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Rafael Mrden has similar results for type C (talk on Friday)



This is joint work with Vladiḿır Souček.
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is a maximal parabolic subgroup of G .

P has a Levi subgroup L ∼= GL(k)× GL(l) consisting of
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Parabolic category Op

We consider finite length g-modules M, such that

I as an l-module, M decomposes into a direct sum of
finite-dimensional irreducibles;

I u acts locally nilpotently on M.

Then M decomposes into a direct sum of modules with generalized
infinitesimal character. So it is enough to study modules with
(fixed) generalized infinitesimal character.
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Generalized Verma modules

Let Fλ be the irreducible finite-dimensional l-module with highest
weight λ.

Consider Fλ as a p-module, with u acting by 0.

Construct Vp(λ) = U(g)⊗U(p) Fλ = U(u−)⊗ Fλ.

The module Vp(λ) has a unique maximal submodule. The quotient
of Vp(λ) by this submodule is irreducible. In this way one gets all
irreducible objects of Op.
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BGG resolutions: P = B

BGG stands for Bernstein-Gel’fand-Gel’fand.

Bruhat order on the Weyl group W :

Geometrically, elements of W parametrize orbits of B on G/B,
and w ≤ w ′ means the closure of Bw ′B contains BwB.

Algebraically, w ′ is an immediate successor of w if l(w ′) = l(w) + 1
and w ′ = sαw for some root α. (α is not necessarily simple.)
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BGG resolutions: P = B

Hasse diagram: a graph with vertices w ∈W and arrows pointing
towards each immediate successor.

BGG resolution of a finite-dimensional module Fλ: move the
highest weight by ρ, or use W -action w · λ = w(λ+ ρ)− ρ.

In the Hasse diagram, replace each w by the Verma module
Vp(wλ). Every arrow gives a morphism in the opposite direction,
unique up to scalar.

Add up over elements of each length, and add up the
corresponding morphisms.

For a good choice of scalars (signs!), get a resolution of Fλ.
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Choose positive roots so that ∆+(g, h) = ∆+(l, h) ∪∆(u).

The subset W p of W : all w ∈W which take g-dominant elements
into l-dominant elements.

(Or: the shortest representatives of right Wl-cosets in W .)

The Hasse diagram of W p can be obtained from that of W :
immediate successors are those that are closest w.r.t. W .
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BGG resolutions: general P

In our special case, G = GL(n + 1,C) and P maximal, there is a
simple description:

v → w iff w > v and w = sαv for some α ∈ ∆(u). (Example
below.)

The BGG resolutions of finite-dimensional modules in Op are now
constructed as for the case P = B.

(For the morphisms we take the standard morhisms, obtained by
composing corresponding morphisms in Ob.)
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Enright-Shelton equivalence

The case we consider, G = GL(n + 1,C) and P maximal, with Levi
L = GL(k)× GL(l), corresponds to the Hermitian real form
GR = U(k , l), KR = U(k)× U(l), and θ-stable parabolic k⊕ s+.

In particular, objects of Op are (g,K )-modules.

If λ is an integral parameter which is singular for g but regular for
l, then it has a certain number of pairs of repeated coordinates.

Deleting all these repeated coordinates, we get a regular parameter
for a smaller pair (g′, p′).
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Enright and Shelton proved that the corresponding categories are
equivalent.

In particular, one can obtain singular BGG resolutions from regular
ones for (g′, p′).

Our approach is to construct the resolutions more directly and
more explicitly, using the Penrose transform, in the dual setting of
homogeneous bundles and differential operators. In particular, we
do not use Enright-Shelton equivalences.

(By “more explicitly”, I mean that the differential operators in the
bundle setting are very explicit, which is useful for applications in
parabolic geometry and makes it possible to pass to the“curved
case”.)
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Passing to G -equivariant bundles

Recall that G -equivariant bundles on G/P are given as G ×P V ,
where V is a representation of P.

In particular, if V is the irreducible finite-dimensional
representation F ∗λ , we denote the sheaf of holomorphic sections of
the corresponding bundle by Op(λ).

One shows that the G -invariant differential operators between
Op(λ) and Op(µ) are in one-to-one correspondence with g-maps
between Verma modules Vp(µ) and Vp(λ).
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Passing to G -equivariant bundles

In particular, BGG resolutions in the category Op can be turned
into resolutions of the corresponding sheaves, with differentials
given by invariant differential operators.

These resolutions are similar to deRham resolutions (sometimes
they are exactly deRham resolutions).

The arrows now go in the opposite direction, i.e., in the same
direction as the arrows in the Hasse diagram.



Passing to G -equivariant bundles

In particular, BGG resolutions in the category Op can be turned
into resolutions of the corresponding sheaves, with differentials
given by invariant differential operators.

These resolutions are similar to deRham resolutions (sometimes
they are exactly deRham resolutions).

The arrows now go in the opposite direction, i.e., in the same
direction as the arrows in the Hasse diagram.



Passing to G -equivariant bundles

In particular, BGG resolutions in the category Op can be turned
into resolutions of the corresponding sheaves, with differentials
given by invariant differential operators.

These resolutions are similar to deRham resolutions (sometimes
they are exactly deRham resolutions).

The arrows now go in the opposite direction, i.e., in the same
direction as the arrows in the Hasse diagram.



Penrose transform

R.J.Baston, M.G.Eastwood, The Penrose transform: its interaction
with representation theory, Oxford Mathematical Monographs,
Clarendon Press, Oxford 1989.

Consider the double fibration

G/(P ∩ Q)

τ

%%

η
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G/Q G/P

Idea: to get information on the G/P side, choose a suitable Q.

Then transfer information from G/Q to G/P, by pulling up to
G/(P ∩ Q), then pushing down to the other side.
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Versions: holomorphic or algebraic, O-modules or D-modules. We
work with holomorphic O-modules.

Let X be the big cell in G/P, or a ball in the big cell. Let
Y = τ−1(X ) and let Z = η(Y ).
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Moreover, X is a Stein manifold, i.e., coherent sheaves on X have
no higher cohomology (a holomorphic analogue of an affine
variety).

Furthermore, the fibers of η : Y → Z are contractible.
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Penrose transform

In this situation, one can start with an O-module S on Z , and pull
it back to Y (sheaf-theoretic, not O-module pullback).

It is easy to relate the cohomology of η−1S with the cohomology
of S, since the fibers of η are contractible.

Now one resolves η−1S by locally free sheaves ∆p, and pushes this
resolution down to X by the derived direct image.

Then there is a “hypercohomology spectral sequence”

Epq
1 = Γ(X , τq∗∆p)⇒ Hp+q(Z ,S).
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Penrose transform

In our situation, we take an integral λ which is singular for g, but
regular for the Levi factor l of p. (λ is already ρ-shifted, so it
corresponds to the infinitesimal character.)

Since l is the product of two gl factors (of sizes k ≤ l), the
coordinates of λ can be repeated at most twice. Assume that there
are j repeated coordinates (j ≤ k) and s non-repeated coordinates
(2j + s = n + 1).

We now choose Q with Levi GL(j)× GL(j + s). Then there is
exactly one permutation λ̄ of λ which is dominant and regular for
the Levi of q; the first group of coordinates must contain each of
the repeated coordinates once.
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We start with the homogeneous bundle Oq(λ̄) on G/Q, and
restrict it to Z .

We pull this restriction back to Y and resolve it using the relative
BGG resolution ∆p(λ) with respect to the fiber. The part of λ
corresponding to the fiber is regular, so this is essentially the BGG
resolution of a finite-dimensional module.

The direct images of ∆p(λ) can be computed explicitly using the
Bott-Borel-Weil theorem. We show that the nonzero sheaves
obtained in this way can be organized into a BGG resolution on
G/P, corresponding to our singular λ.
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Example

Consider the dominant weight (55432210). The relative BGG
resolution has the form

(52|54|3210) (52|53|4210) (52|52|4310) (52|51|4320) (52|50|4321)
(52|43|5210) (52|42|5310) (52|41|5320) (52|40|5321)

(52|32|5410) (52|31|5420) (52|30|5421)
(52|21|5430) (52|20|5431)

(52|10|5432)

(The arrows go right and down.)



Example

Now erase the first bar, and use Bott-Borel-Weil to obtain the
direct images:

x x x x x
2 x 1 1

x 1 1
x x

0

.

(The numbers denote cohomology degree.)



Definition of the higher differentials

d0: the vertical differential of the Čech complex used to compute
the Bott-Borel-Weil cohomology.

d1: the horizontal differential of the relative BGG resolution.

At every point of the Hasse diagram corresponding to the relative

BGG resolution, d1 has components d
(r)
1 in the directions of the

arrows in the Hasse diagram emanating from that point.
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Definition of the higher differentials

Let [a] be a vertical (d0−) cohomology class at a point of the
above Hasse diagram.

Suppose that the next i − 1 points in some direction r from a have
no cohomology (at any vertical place of the corresponding
column).

Then we define d r
i [a] by diagram chasing corresponding to the

following picture.
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Definition of the higher differentials

a0 −−−−→ a1x
a2 −−−−→ a3x

· · ·

−−−−→ a2i−3x
a2i−2 −−−−→ a2i−1,

Vertical arrows: d0; horizontal arrows: d
(r)
1 . So

d
(r)
1 a2k = a2k+1 = d0a2k+2. (1)



Definition of the higher differentials

Now set
d
(r)
i [a] = [a2i−1],

and
di [a] =

⊕
r

d
(r)
i [a].



Definition of the higher differentials

Now set
d
(r)
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di [a] =

⊕
r

d
(r)
i [a].



Lemma

The above definition of di is good, i.e., independent of all the
choices.



Proposition

Let d [a] =
⊕

i di [a].

Then d is a differential, i.e., d2 = 0.
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Proof

It is enough to prove that for any two directions r , s at a point of
the Hasse diagram of the fiber, and any i , j ≥ 1,

d
(r)
i d

(s)
j + d

(s)
j d

(r)
i = 0.

This is clear if r = s, so we may assume r 6= s.

We can visualize the situation on a rectangular box. For the top

left front vertex a, we construct d
(s)
j d

(r)
i a using a sequence on the

front face, followed by a sequence on the right face.

Similarly, d
(r)
i d

(s)
j a is constructed using a sequence on the left face,

followed by a sequence on the back face.

We fix the sequences on the front and on the left face.
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Proof - continued

One shows by diagram chasing that the sequence on the front face
of the box can be pushed through the box in a zig-zag motion to
the back face of the box, with all the sequences in between
satisfying similar properties, and with the left ends following our
chosen sequence on the left face.

The sequence obtained on the back face, together with our

sequence on the left face, computes d
(r)
i d

(s)
j a. The sequence of the

right ends of the intermediate sequences, together with our

sequence on the front face, computes d
(s)
j d

(r)
i a.

It follows from the construction that d
(r)
i d

(s)
j a equals d

(s)
j d

(r)
i a

except for a minus sign. This proves the proposition.
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Proof of exactness

It remains to see that our singular BGG complex is exact except in
degree 0, so we have obtained a resolution of the kernel of the first
differential operator in the complex.

Recall the double fibration

Y
τ

  

η

��
Z X

Recall also the hypercohomology spectral sequence:

Epq
1 = Γ(X , τq∗∆p(λ))⇒ Epq

∞ = Hp+q(Z ,Op(λ)).
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Proof of exactness

By construction, passing through this spectral sequence gives
exactly the global sections of the cohomology of our singular BGG
complex, with a shift in degree.

The shift in degree comes from the fact that the degree 0 point in
our singular BGG complex is of degree p inside the relative BGG
resolution, and has vertical degree q (specified by the number
written over the point), where p + q = j(k − j).

Since X is Stein, taking global sections commutes with taking
cohomology of a complex. So it is enough to see that Epq

∞ vanishes
in the degrees above j(k − j). (Recall that the Levi of P is
GL(k)× GL(l), while the Levi of Q is GL(j)× GL(j + s).)
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Proof of exactness

To prove the required vanishing, we first show that Z can be
fibered over the Grassmanian Gr(j , k) of j-planes in Ck , with Stein
fibers.

So the cohomology of holomorphic sheaves on Z will vanish above
degree j(k − j) if we can prove vanishing of the cohomology of
holomorphic sheaves on Gr(j , k) above degree
j(k − j) = dim Gr(j , k).

We prove the last statement by covering Gr(j , k) by j(k − j) + 1
open Stein sets.
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