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The problem setting

Given:
Classical gauge theory defined by Equations of Motion.

Problems:

Identify all the gauge symmetries, gauge identities and count
physical degrees of freedom;
Construct the classical BRST complex;
Quantize the dynamics;
Connect symmetries with characteristics (conservation laws).



A reminder about deriving gauge symmetry, BRST embedding and
quantising Hamiltonian dynamics.

Given: Hamiltonian equations subject to primary constraints.
How the problems are solved:

Find all the gauge symmetries of the system:
Dirac-Bergmann algorithm of deriving of complete set of
constraints and identifying the first and the second classes.
It also provides counting of the physical degrees of freedom.
Constructing the classical BRST complex for the dynamics:
The BFV method does the job. It starts from Hamiltonian
system with complete set of the first class constraints.
Quantize the dynamics:
The standard deformation quantisation of the ghost-extended
phase space is sufficient to quantise.



A reminder about deriving gauge symmetry, connecting symmetries
and conservation laws, and BRST quantising Lagrangian dynamics.

Given: Equations follow from action principle, Ti (φ)≡∂iS(φ)=0
How the problems are solved:

Find all the gauge symmetries of the system:
It is sufficient to find the identities between the equations.
Gauge symmetries are derived from the identities;
Connecting global symmetries and conservation laws. Noether
theorem does the job for the symmetry of action LΨS

.
=0.

Constructing the classical BRST complex for the dynamics:
Classical BV master equation. It involves the original action
and complete set of gauge symmetry generators.
Quantize the dynamics:
BV covariant quantization gives both the quantum master
equation for probability amplitude, and it also provides an
explicit path-integral construction.



Examples of non-Lagrangian field equations.

The list of the best known examples includes:
Interacting massless higher spin field equations, (anti-)self-dual
Yang-Mills and Donaldson-Ulenbeck-Yau equations, 5-branes.

Some other classical field equations, being quite reasonable as such,
but non-variational, are sided away, because no perspectives are
seen to quantise, and/or to apply Noether theorems.
Examples of this type: the gravity equations involving only
irreducible components of the curvature tensor

R=Λ, or R̃µν=0, R̃µν≡Rµν−
1
d
gµνR, gµν R̃µν≡0

The eq. R=Λ probably defines topological theory in d=4.
The eqs R̃µν=0 comprise all Einstein’s solutions, with all the
possible cosmological constants - noticed by Einstein.



General gauge dynamics: condensed notation.

General classical dynamics are defined by two principal constituents:

A set of fields φi ;
A set of field equations Ta(φ)=0.

The “condensed” indices i ,a include the space-time point xµ, and
all the discrete indices labeling components of fields, or equations.
The field equations T (φ)=0 are PDE’s in xµ.
Functions of fields, F (φ) are understood as the local functionals,
the derivatives ∂i by fields φi are variational.
In Lagrangian theory, i and a coincide, in general they don’t.
Lagrangian field equations read Ti (φ)≡∂iS(φ)=0



The Dynamics Bundle and the Shell

The set of all the field configurationsM3φ is considered a
manifold, and the solutions to the field equations form a
sub-manifold Σ⊂M, called the shell .

Σ={φ∈M|T (φ)=0}.

A vector bundle E7→M is assumed to exist such that the l.h.s. of
the field equations Ta(φ) are the components of the certain section
of this bundle

T=Ta(φ)ea∈Γ(E).

We term E as the dynamics bundle.
In Lagrangian theory E is identified with T∗M, and the field
equations are just components of an exact one-form:

T≡dS(φ)=∂iS(φ)dφi∈Λ1(M).



Regularity conditions in general dynamics.

Consider the Jacobi matrix Jai≡∂iTa(φ)
The regularity implies that

rankJ|UΣ=const

The map defined by J,

Γ(TM)
J−→Γ(E)

in general, is neither surjective, nor is it injective, and the same is
true for the dual map defined by the transposed Jacobi matrix J∗

In Lagrangian theory, where E=T∗M, J is the symmetric Van
Wleck matrix: ∂iTj=∂

2
ijS(φ) whose on-shell kernel defines the

gauge symmetry, and simultaneously, Noether identities.



Gauge algebra and Noether identities in general dynamics.

The rectangular Jacobi matrix Jai=∂iTa(φ) has different left and
right on-shell kernels spanned by basis elements R i

α(φ) and LaA(φ):

JaiR
i
α

∣∣
Σ

=0, LaAJai
∣∣
Σ

=0.

Basis elements R i
α(φ) of the right kernel are understood as gauge

symmetry generators. The left kernel basis elements LaA(φ) are
understood as generators of "Noether"identities.
Both sets of generators are defined modulo on-shell vanishing terms.
From the regularity of Jai follows that the right kernel distribution
is integrable on shell, and the left kernel is generated by Noether
identity generators

R j
α∂jR

i
β−R

j
β∂jR

i
α=U(φ)γαβR

i
γ+W ia

αβTa, LaATa≡0,

In Lagrangian theory J is symmetric, and R i
α and LaA coincide.

In general, they don’t.
The condensed indices α,A labeling symmetries and identities can
run the different sets.



Gauge symmetry and Noether identities: examples of asymmetry

1. Maxwell electrodynamics in the strength tensor formalism
Consider anti-symmetric rank 2 tensor subject to free Maxwell
equations

T ν≡∂µFµν=0, Tµνλ≡∂[µFνλ]=0. (1)

There are no gauge symmetry for F , but the identities exist:

∂νT
ν≡0, ∂[ρTµνλ]≡0. (2)

2. Self-dual Yang-Mills fields
The (anti-)self-duality equations are invariant with respect to the
usual gauge transformations of the Yang-Mills field Aµ. These
equations are independent, however - no gauge identities at all. A
similar phenomenon is observed with DUY equations.



Reducibility of gauge symmetries and identities in general dynamics.

Both gauge symmetry and Noether identity generators can be

reducible, i.e. the “null-vectors”
(1)

R ,
(1)

L exist such that

(1)

R
α
α1

(φ)R i
α(φ)|Σ=0,

(1)

L
A
A1

(φ)LaA(φ)|Σ=0

The reducibility generators
(1)

R ,
(1)

L can be reducible in their own
turn, so we have a sequence of the “null-vectors”
(k)

R ,
(l)

L , [k]=m, [l ]=n . In Lagrangian theory m=n, and the
reducibility generators coincide for Noether identities and gauge
symmetries. In general, these are different.



Reducibility of (m,n)-type.

The reducibility generators are supposed to define morphism of
certain bundles, such that

0←Γ(F∗m)
(m−1)

R ∗
← ···Γ(F∗1 )

R∗
←Γ(T∗M)

J∗←Γ(E∗) L←Γ(G1)
(1)

L←···Γ(Gn)←0

This sequence is on-shell exact as

Im
(k)

R =Ker
(k−1)

R , ImR=KerJ, Im
(k)

L =Ker
(k−1)

L , ImL=KerJ∗

In Lagrangian theory m=n, Fk=Gk ,∀k , E=T∗M, J=J∗,R=L,and
the "wings"outside the central segment, defined by J∗, can be
identified just by taking dual and transposed map.
In general, none of these coincidences occurs, and the theory is
termed (m,n)-reducible.



Gauge identities and symmetries in linear field theories - syzygies.

Consider fields φi (x) subject to the linear PDE system

Ta(φ)≡Jai (∂)φi (x)=0 , (3)

where Jai (∂) is a rectangular matrix, whose entries are polynomials
in partial derivatives ∂µ= ∂

∂xµ
.

Once J is a square matrix, which is Hermitian in the sense that
Jij(∂)=Jji (−∂), the equations (3) admit Lagrangian:

S [φ(x)]=
1
2

∫
dxφi (x)Jij(∂)φj(x)

Gauge symmetry generators R i
α(∂) (also polynomials in ∂) define

(over)complete basis for the right kernel of J, i.e.

∀R i : Jai (∂)R i (∂)=0 ⇔ ∃rα(∂): R i (∂)=rα(∂)R i
α(∂) (4)

The gauge symmetry transformations read

δεφ
i=R i

α(∂)εα(x), δεTa(φ,∂φ,∂2φ...)≡0, ∀εα(x)



Gauge identities and symmetries in linear field theories - syzygies.

The image of matrix J∗(∂) can be considered as a module over the
ring of polynomials in ∂µ, µ=0,1,...,d−1. In terms of algebra, the
kernel R of J is the first syzygy of the module. The gauge
symmetry generators R i

α(∂) are generatings of the module.
The generators can be reducible (in physics language), or there can
be a second syzygy (in algebraic language):

(1)

R
α
α1

(∂)R i
α(∂)≡0

Then, there will be gauge symmetry of gauge symmetry, i.e. the
gauge parameters εα can be transformed without any impact on
the gauge transformation of original fields

δ(1)
ε
εα=

(1)

R
α
α1

(∂)
(1)
ε α1 , δ(1)

ε
δεφ

i≡0



Gauge identities and symmetries in linear field theories - syzygies.

Gauge Identities, and their reducibility.

The image of J(∂) is a module over the ring of polynomials in ∂µ.
The kernel of J is the first syzygy of this module. The generators of
gauge identities LaA(∂) constitute a generating set in the kernel

La(∂)Jai (∂)=0 ⇔ ∃lA(∂): La=lALaA

The kernel is a module by itself, and it can have it’s own syzygy,

i.e.
(1)

L can exist such that
(1)

L
A
A1

(∂) LaA(∂)≡0

There can be further syzugies/reducibilities of syzygies/reducibilities
both for gauge symmetries and identities. The sequence of syzygies
can be always chosen in the way to terminate in the finite number
of steps, not exceeding d . This means, the gauge symmetry can’t
be infinitely reducible in linear systems.



Normal form of evolutionary equations, and pre-requisites for
deformation quantization.

The equations of motion are to be of the form:

ẋ i=v i (x)+Z i
α(x)λα,Ta(x)=0; ZT∼T ,[Z ,Z ]∼Z+T ,[v ,Z ]∼Z+T

Weak Poisson bi-vector P should exist such that:

[Z ,P]∼Z+T , [v ,P]∼Z+T , [P,T ]∼Z+T , [P,P]∼Z+T

Bi-victor P turns the variety of on-shell gauge invariants into
Poisson algebra. The gauge generators and time drift differentiate
this algebra, not being Hamiltonian vector fields. Upon BRST
embedding this is turned into the Poisson algebra of the
cohomology classes. Quantisation results in associative ∗ in the
cohomology. Quantum BRST operator and drift are the
differentiations of ∗, although not interior.
Hamiltonian constrained system:
P ij={x i ,x j}, [P,P]=0, v i={x i ,H(x)}, Z i

α={x i ,Tα}, α≡a



Primary normal form of evolutionary equations.

Any ODE system can be depressed to the first order in the form of
inhomogeneous constrained Pfaffian system:

θJi (x)ẋ i=VJ(x), Ta(x)=0

Let the vectors Z i
α(x) span the on-shell kernel of the Pfaff

one-forms Z i
α(x)θJi (x)∼T (x), then the equations can be rewritten

in the primary normal form:

ẋ i=v i (x)+Z i
α(x)λα, Ta(x)=0.

The vector field v is called a primary drift, and the vector
distribution Z=span{Zα} is called a primary characteristic
distribution. Z is not necessarily integrable, nor is it necessarily
tangential to the primary constraint surface.



Extension of Dirac-Bergmann algorithm to general evolutionary eqs:
key steps

1.Derivation of compatibility conditions for primary eqs:
Checking the conservation of primary constraints.

Ṫa(x)≈v i (x)∂iTa+λ
αZ i

α(x)∂iTa=0

Results can be three-fold:
(i) some primary constraints can conserve identically;
(ii) determining some of the multipliers λ⊥ as functions of x ;
(iii) appearance of the secondary constraints T (2).

Ṫ (2)≈0⇒ further secondary (‘tetriary’) constraints T (3), more
fixed multipliers, identical conservation. Ṫ (3)≈0⇒...

The iterative procedure ends when the new constraints stop
appearing and/or all the multipliers are determined.



2. Complete normal form of the local dynamics.

After excluding determined multipliers and finding all the secondary
constraints, the equations take the complete normal form:

ẋ i=ṽ i (x)+λα‖ Z
i
α‖, T̃ (x)=0, T̃=(T ,T (2),T (3),...)

The primary distribution is decomposed into tangential and
transverse sub-distributions w.r.t. the complete constraint surface:

Z=Z⊥⊕Z‖, Z‖T̃ (x)≈0, dimZ⊥=rankZαT̃a

The complete constraint set is also decomposed into transverse and
tangential subsets w.r.t. to Z:

T̃=(T⊥,T‖) ZT‖≈0, Z⊥T⊥=D, detD 6=0

Complete drift ṽ i=v i−v j∂jT⊥a(D−1)abZ i
b⊥ is tangential to the

complete constraint surface, ṽ T̃≈0. Conservation of the transverse
constraints determines all the multipliers corresponding to the
transverse sub-distribution: λa

⊥=−(D−1)abvT⊥b.



3. Gauge symmetry of the complete normal form.

Given the equations in the complete normal form

ẋ i−v i (x)−λαZ i
α(x)=0, Ta(x)=0; ZT≈0, vT≈0 (5)

they are fully consistent, having no further consequences.
Let us find all the infinitesimal local gauge transformations for (5):

δεx
i=

p∑
n=0

R i
(p−n)

(x,λ,λ̇,λ̈,...)
(n)

ε , δελ
α=

p+1∑
n=0

Uα
(p+1−n)

(x,λ,λ̇,λ̈,...)
(n)

ε ,

such that the equations are left invariant in the sense that their
variations vanish on shell with ε being arbitrary function of time.
The first fact we find about the transformations is that the number
of the independent parameters coincides to the dimension of Z,
and the choice is always possible δεx i=Z i

α

(p)

εα+···, δελ
α=

(p+1)

ε α

where ··· stand for the lower order derivatives of the parameter.



4. Gauge distribution.

The lower order terms can be iteratively found for the gauge
transformation, and their general structure is as follows.

The derivatives of all the orders from the parameters are
involved in the transformation without gaps, and with linear
independent coefficients;

The coefficients at the derivatives
(n)

εα in the transformation
span and are spanned by the gauge distribution
span{R

(0)
}∪···∪span{R

(p)
}=ZV

The gauge distribution is a closure of the primary
characteristic distribution

ZV =Z∪[Z,Z]∪[Z,v ]∪···,

where ··· mean higher iterated commutators Z and v



5. Local gauge invariants.

The physical observables are the on-shell gauge invariants:

δεO(x,λ,λ̇,λ̈,...)≈0

As δελ=
(p+1)

ε +..., the local physical observables are defined as the
phase space on-shell invariants of the gauge distribution:

ZO(x)|T (x)=0=0, ∀Z∈ZV ⇔ δεO(x)|T (x)=0=0

The observables are considered equivalent if their difference
vanishes on shell,

O1∼O2 ⇔ (O1−O2)T (x)=0=0.

The time evolution of the equivalence classes is consistent with the
invariance, and only the invariants evolve causally:

Ȯ=vO+λαZαO, T (x)=0; δεȮ≈0 ⇔ ZVO≈0



6. The involutive normal form of the local dynamics.

The complete normal form is sufficient for classical BRST
embedding and covariant quantisation. But it is insufficient for the
deformation quantization. Introduce the involutive normal form

ẋ i=v i (x)+Z i
Vα(x)λ

α, Ta(x)=0

where independent λ’s are included entire gauge distribution ZV .
These equations involve more variables than the complete normal
equations, and even for the original variables, they have different
gauge symmetry transformations:

δεx
i=ZVαε

α

These transformations involve more parameters, but without time
derivatives. The involutive normal form is equivalent to the
complete normal form in the sense that the gauge invariants remain
the same, and have the same time evolution.



Involutive closure of gauge dynamics: definitions

Definitions and terminology.
The order of eq. is the maximal order of derivatives involved;
The order of system is the maximal order of the eqs involved;
A system of order n is said involutive if any differential
consequence of the order less than or equal to n is already
contained in the system.
Any regular system can be brought to involution by inclusion
of the lower order differential consequences. Then, it is said to
be the involutive closure of the original system.
The maximal order of derivative of gauge parameter εα is said
the order of gauge symmetry generator R i

α;
The order of gauge identity is a sum maximal order of the
identity generator LaA and the order of the eq. Ta it acts on.



Identification of gauge algebra for general field theory.
Involutive closure and implicit gauge identities.

Remark 1. If the system is not involutive, it is equivalent to its
involutive closure. The involutive closure has the same gauge
symmetry, while it may have extra implicit gauge identities.

Remark 2. The involutive closure of Lagrangian system is not
necessarily Lagrangian.
Example of involutive closure and implicit identity: Proca.

Tµ≡(ηµν �−∂µ∂ν−m2 ηµν)Aν=0 , ord(Tµ)=2 . (6)

Involutive closure is got by inclusion of the first order consequence:

T⊥≡∂µAµ=0 , ord(T⊥)=1. (7)

The involutive closure has the third order gauge identity:

LaTa≡0 , a=(µ,⊥), L=(∂µ,m2) , ord(L)=3 (8)



Involutive closure and covariant degree of freedom count

The number of physical degrees of freedom N is understood as the
number of independent Cauchy data modulo gauge transformations.
Given the involutive system with gauge symmetries and identities,
N reads:

N=
∞∑
k=0

k(tk−lk−rk). (9)

tk is a number of equations of order k ;
lk is the number of gauge identities of k-th order;
rk is the number of gauge symmetries of kth order

Example - Proca: t2=4, t1=1, l3=1, hence N=2·4+1·1−3·1=6,
that corresponds to 3 polarizations of massive spin 1 in d=4.



The problem of consistent inclusion of interactions.

Given: Free/linear EoM’s T (0)
a (x)=0, or quadratic action S(0)(x).

Find: Ta(x)=T (0)
a (x)+T int

a (x) or S(x)=S(0)(x)+Sint(x) such that
the number of degrees of freedom does not change.

Perturbative solution – Noether procedure:
The idea is to deform action and gauge symmetry order by order

S=S(0) + gS(1) + g2S(2) +···; R=R(0) + gR(1) + g2R(2) +···;
(10)

R(0)
i
α∂iS(1) + R(1)

i
α∂iS(0)=0 ; (11)

R(1)
i
α∂iS(1) + R(2)

i
α∂iS(0) + R(0)

i
α∂iS(2)=0 (12)

· · ·

The procedure controls the mere fact that number of gauge
symmetries does not change. This is insufficient to ensure
consistency. As we will demonstrate, it is even unnecessary.



Involution and perturbative inclusion of consistent interactions

Given the free involutive gauge system,

T (0)
a =0 , L

(0)a
A T (0)

a ≡0 , R(0)i
α ∂iT

(0)
a ≡0 , (13)

perturbative inclusion of interaction is a deformation of the
equations, identities and gauge symmetries by nonlinear terms,

T (0)
a → Ta = T (0)

a + gT (1)
a + g2T (2)

a + ... , (14)

R(0)i
α → R i

α=R(0)i
α + gR(1)i

α + g2R(2)i
α +... , (15)

L
(0)a
A → LaA=L

(0)a
A + gL

(1)a
A + g2L

(2)a
A + ... . (16)

Here g is a coupling constant, generators L(1)a
A and R(1)i

α are linear
in fields; T (1)

a , L(2)a
A , and R(2)i

α are bi-linear, etc.
Notice that in each order of the deformation, the orders of
equations, identities and symmetries can never decrease.



Involution and perturbative inclusion of interactions

The perturbative consistency implies that deformed EoM’s posses
deformed gauge symmetries and identities in every order in g :

LaATa≡0 , R i
α∂iTa=Ua

αTa (17)

The expansion in g reads:

R(0)i
α ∂iT

(1)
a =U(1)b

αa T
(0)
b −R

(1)i
α ∂iT

(0)
a ,

L
(0)a
A T (1)

a +L
(1)a
A T (0)

a =0. (18)

R(0)i
α ∂iT

(2)
a +R(1)i

α ∂iT
(1)
a +R(2)i

α ∂iT
(0)
a =U(1)b

αa T
(1)
b +U(2)b

αa T
(0)
b ,

L
(0)a
A T (2)

a +L
(1)a
A T (1)

a +L
(2)a
A T (0)

a =0 , (19)

· · ·
The relations (18), (19) impose restrictions on interaction even if
there is no gauge symmetry. Resolving the relations above order by
order one constructs all the consistent interactions. If any
obstruction arise in some order, it is a no-go theorem.



Summary of the procedure for perturbative inclusion of interactions

1 The free system is brought to the involutive form.
2 All the gauge symmetries and identities are identified.
3 The interaction vertices are iteratively included to comply with

three basic requirements in every order of coupling constant:

The field equations have to remain involutive;
The gauge algebra of the involutive system can be deformed,
though the number of gauge symmetry and gauge identity
generators remains the same as it has been in the free theory;
The number of physical degrees of freedom, being defined by
nk ,lk ,rk , cannot change, while all the these numbers can.

This procedure ensures finding all the consistent interaction
vertices, for any regular system of free field equations.



An example of by-passing the perturbative no-go theorem for
consistent interactions.

Consider the following action in 2d Minkowski space:

S [φ,A]=

∫
d2xφ

(
∂µA

µ +
g

2
AµA

µ
)
. (20)

The field equations read

∂µA
µ+

g

2
AµA

µ=0 , D−µ φ=0, (21)

where D±µ =∂µ±gAµ, and εµνD−µ D−ν =gεµν∂µAν≡gF .
Unless F 6=0, it is a topological theory, as there is a consequence
φ=0, while the two components of Aµ are subject to a single
equation, so they are pure gauge.
In the free limit g→0, φ is still fixed, while Aµ should be pure
gauge for the same reason as with g 6=0.
However, the Noether procedure leads to the no-go theorem.



An example of by-passing the perturbative no-go theorem for
consistent interactions.

Free Lagrangian L=φ∂µA
µ has an irreducible gauge symmetry:

δ%φ=0, δ%A
µ=εµν∂ν%, (22)

that gauges out Aµ, while φ=0 shell.The free model is topological.
The cubic vertex φA2 is not invariant w.r.t. (22) even modulo a
total divergence and the free equations,

δ%

∫
d2xφA2=−2

∫
d2xφF%6=0 . (23)

It is a standard no-go theorem for the cubic interaction.
The interaction is consistent, however, in the sense that it does not
change the degree of freedom number.
The explanation is that the interacting theory has the reducible
gauge symmetry with a smooth limit that differs from (22)



Multiple choice of gauge symmetries and consistency of interactions.

Lagrangian L=φ(∂µA
µ+g

2A
2) enjoys gauge symmetry

δεφ=0 , δεA
µ=gεµ−εµνD+

ν(F−1D+
λ ε

λ) , (24)

where εµ is gauge parameter. The gauge-for-gauge transform reads

δκε
µ=εµνD+

ν κ , (25)

The free limit of gauge transformations (24), (25) reads

δεφ=0, δεA
µ=−εµν∂ν(F−1∂λε

λ), δκε
λ=ελν∂νκ. (26)

These transformations reproduce the irreducible free transformation
δ%A

µ=εµν∂ν% with %=−F−1∂λε
λ.

At the free level the reducible and irreducible transformations are
equivalent, as each of them spans the on-shell kernel of the d2S .
The reducible symmetry is compatible with interaction,
while the irreducible one is not.



Conclusions on the involutive closure of gauge systems and
consistent inclusion of interactions.

Algorithm for inclusion of interactions:
The free system is brought to the involutive form;
The generating set is chosen (the choice isn’t unique) for
gauge symmetries and identities of the involutive system;
The deformations are iterated for EoM’s, identities and
symmetries in a consistent way with the DoF count relation.
If one generating set of symmetries and identities obstructs
interaction, another resolution can by-pass the obstruction.

Advantages against the Noether procedure
It controls DoF number, not just gauge symmetry. All the
vertices are identified once they comply with the DoF number;
It applies to Lagrangian and non-Lagrangian systems;
It allows one to by-pass the no-go theorems for certain
generating set by switching to another generating set.



BRST complex for gauge theory of (1,1)-type: introducing ghosts

The bundle F7→M that “hosts” the gauge symmetries,
is termed the Gauge Algebra Bundle.
The bundle G7→M “hosts” the generators of gauge identities.
It is termed the Noether Identity Bundle.
Ghosts for general (1,1) dynamics
Consider Z2

⊗
Z -graded bundle

L7→M:L=Π(F [1])⊕Π(E[−1])⊕(G[−2])

The coordinates are denoted correspondingly:

Cα, ηa, ξA, gh(C )=1, gh(η)=−1, gh(ξ)=−2.

In Lagrangian case, ηa would be the anti-field φ∗i to the original
field φi ; Cα - the gauge ghost, and ξA identified as anti-field to C .



Classical BRST embedding of general (1,1) dynamics

The BRST-differential Q,gh(Q)=1 is sought for in the form

Q≡Q I (ϕ)
∂

∂ϕI
=Ta

∂

∂ηa
+ ηaZ

a
A

∂

∂ξA
+ CαR i

α

∂

∂φi
+ ···,

carrying all the information about the classical system (E,T ) as
such. Evaluating the condition Q2=0 in the lowest order in
r -degree, |ξ|r=2, |η|r=1, one immediately comes to the relations
Z a
ATa≡0, R i

α∂iTb=Ua
αb(φ)Ta characterizing Ta(x)=0 as a set of

gauge invariant and linearly dependent equations of motion, with R
and Z being the generators of gauge transformations and Noether
identities, respectively.



Lagrange anchor - a preliminary observation.

Consider first (0,0) type dynamics with E=T∗M, so the left hand
sides of dynamical equations are the components of one-form:

Ti (φ)dφi=T∈ΛT∗M, Σ={φ∈M|Ti (φ)=0} Jij=∂iTj

The fact that the dynamics are Lagrangian means that dT=0, or
that the Jacobi matrix is symmetric, J∗=J, i.e. the following
diagram commutes:

Γ(TM)
J // Γ(T∗M)

Γ(TM)
J∗ //

id

OO

Γ(T∗M)

id

OO



Lagrange anchor: a diagrammatic definition.

The Lagrange anchor V defines a bundle homomorphism
V :E∗→TM such that the diagram

Γ(TM)
J // Γ(E)

Γ(E∗) J∗ //

V

OO

Γ(T∗M)

V ∗

OO
(27)

commutes on the shell. Off shell this explicitly reads

V i
a∂iTb−V i

b∂iTa=C c
abTc

If the anchor was invertible, V−1 would be an integrating multiplier
for the inverse problem of variational calculus, i.e.
∃S(φ):∂Si=(V−1)ai Ta.



Lagrange anchor for general (1,1) dynamics.

Consider now the case of (1,1) dynamics, and denote gauge algebra
bundle F , and Noether identity bundle G. Then, the regularity of
the (1,1) dynamics is formulated in terms of the following exact
sequence of homomorphisms

0 // Γ(F)
R // Γ(TM)

J // Γ(E)
L∗ // Γ(G∗) // 0

Its transpose reads:

0 Γ(F∗)oo Γ(T∗M)
R∗
oo Γ(E∗)J∗oo Γ(G)

Zoo 0oo

Upon restriction to Σ these sequences make cochain complexes; the
properties L∗◦J|Σ=0 and J∗◦L|Σ=0 follow from the gauge identity
LaTa=0.



Lagrange anchor for general (1,1) dynamics.

Given the Lagrange anchor, V , the previous two diagrams can be
combined into the following unified one:

0 // Γ(F)
R // Γ(TM)

J // Γ(E)
Z∗

// Γ(G∗) // 0

0 // Γ(G)

W

OO

Z // Γ(E∗)

V

OO

J∗ // Γ(T∗M)

V ∗

OO

R∗
// Γ(F∗)

W ∗

OO

// 0

We know that the horizontal arrows of this diagram make cochain
complexes upon restriction to the shell. Then, the on-shell
commutativity of the squares implies that the upward arrows define
a co-chain map. It is sufficient to have only V providing
commutativity of the central block, then the map W can always be
constructed.



The Lagrange anchor: coordinate free definition

Lagrange anchor is a linear map dE :Γ(∧nE)→Γ(∧n+1E) such that:
(i) dET=0 ,
(ii) dE is a derivation of degree 1, i.e.

dE(A∧B)=dEA∧B+(−1)nA∧dEB, ∀A∈Γ(∧nE),∀B∈Γ(∧•E).

Here Γ(∧0E)≡C∞(M). Due to (ii), the operator dE is defined by
its action on coordinate functions φi and basis sections ea of E :

dEφ
i=V i

a(φ)ea, dEe
a=−

1
2
C a
bc(φ)eb∧ec . (28)

Applying dE to the section T=Tae
a, one can derive the definition

of the anchor in terms of coordinates from (i):

0=dET=
1
2

(V i
a∂iTb−V i

b∂iTa−C c
abTc)ea∧eb.

In the particular case where dE
2=0, T is nothing but a closed

1-E-form associated to the Lie algebroid with the anchor V .



A brief preview of BRST quantization algorithm
for not necessarily Lagrangian dynamics.

1 The classical BRST differential Q is constructed on the bundle
L7→M: L=Π(F)[1]⊕Π(E)[−1]⊕G[−2].

2 Given the Lagrange anchor, the classical BRST differential Q
is promoted to a BRST charge Ω, being a function(al) on a
bundle T∗L. Q defines the first order of Ω in the momenta in
L. The second order is defined by the Lagrange anchor and
the higher orders are sought from the equation {Ω,Ω}=0.

3 Upon quantisation, Ω turns into the quantum BRST operator
Q̂=Ω(φ,φ̄7→ih̄∂)=Qclassical+ih̄(···), Q̂2=0. The operator Q̂
defines the probability amplitude by the equation Q̂Ψ(x)=0.

Identification for Lagrangian system:
a≡i , Ti=∂i s(x), V j

a=δja, Q=(·,S), Q̂=Q+ih̄∆, Ψ=e
i
h̄
S



What is the main impact of the Lagrange anchor existence for
general dynamics?

The Lagrange anchor, being found for the system of classical field
equations, allows one to solve the following problems:

Covariantly quantize dynamics in three different ways:
1 Construct the quantum BV (or Schwinger-Dyson) equation for

the amplitude;
2 Convert not necessarily Lagrangian model in d into an

equivalent topological Lagrangian theory in d+1 dimensions;
3 Embed any field theory model into an augmented Lagrangian

theory that allows to derive the quantum correlators for
original fields.

Connect conservation laws with symmetries;
Equip the variety of conserved currents with the structure of
Poisson algebra (in Lagrangian case that reduces to
Gelfand-Dickey algebra).


