
1

G-structures and their remarkable spinor fields

Prof. Dr. habil. Ilka Agricola
Philipps-Universität Marburg
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Observation:

• ∃ multitude of different spinorial field equations, related to different
geometric structures and geometric questions

Goal:

• Uniform description of different types of spinor fields

• applications
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The Riemannian Dirac operator

(Mn, g): compact Riemannian spin mnfd, Σ: spin bdle

Classical Riemannian Dirac operator Dg:

Dfn : Dg : Γ(Σ) −→ Γ(Σ), Dgψ :=
∑n
i=1 ei · ∇geiψ

Properties:

• Dg is elliptic differential operator of first order, essentially self-adjoint on
L2(Σ), pure point spectrum

• Of equal fundamental importance than the Laplacian

• In dimension 4: index(Dg) = σ(M4)/8 [Atiyah-Singer, ∼ 1963]

• Schrödinger (1932), Lichnerowicz (1962): (Dg)2 = ∆+ 1
4Scal

g

∼ ”‘root of the Laplacian”’ for Scalg = 0
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Spinors and Riemannian eigenvalue estimates

SL formula ⇒ EV of (Dg)2: λ ≥ 1
4 Scal

g
min

• optimal only for spinors with 〈∆ψ, ψ〉 = ‖∇gψ‖2 = 0, i. e. parallel spinors

Thm. (M, g) has parallel spinors iff Hol0(M) = SU(n),Sp(n), G2,Spin(7),
and then Ricg = 0. [Wang, 1989]

Thm. Optimal EV estimate: λ ≥ n

4(n− 1)
Scalgmin [Friedrich, 1980]

• ”=” if there exists a Killing spinor (KS) ψ: ∇gXψ = const ·X · ψ ∀X

Link to special geometries:

Thm. ∃ KS ⇔ n = 5 : (M, g) is Sasaki-Einstein mnfd [∈ contact str.]

⇔ n = 6 : (M, g) nearly Kähler mnfd

⇔ n = 7 : (M, g) nearly parallel G2 mnfd

[Friedrich, Kath, Grunewald. . . ]
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Killing spinors and submanifolds

Thm. Suppose (M,g) is Sasaki-Einstein (n = 5), nearly Kähler (n = 6), or
nearly parallel G2 (n=7). Then the metric cone

(M̄, ḡ) := (M × R+, 14 r
2g2 + dr2)

has a ∇g-parallel spinor; in particular, it is Ricci-flat of Riemannian holonomy
SU(3), G2, resp.Spin(7). [Bryant 1987, B-Salamon 1989, Bär 1993 (+ Wang 1989)]

Observe: Construction relies on existence of a Killing spinor

Thm. Let (M, g) be a spin manifold with a ∇g-parallel spinor ψ, N ⊂ M
a codimension one hypersurface. Then ϕ := ψ

∣
∣
N

is a generalized Killing
spinor on N , i. e. ∇gXϕ = A(X) · ϕ for a symmetric endomorphism A
(Weingarten map). [Friedrich 1998, Bär-Gauduchon-Moroianu 2005]

Observe: Generalizes the Weierstraß representation of minimal surfaces,
based on ideas of Eisenhardt (1909)
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Parallel spinors and G-structures

Observe: Sasaki-Einstein , nearly Kähler, or nearly parallel G2-manifolds
are not the most general SU(2)-, SU(3)- or G2-manifolds.

Q: What can be said for more general G-manifolds?

Given a mnfd Mn with G-structure (G ⊂ SO(n)), replace ∇g by a metric
connection ∇ with torsion that preserves the geometric structure!

torsion: T (X,Y,Z) := g(∇XY −∇YX − [X,Y ], Z)

Special case: require T ∈ Λ3(Mn) (⇔ same geodesics as ∇g)

⇒ g(∇XY,Z) = g(∇gXY,Z) + 1
2 T (X,Y,Z)

• If existent, such a connection is unique and called the ‘characteristic
connection’ [Fr-Ivanov 2002, A-Fr-Höll 2013]

• If G is contained in the stabilizer of a generic spinor field, then there exists
a ∇-parallel spinor, ∇ψ = 0 (n = 5 : SU(2), n = 6 : SU(3), n = 7 :
G2, n = 8 : Spin(7)).
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Spin structures and topology in dimension 6 and 7

Observation:

Any 8-dim. real vector bundle over a n-dimensional manifold (n = 6, 7)
admits a section of length one

⇒ a 6-dim. oriented Riemannian manifold admits a spin structure iff it
admits a reduction from Spin(6) ∼= SU(4) to SU(3)

⇒ a 7-dim. oriented Riemannian manifold admits a spin structure iff it
admits a reduction from Spin(7) to G2

Use this to give a uniform spinor description of SU(3)-manifolds and
G2-manifolds!
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Spin linear algebra in dimension 6 and 7

• In n = 6, 7, the spin representations are real and 23 = 8-dimensional, they
coincide as vector spaces, call it ∆ := R

8.

n = 6 [A-Fr-Chiossi-Höll, 2014]

• ∆ admits a Spin(6)-invariant cplx structure j (because Spin(6) ∼= SU(4))

• any real spinor 0 6= φ ∈ ∆ decomposes ∆ into three pieces,

∆ = R · φ⊕ R · j(φ)⊕ {X · φ : X ∈ R
6}

︸ ︷︷ ︸
∼=R6, the base space

(∗)

• the following formula defines an orthogonal cplx str. on the last piece,

Jφ(X) · φ := j(X · φ)

• the spinor defines a 3-form by ψφ(X,Y,Z) := −(X · Y · Z · φ, φ).

Exa. Consider φ = (0, 0, 0, 0, 0, 0, 0, 1) ∈ ∆ = R8. Then:

Jφ = −e12 + e34 + e56, ψφ = e135 − e146 + e236 + e245.



8

Spin linear algebra in dimension 6 and 7

Thm. The following is a 1-1 correspondence: (well-known)

• SU(3)-structures on R
6 ←→ real spinors of length one (modZ2),

SO(6)/SU(3) = {SU(3)-structures on R6} = P(∆) = RP
7.

n = 7

• any real spinor 0 6= φ ∈ ∆ decomposes ∆ into two pieces,

∆ = R · φ⊕ {X · φ : X ∈ R
7}

︸ ︷︷ ︸
∼=R7, the base space

(∗∗)

• the spinor defines again a 3-form ψφ, which turns out to be stable
(i. e. open GL-orbit); but no analogue of neither j nor Jφ

Thm. The following is a 1-1 correspondence: (well-known)

stable 3-forms ψ of fixed length, with isotropy ⊂ SO(7)←→ . . . (as above),

SO(7)/G2 = P(∆) = RP
7.
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Special almost Hermitian geometry

• SU(3) manifold (M6, g, φ): Riemannian spin manifold (M6, g) equipped
with a global spinor φ of length one, j as before, J induced almost cplx str.,
ω its kähler form, ψφ induced 3-form, ψJφ := J ◦ ψφ.

Decomposition (∗)⇒ ∃1 1-form η and endomorphism S s. t.

∇gXφ = η(X)j(φ) + S(X) · φ

η: ”intrinsic 1-form”, S: ”intr. endomorphism” (indeed: Γ = Syψφ − 2
3η ⊗ ω)

This equation summarizes all spinor eqs. previously known in dim.6!

Thm. (∇gXω)(Y,Z) = 2ψJφ(S(X), Y, Z), 8η(X) = −(∇gXψJφ)(ψφ).

This generalizes the classical nK condition ∇gXω(X,Y ) = 0 ∀X,Y .
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There are 7 basic classes of SU(3)-structures, called χ1, χ1̄, χ2, χ2̄, χ3, χ4, χ5.

[Chiossi-Salamon, 2002]

They are a refinement of the classical Gray-Hervella classification of U(3)-
structures. Write χ12̄4 for χ+

1 ⊕ χ−
2 ⊕ χ4 etc.

Examples.

• nearly Kähler mnfds: class χ1̄

• half-flat SU(3)-mnfds: class χ1̄2̄3

Next: express Niejenhuis tensor, dω, δω through ψjφ, η, S

→ don’t state the formulas
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Thm. The classes of SU(3) str. are determined as follows:

class description dimension

χ1 S = λ · Jφ, η = 0 1

χ1̄ S = µ · Id, η = 0 1

χ2 S ∈ su(3), η = 0 8

χ2̄ S ∈ {A ∈ S2
0(R

6)|AJφ = JφA}, η = 0 8

χ3 S ∈ {A ∈ S2
0(R

6)|AJφ = −JφA}, η = 0 12

χ4 S ∈ {A ∈ Λ2(R6)|AJφ = −JφA}, η = 0 6

χ5 S = 0, η 6= 0 6

where λ, µ ∈ R. In particular S is symmetric and η = 0 if and only if the
class is χ1̄2̄3.

The symmetries of S translate into a differential eq. for φ:

SJφ = ±JφS ⇐⇒ (JφY∇gXφ, φ) = ∓(Y∇
g
JφX

φ, φ),

S is ±-symmetric ⇐⇒ (X∇gY φ, φ) = ±(Y∇
g
Xφ, φ).
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Thm. The classification of SU(3) str. in terms of φ is given by
(λ := 1

6(D
gφ, j(φ)), µ := −1

6(D
gφ, φ)): (. . . and similarly for mixed classes)

class spinorial equation

χ1 ∇gXφ = λXj(φ) for λ ∈ R

χ1̄ ∇gXφ = µXφ for µ ∈ R (Killing sp.)

χ2 (JφY∇gXφ, φ) = −(Y∇
g
JφX

φ, φ),

(Y∇gXφ, j(φ)) = (X∇gY φ, j(φ)), λ = η = 0

χ2̄ (JφY∇gXφ, φ) = (Y∇gJφXφ, φ),
(Y∇gXφ, j(φ)) = −(X∇

g
Y φ, j(φ)), µ = η = 0

χ3 (JφY∇gXφ, φ) = (Y∇gJφXφ, φ),
(Y∇gXφ, j(φ)) = (X∇gY φ, j(φ)), and η = 0

χ4 (JφY∇gXφ, φ) = −(Y∇
g
JφX

φ, φ),

(Y∇gXφ, j(φ)) = −(X∇
g
Y φ, j(φ)) and η = 0

χ5 ∇gXφ = (∇gXφ, j(φ))j(φ)
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Corollary. On a 6-dim spin mnfd, ∃ spinor of constant length s. t. Dgφ = 0
iff admits a SU(3) structure of class χ22̄345 with δω = −2η.
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Example: twistor spaces as SU(3)-manifolds

• M6 = CP
3, U(3)/U(1)3: twistor spaces of S4 and CP

2. Both carry
metrics gt(t > 0) and two almost complex structures ΩK,ΩnK such that

- (M6, g1/2,Ω
nK) is a nearly Kähler manifold

- (M6, g1,Ω
K) is a Kähler manifold

• ∃ two real linearly indep. global spinors φε in ∆6 (ε = ±1).
Both spinors induce the same almost cplx structure Jφ (⇔ ΩnK)!

• For t = 1/2, φε are Riemannian Killing spinors. For general t, define

Sε : TM
6→ TM6 by Sε = ε

√
c · diag

(√
t

2 ,
√
t

2 ,
√
t

2 ,
√
t

2 ,
1−t
2
√
t
, 1−t
2
√
t

)

.

Verify: ∇gXφε = Sε(X)φε, hence Sε is the intr. endom. and η = 0.

• Class: χ1̄2̄ for t 6= 1/2, χ1̄ for t = 1/2.

• For t = 1, φε are Kählerian Killing spinors, but they do not induce the
Kählerian cplx str. ΩK! Thus, the Kählerian structure cannot be recovered
from the pair of Kählerian Killing spinors (only a U(3)-reduction).



15

Characteristic connections

Thm. A spin manifold (M6, g, φ) admits a characteristic connection ∇ iff
it is of class χ11̄345 and η = 1

4 δ ω. It satisfies ∇φ = 0.

For all other classes, an adapted connection ∇ can be defined as well.

Corollary. Whenever ∇ exists,

φ ∈ kerDg ⇐⇒ Tφ = 0 ⇐⇒ the SU(3)-class is χ3.
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G2 geometry

• G2 manifold (M7, g, φ): Riemannian spin manifold (M7, g) equipped with
a global spinor φ of length one, ψφ induced 3-form.

Decomposition (∗∗)⇒ ∃1 endomorphism S s. t.

∇gXφ = S(X) · φ

S: ”intrinsic endomorphism” (indeed: Γ = −2
3Syψφ)

Thm. (∇gV ψφ)(X,Y,Z) = 2 ∗ ψφ(S(V ),X, Y, Z).

This generalizes the nearly parallel G2 condition ∇ψφ = dψφ = c ∗ ψφ!

There are 4 basic classes of G2-structures, called W1, . . . ,W4.

[Fernandez-Gray, 1982]
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Thm. The classes of G2 structures are determined as follows:

class description dimension

W1 S = λ Id 1

W2 S ∈ g2 14

W3 S ∈ S2
0R

7 27

W4 S ∈ {V yΨφ | V ∈ R7} 7

In particular, S is symmetric if and only if S ∈ W13 and skew iff it belongs
in W24.

Corollary. Let (M7, g, φ) be a Riemannian spin manifold with unit spinor
φ. Then φ is harmonic

Dgφ = 0

iff the underlying G2-structure is of class W23.
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Thm. The basic classes of G2-manifolds described in terms of φ:

(λ := −1
7(D

gφ, φ) : M → R is a real function and × the cross product
relative to Ψφ)

class spinorial equation

W1 ∇gXφ = λXφ (Killing spinor)

W2 ∇gX×Y φ = Y∇gXφ−X∇
g
Y φ+ 2g(Y, S(X))φ

W3 (X∇gY φ, φ) = (Y∇gXφ, φ) and λ = 0

W4 ∇gXφ = XV φ+ g(V,X)φ for some V ∈ TM7

W12 ∇gX×Y φ = −14λ[Y∇gXφ−X∇
g
Y φ+ g(Y, S(X))φ− g(X,S(Y ))φ]

W13 (X∇gY φ, φ) = (Y∇gXφ, φ)
W14 ∃V,W ∈ TM7 : ∇gXφ = XVWφ− (XVWφ, φ)

W23 Sφ = 0 and λ = 0, or Dgφ = 0

W24 (X∇gY φ, φ) = −(Y∇
g
Xφ, φ)
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Example: 7-dim. 3-Sasaki mnfds

M7: 3-Sasaki mnfd, corresponds to SU(2) ⊂ G2 ⊂ SO(7).

• 3 orth. Sasaki structures ηi ∈ T ∗M7, [η1, η2] = 2 η3, [η2, η3] =
2 η1, [η3, η1] = 2 η2 and ϕ3 ◦ ϕ2 = −ϕ1 etc. on 〈η2, η3〉⊥
• Known: A 3-Sasaki mnfd is always Einstein and has 3 Riemannian Killing
spinors, define T v := 〈ξ1, ξ2ξ3〉, T h = (T v)⊥

• each Sasaki structures ηi induces a characteristic connection ∇i, but

∇1 6= ∇2 6= ∇3?!? ⇒ Ansatz: T =
3∑

i,j=1

αij ηi ∧ dηj + γ η1 ∧ η2 ∧ η3

Thm. There exists a cocalibrated G2-structure with char. connection ∇
with parallel spinor ψ on M7 with the properties:

• ∇ preserves T v and T h, and ∇T = 0

• ξi · ψ are the 3 Riemannian Killing spinors on M7 (each defines a nearly
par. G2-str.) [A-Fr, 2010]

Q: What happens if the three structures define only an almost metric
3-contact structure?
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Example: Quaternionic Heisenberg group

N7 = R7 with basis elements z1, z2, z3, and τ1, . . . , τ4, metric depending on
λ > 0 s. t. ξi :=

zi
λ , τl are orthonormal, commutator relations

[τr, τ1+r] = λ ξ1 [τr, τ2+r] = λ ξ2 [τr, τ3+r] = λ ξ3

[τ2+r, τ3+r] = λ ξ1 [τ3+r, τ1+r] = λ ξ2 [τ1+r, τ2+r] = λ ξ3

• ξ1, ξ2, ξ3 are Killing vector fields; metric is never Einstein (⇒6 ∃ Killing sp.)
ηi: dual form of ξi, θl: dual form of τl

• carries, in standard way, an almost 3-contact metric structure

Thm. The connection ∇ with skew torsion T satisfies

T = η1 ∧ dη1 + η2 ∧ dη2 + η3 ∧ dη3 − 4λη123

• ∇T = ∇R = 0, hence it’s naturally reductive [Tricerri-Vanhecke]

•Its holonomy algebra is isomorphic to su(2), acting irreducibly on T v =
span(ξ1, ξ2, ξ3) and on T h.
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• ∇ is the characteristic connection of the cocalibrated G2 structure

ω = −η1 ∧ (θ12 + θ34)− η2 ∧ (θ13 + θ42)− η3 ∧ (θ14 + θ23) + η123.

As such, it admits a parallel spinor field ψ0, ∇ψ0 = 0. What about ξi · ψ0?

Thm. The spinor fields ψi := ξi · ψ0, i = 1, 2, 3, are generalised Killing
spinors satisfying the differential equation

∇gξiψi =
λ

2
ξi·ψi, ∇gξjψi = −

λ

2
ξj·ψi (i 6= j), ∇gXψi =

5λ

4
X ·ψi for X ∈ T h.

[A-Ferreira-Storm, 12/2014]

(intrinsic endom. S is diagonal, but not multiple of identity, class W13)

Observe: Only known example where S has three different eigenvalues
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Application: cone constructions

• How to construct G2-str. of any class on cones over SU(3)-manifolds?

Start with (M6, g, φ) with intrinsic torsion (S, η). Choose a function
h = h1 + ih2 : I → S1 and define by

φt := h(t)φ := h1(t)φ+ h2(t)j(φ)

a new family of SU(3)-structures on M6 depending on t ∈ I .

Conformally rescale the metric by some function f : I → R+ and consider

M6
t := (M6, f(t)2g, φt). Intrinsic torsion of M6

t : (h
2

f S, η).

Dfn. spin cone over M6: (M̄7, ḡ) = (M6× I, f2(t)g+ dt2) with spinor φt.

Exa. Suppose we want M̄7 to be a nearly parallel G2-manifold:
need h′/h constant, so h(t) = exp(i(ct + d)), c, d ∈ R.
Easiest: sine cone (M6 × (0, π), sin(t)2g + dt2, eit/2φ) [Fernández-Ivanov-

Muñoz-Ugarte, 2008; Stock, 2009]

• Similarly, we can construct G2-manifolds of any desired pure class
(construction really uses the spinor!).
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To conclude:

Obtained a uniform description of all possible defining spinorial differential
eqs. on 6-dim. SU(3)-manifolds and G2-manifolds, generalizing Killing
spinors, generalized Killing spinors, quasi-Killing spinors [Friedrich-Kim,

2000]. . .

So far, all spinors encountered are generalized Killing spinor with torsion
(gKST), i. e.

∇φ = A(X) · φ

for some endomorphism A : TM6 → TM6; but the same eq. can be
expressed in different ways.

• Not the differential eq. is the basic object, but rather the G-structure!

Outlook: n = 8 and Spin(7)-structures [work in progress – Konstantis]
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Application II: eigenvalue estimates with skew torsion

(M,g): mnfd with G-structure and charact. connection ∇c, torsion T ,
assume ∇cT = 0 (for exa., naturally reductive)

/D: Dirac operator of connection with torsion T/3 (generalizes Dolbeault op. of

Hermitian manifolds)

Generalized SL formula: [A-Friedrich, 2003]

/D2 = ∆T +
1

4
Scalg +

1

8
||T ||2 − 1

4
T 2

[1/3 rescaling: Slebarski (1987), Bismut (1989), Kostant, Goette (1999), A (2002)]

Split spin bundle into eigenspaces of T , estimate action of T on each
subbundle ⇒

Corollary (universal estimate). The first EV λ of /D2 satisfies

λ ≥ 1

4
Scalgmin +

1

8
‖T‖2 − 1

4
max(µ2

1, . . . , µ
2
k),

where µ1, . . . , µk are the eigenvalues of T .
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Universal estimate:

• follows from generalized SL formula

• does not yield Friedrich’s inequality for T → 0

• optimal iff ∃ a ∇c-parallel spinor:
This sometimes happens on mnfds with Scalgmin > 0 !

Results:

[• deformation techniques: yield often estimates quadratic in Scalg, require
subtle case by case discussion, often restriced curvature range]

[A-Friedrich-Kassuba, 2008]

• twistor techniques: estimates always linear in Scalg, no curvature
restriction, rather universal, leads to a twistor eq. with torsion and sometimes
to a Killing eq. with torsion

[A-(Becker-Bender)-Kim, 2013]
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Twistors with torsion

m : TM ⊗ ΣM → ΣM : Clifford multiplication

p = projection on kerm: p(X ⊗ ψ) = X ⊗ ψ + 1
n

∑n
i=1 ei ⊗ eiXψ

∇s: ∇sXY := ∇gXY + 2sT (X,Y,−)

(s = 1/4 is the ”standard” normalisation, ∇1/4 = char. conn.)

twistor operator: P s = p ◦ ∇s

Fundamental relation: ‖P sψ‖2 + 1
n‖Dsψ‖2 = ‖∇sψ‖2

ψ is called s-twistor spinor ⇔ ψ ∈ kerP s ⇔ ∇sXψ + 1
nXD

sψ = 0.

A priori, not clear what the right value of s might be:

different scaling in ∇
[
s = 1

4

]
and /D

[
s = 1

4·3
]
!

Idea: Use possible improvements of an eigenvalue estimate as a guide to
the ‘right’ twistor spinor
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Thm (twistor integral formula). Any spinor ϕ satisfies
∫

M

〈/D2ϕ,ϕ〉dM =
n

n− 1

∫

M

‖P sϕ‖2dM +
n

4(n− 1)

∫

M

Scalg‖ϕ‖2dM

+
n(n− 5)

8(n− 3)2
‖T‖2

∫

‖ϕ‖2dM − n(n− 4)

4(n− 3)2

∫

M

〈T 2ϕ,ϕ〉dM,

where s = n−1
4(n−3).

Thm (twistor estimate). The first EV λ of /D2 satisfies (n > 3)

λ ≥ n

4(n− 1)
Scalgmin +

n(n− 5)

8(n− 3)2
‖T‖2 − n(n− 4)

4(n− 3)2
max(µ2

1, . . . , µ
2
k),

where µ1, . . . , µk are the eigenvalues of T , and ”=” iff

• Scalg is constant,

• ψ is a twistor spinor for sn = n−1
4(n−3),

• ψ lies in Σµ corresponding to the largest eigenvalue of T 2.
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• reduces to Friedrich’s estimate for T → 0

• estimate is good for Scalgmin dominant (compared to ‖T‖2)

Ex. (M6, g) U(3)-mnfd of class W3 (”balanced”), Stab(T ) abelian

Known: µ = 0,±
√
2‖T‖, no ∇c-parallel spinors

twistor estimate: λ ≥ 3

10
Scalgmin −

7

12
‖T‖2

universal estimate: λ ≥ 1

4
Scalgmin −

3

8
‖T‖2

• better than anything obtained by deformation

On the other hand:

Ex. (M5, g) Sasaki: deformation technique yielded better estimates.
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Twistor and Killing spinors with torsion

Thm (twistor eq). ψ is an sn-twistor spinor (P
snψ = 0) iff

∇cXψ +
1

n
X · /Dψ +

1

2(n− 3)
(X ∧ T ) · ψ = 0,

Dfn. ψ is a Killing spinor with torsion if ∇snXψ = κX · ψ for sn = n−1
4(n−3).

⇔ ∇cψ −
[

κ+
µ

2(n− 3)

]

X · ψ +
1

2(n− 3)
(X ∧ T )ψ = 0.

In particular:

• ψ is a twistor spinor with torsion for the same value sn

• κ satisfies a quadratic eq. linking it to curvature (but, in general, not
Einstein)

• Scalg = constant.
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In general, this twistor equation cannot be reduced to a Killing equation.

. . . with one exception: n = 6

Thm. Assume ψ is a s6-twistor spinor for some µ 6= 0. Then:

• ψ is a /D eigenspinor with eigenvalue /Dψ = 1
3

[

µ− 4‖T‖2
µ

]

ψ

• the twistor equation for s6 is equivalent to the Killing equation ∇sψ =
λX · ψ for the same value of s.

Ex. Manifolds with Killing spinors with torsion:

• Odd-dim. Heisenberg groups (naturally reductive!)

• Tanno deformations of arbitrary Einstein-Sasaki manifolds, for example
SO(n+ 2)/SO(n) (again naturally reductive!)


