correspondence: (well-known)

stable 3-forms 1 of fixed length, with isotropy C SO(7) +— .. . (as above),
SO(7)/Gy = P(A) = RP.



Special almost Hermitian geometry

e SU(3) manifold (M?, g, ¢): Riemannian spin manifold (M®, g) equipped
with a global spinor ¢ of length one, j as before, J induced almost cplx str.,
w its kahler form, 1y induced 3-form, 17 := J o 1y,

Decomposition (*) = 31 1-form 1 and endomorphism S's.t.

V¢ =n(X)j(¢) + S(X) - ¢

n: "intrinsic 1-form”, S: "intr. endomorphism” (indeed: I' = S.1)y — 21 @ w)
This equation summarizes all spinor egs. previously known in dim.6!

Thm. (Vg(w)(Y, Z) — 21%(5()()7 Y, Z)' 877(X) - —(Vgﬂbi)(%)

This generalizes the classical nK condition V5 w(X,Y) =0 VX, Y.



There are 7 basic classes of SU(3)-structures, called x1, X1, X2, X3, X35 X4, X5-

[Chiossi-Salamon, 2002]

They are a refinement of the classical Gray-Hervella classification of U(3)-
structures. Write y134 for X7 @© x5 @ x4 etc.

Examples.

e nearly Kahler mnfds: class x1

e half-flat SU(3)-mnfds: class xi33

Next: express Niejenhuis tensor, dw, 0w through ngb, n, S

— don't state the formulas
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Thm. The classes of SU(3) str. are determined as follows:

class description dimension
X1 S=A-Jp,n=0 1

X1 S=up-1d,n=0 1

X2 Sesu3),n=0 8

xs | S€e{AeS{RYAJ, = JsA}, n=0 8

xs | S€{AeS5RO|AJ,=—JsA}, n=0 12

xa | S€{Ae A (R AT, =—JsA}, n=0 6

X5 S=0,n#0 6

where A\, u € R. In particular S is symmetric and n = 0 if and only if the
class is x133.

The symmetries of S translate into a differential eq. for ¢:

Slp = xS = (JpYV56,0) =F(YV] x¢.9),
Sis £-symmetric <= (XV5¢,¢) = (Y V%0, o).




Thm. The classification of SU(3) str. in terms of ¢ is given by

(A= 5(D96,j(9)), p:= —3(D%,9)): (..

. and similarly for mixed classes)

class

spinorial equation

X1

V%0d = AXj(¢) for A € R

V¢ =uXofor p e R (Killing sp.)

(JpY V%0, 0) =

(Yv%¢X¢a ¢) 1

(YV0,j(9)) =

(XV16,5(0), A=n=0

(JpY V%0, 0) =

(YV%0,j()) =

(ngqugba ¢)1
—(XVi¢,5(¢), p=n=0

X3

(JoY V%0, 0) =

(YV%0,j(9)) =

(ngqugba ¢)'
(XVY¢,5(¢)), and n =0

X4

(JoY V%0, ¢) =

(YV0,j(¢)) =

(Yv%¢X¢7 ¢>'
—(XV{¢,5(¢)) and n =0

X5

V9 —

(VX #,i())i(9)
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Corollary. On a 6-dim spin mnfd, d spinor of constant length s.t. D9¢ =0
iff admits a SU(3) structure of class Xs53345 With dw = —27.

13



Example: twistor spaces as SU(3)-manifolds

o MY = CP3, U(3)/U(1)3: twistor spaces of S* and CP?. Both carry
metrics g;(t > 0) and two almost complex structures QX Q"% such that

- (M5, g1 /2, Q") is a nearly Kahler manifold

- (M5, g1, Q%) is a Kahler manifold

e 7 two real linearly indep. global spinors ¢. in Ag (¢ = =£1).
Both spinors induce the same almost cplx structure Jy (< Q°F)!

e For t = 1/2, ¢. are Riemannian Killing spinors. For general t, define

Se: TM® —TM°by S, = 5\/E'diag(\§v\§v\§v\§7;\_/%7;\_/%)'

Verify: V%-¢. = Sc(X)de, hence S; is the intr. endom. and n = 0.
e Class: xi3 fort #1/2, x1 for t =1/2.

e For t =1, ¢. are Kahlerian Killing spinors, but they do not induce the
Kahlerian cplx str. QX1 Thus, the Kihlerian structure cannot be recovered
from the pair of Kahlerian Killing spinors (only a U(3)-reduction).
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Characteristic connections

Thm. A spin manifold (M®, g, ) admits a characteristic connection V iff
it is of class 17345 and n = iéw. It satisfies Vo = 0.

For all other classes, an adapted connection V can be defined as well.

Corollary. Whenever V exists,

¢ € kerDY <— T¢p=0 <= the SU(3)-class is xs.

15



(G> geometry

e G manifold (M7, g, ¢): Riemannian spin manifold (M7, g) equipped with
a global spinor ¢ of length one, 14 induced 3-form.

Decomposition (#%) = 37 endomorphism S s.t.

Vi =S8(X) ¢

S: "intrinsic endomorphism” (indeed: I' = —2S 1))
Thm.  (Vig)(X.Y,Z) = 2% ¢4(S(V), X, Y, Z).
This generalizes the nearly parallel G2 condition Vi = dipgy, = ¢ * 1!

There are 4 basic classes of (Go-structures, called Wy, ..., Wj.

[Fernandez-Gray, 1982]
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Thm. The classes of (G5 structures are determined as follows:

class description dimension
Wi S=\Id 1
Wo S e go 14
Ws S € SERT 27
Wy | SeE{ViT, |V eR"} 7

In particular, S is symmetric if and only if S € W;3 and skew iff it belongs
In W24.

Corollary. Let (M7, g, ) be a Riemannian spin manifold with unit spinor

®. Then ¢ is harmonic
D% =0

iff the underlying Go-structure is of class Whs.



Thm. The basic classes of (Go-manifolds described in terms of ¢:

(A := —1(DY%,¢) : M — R is a real function and x the cross product
relative to W)

class spinorial equation

Wi Vg(¢ = AX¢ (Killing spinor)

Wo Vixy® =Y V5o — XVio+29(Y,5(X))o

Ws (XVy9,¢) = (YVX0,¢) and A =0

Wy V%p=XVo+g(V,X)p forsomeV € TM’

Wiz | Viuy¢ = —HA[YVE 9 — XVi9 4 g(Y,5(X))¢ — g(X, 5(Y))¢]

Wi (XVY9,0) = (YVX9,0)

Wia VW eTM": Vo =XVIWo¢— (XVW¢,o)

W23 Sgszand)\:O,onggb:O

Waa (XVy9,90) = —(Y V0, 9)




Example: 7-dim. 3-Sasaki mnfds

M 3-Sasaki mnfd, corresponds to SU(2) C G5 C SO(7).

e 3 orth.Sasaki structures 1; € T*M", [ni,m2] = 2n3, [n2,m3] =

211, [N3,m1] = 2m2 and @30 g = —p; etc. on (1, N3)+

e Known: A 3-Sasaki mnfd is always Einstein and has 3 Riemannian Killing

spinors, define TV := (£, &63), Th = (TV)+

e each Sasaki structures 7); induces a characteristic connection V. but

VI£V2A£V3M? = Ansatzz T = 23: Qi Ndn; +yn1 An2 Ans
ij=1

Thm. There exists a cocalibrated (Gs-structure with char. connection V

with parallel spinor ) on M " with the properties:

e V preserves 1 and T! and VT =0

o & -1 are the 3 Riemannian Killing spinors on M” (each defines a nearly
par. Ga-str.) [A-Fr, 2010]

Q: What happens if the three structures define only an almost metric
3-contact structure?
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Example: Quaternionic Heisenberg group

N7 =R7 with basis elements 21, 25, z3, and 7, .. ., 74, metric depending on
A>0s.t. &= % 7; are orthonormal, commutator relations

[7-7“7 7-1—|-7”] — >‘€1 [7-7“7 7_2—|—7“] — )\62 [7-7“7 7_3—|—7“] — >\€3

[7_2—|—7“7 7_3—|—r] = A 51 [7-3—|—7“7 7_1—|—7“] = A 52 [7-1—|—7“7 7_2—|—r] = A 53

o £1,&9, &3 are Killing vector fields; metric is never Einstein (= A Killing sp.)
n;: dual form of &;, 0;: dual form of 7

e carries, in standard way, an almost 3-contact metric structure

Thm. The connection V with skew torsion T’ satisfies
T =m ANdn+n2 ANdnz +n3 N\ dns — 4An123
e VI'=VR =0, hence it's naturally reductive [Tricerri-Vanhecke]

elts holonomy algebra is isomorphic to su(2), acting irreducibly on T =
span (&, &2, &3) and on T,

20



e V is the characteristic connection of the cocalibrated G5 structure
w=—m1 A (0124 031) —n2 A (013 + 042) — 13 A (014 + 023) + M123.
As such, it admits a parallel spinor field 1y, Vi)g = 0. What about &; - 9?

Thm. The spinor fields ©; := &; - g, © = 1,2,3, are generalised Killing
spinors satisfying the differential equation

DA

A A S,
ngi = 5&'%, ng%' = D) & s (@ = ])7 Vgg%' = ZX'% for X e T".

[A-Ferreira-Storm, 12/2014]
(intrinsic endom. S is diagonal, but not multiple of identity, class W3)

Observe: Only known example where S has three different eigenvalues
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Application: cone constructions
e How to construct Go-str. of any class on cones over SU(3)-manifolds?

Start with (M9, g, ¢) with intrinsic torsion (S,n). Choose a function
h = hy +ihy : I — S* and define by

¢r = h(t)p := hi(t)p + ha(t)j(@)

a new family of SU(3)-structures on MY depending on t € I.

Conformally rescale the metric by some function f : I — R, and consider
2
MP := (MP°, f(t)*g, ¢;). Intrinsic torsion of M} : (hTS, n).

Dfn. spin cone over M%: (M7, g) = (M x I, f?(t)g + dt?) with spinor ¢;.

Exa. Suppose we want M7 to be a nearly parallel Gs-manifold:
need h'/h constant, so h(t) = exp(i(ct + d)), c,d € R.
Easiest: sine cone (M6 x (0,7),sin(t)2g + dt?, e/2¢) [Fernandez-lvanov-

Mufioz-Ugarte, 2008; Stock, 2009]

e Similarly, we can construct Gs-manifolds of any desired pure class
(construction really uses the spinor!).

22



To conclude:

Obtained a uniform description of all possible defining spinorial differential
egs. on 6-dim. SU(3)-manifolds and Gs-manifolds, generalizing Killing
spinors, generalized Killing spinors, quasi-Killing spinors [Friedrich-Kim,
2000]. . .

So far, all spinors encountered are generalized Killing spinor with torsion
(gKST), i.e.

Vo =A(X)-¢

for some endomorphism A : TMS — TMS; but the same eq. can be
expressed in different ways.

e Not the differential eq. is the basic object, but rather the GG-structure!

Outlook: n = 8 and Spin(7)-structures [work in progress — Konstantis]
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Application ll: eigenvalue estimates with skew torsion

(M,g): mnfd with G-structure and charact. connection V¢, torsion T,
assume VT = 0 (for exa., naturally reductive)

ID: Dirac operator of connection with torsion 7'/3 (generalizes Dolbeault op. of

Hermitian manifolds)

Generalized SL formula: [A-Friedrich, 2003]
1

1 1
2 2 2
D* = Ap+-=Scal’ + = ||T||* — =1
g 4 o 8” H 4

[1/3 rescaling: Slebarski (1987), Bismut (1989), Kostant, Goette (1999), A (2002)]

Split spin bundle into eigenspaces of 1', estimate action of 1" on each
subbundle =
Corollary (universal estimate). The first EV \ of [D? satisfies

1 1 1
A > ZSCalg ‘|‘§||TH2 ——maX(M%w--aMi)a

min 4

where (i1, . .., ui are the eigenvalues of T'.



Universal estimate:
e follows from generalized SL formula
e does not yield Friedrich’s inequality for T" — 0

e optimal iff 4 a V%parallel spinor:

This sometimes happens on mnfds with Scal?. > 0!

—» Results:

[ deformation techniques: yield often estimates quadratic in Scal?, require
subtle case by case discussion, often restriced curvature range]

[A-Friedrich-Kassuba, 2008]

e twistor techniques: estimates always linear in Scal’, no curvature
restriction, rather universal, leads to a twistor eq. with torsion and sometimes
to a Killing eq. with torsion

[A-(Becker-Bender)-Kim, 2013]
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Twistors with torsion
m :T'M ® XM — >M: Clifford multiplication
p = projection on kerm: p(X ® ) = X @y +=>" e, Qe Xt
Ve VLY (= V%Y + 2sT(X,Y, )
(s = 1/4 is the "standard”" normalisation, V'/4 = char. conn.)
twistor operator: P° =po V?®
Fundamental relation: || Py 4+ L||D%y||? = ||[VEe||?
Y is called s-twistor spinor < ¢ € ker P° < V5.9 + %XD%& = 0.
A priori, not clear what the right value of s might be:
different scaling in V [s = 2| and P |s = ]!

Idea: Use possible improvements of an eigenvalue estimate as a guide to
the ‘right’ twistor spinor
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Thm (twistor integral formula). Any spinor ¢ satisfies

/M@D%,@dM = /HPSgo||2dM+

n—1

n
19|12 dM
s [ Seal’lel

n(n— 2 2 n(n_4> 2
+ eI [ lelPan - =5 [ (%0 q)an,

4(n—3)"

where s =

Thm (twistor estimate). The first EV X of [D? satisfies (n > 3)

n n(n —5) n(n — 4)
A > Scal? . T||? L
— 4(n o 1) Calyin + 8(% ) H || 4(TL L 3)2 max(:ula 7:uk:)7
where (i1, ..., g are the eigenvalues of T', and "=" iff

e Scal? is constant,

n—1

® 1) is a twistor spinor for s,, = T(n=3)"

e ¢ lies in X, corresponding to the largest eigenvalue of T2, -



e reduces to Friedrich's estimate for 7' — 0

e estimate is good for Scal? . dominant (compared to ||T]|%)

Ex. (M5, g) U(3)-mnfd of class W5 ("balanced”), Stab(T') abelian
Known: p = 0, ++/2[|T

, no V¢-parallel spinors

_ _ 3 7
twistor estimate: A > ——Scal?. — —||T||?
10 min- 19

min

1 3
universal estimate: \ > ZScalg —§||TH2

e better than anything obtained by deformation

On the other hand:

Ex. (M?,g) Sasaki: deformation technique yielded better estimates.



Twistor and Killing spinors with torsion

Thm (twistor eq). v is an s,-twistor spinor (P*") = 0) iff

O X P (XAT) = 0,

(n—3)
Dfn. ¢ is a Killing spinor with torsion if V¢ = kX -9 for s,, = 4(7;”1—__13).
(4
& VY — X - XANT)yy = 0.
v [’”2@—3)] U S gy ATV

In particular:
e ) is a twistor spinor with torsion for the same value s,

e r satisfies a quadratic eq. linking it to curvature (but, in general, not
Einstein)

e Scal? = constant. 30



In general, this twistor equation cannot be reduced to a Killing equation.
.. with one exception: n =206

Thm. Assume 1) is a sg-twistor spinor for some 1 # 0. Then:

2
o ¢ is a ] eigenspinor with eigenvalue Py = 3 [,u - 4@] (8

e the twistor equation for sg is equivalent to the Killing equation V% =
AX - for the same value of s.

Ex. Manifolds with Killing spinors with torsion:
e Odd-dim. Heisenberg groups (naturally reductive!)

e Tanno deformations of arbitrary Einstein-Sasaki manifolds, for example
SO(n 4+ 2)/SO(n) (again naturally reductive!)
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