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Symplectic and Kaehler manifolds

(M2n, ω), ω ∈ Ω2(M) such that dω = 0 and ωn = ω ∧ · · · ∧ ω 6= 0.
J : TM → TM, J2 = −Id is called compatible with ω:

ω(JX , JY ) = ω(X ,Y ), and g(X ,Y ) = ω(JX ,Y )

is a Riemannian metric on M.
Kaehler manifolds:

(g, ω, J), J is integrable, if

[JX , JY ]− J[JX ,Y ]− J[X , JY ]− [X ,Y ] = 0

If J is integrable, we say that (M, ω, J,g) is Kaehler.



Contact manifolds

(Closed) M2n+1.
A contact form: η ∈ Ω1(M) such that

η ∧ (dη)n 6= 0

. Associates:
F ⊂ TM a distribution F = Kerη of codimension 1;
Reeb vector field ξ : M → TM on M with the properties

η(ξ) = 1, iξdη = 0.



K -contact manifolds

(M, η) is K -contact if there is an endomorphism Φ of TM such that:

1 Φ2 = −Id + ξ ⊗ η,
2 η is compatible with Φ:

dη(ΦX ,ΦY ) = dη(X ,Y )

for all X ,Y and dη(ΦX ,X ) > 0 for all nonzero X ∈ Ker η;

3

g(X ,Y ) = dη(Φ(X ),Y ) + η(X )η(Y )

is a Riemannian metric on M;
4 ξ is a Killing vector field with respect to the Riemannian metric g,

(Lξg = 0).



Sasakian manifolds

For (M, η,Φ, ξ,g)) define the metric cone as

C(M) = (M × R>0, t2g + dt2).

Define I : TC(M)→ TCM:

1 I(X ) = Φ(X ) on Ker η;

2 I(ξ) = t ∂∂t , I(t
∂
∂t ) = −ξ.

Definition
(M, η, ξ,Φ,g) is Sasakian if I is integrable.



Examples of K-contact and Sasakian: Boothby-Wang

(B, ωB) symplectic, [ω] ∈ H2(B,Z), S1 → M → B, [ωB] ∈ H2(B,Z).
Kobayashi connection:

θ ∈ Ω1(M,L(S1)) = Ω(M), dθ = π∗ωB, π : M → B.

=⇒ a connection metric g on M, θ is contact.

Prototype

Any Boothby-Wang S1-bundle carries a K -contact structure. If B is
Kaehler, then M is Sasakian.

the Hopf bundle

S1 → S2n+1 → CPn



General case

(M, η, ξ,Φ,g), ξ is Killing =⇒ S1 ×M → M, ξ =⇒ a Riemannian
foliation.

Definition
(M, η, ξ,Φ,g) is quasi-regular, if ∃ a positive q ∈ Z such that
∀m ∈ M∃Um each leaf passes Um at most q times.

Theorem
(M, η, ξ,Φ,g) is quasi-regular, then M/S1 has a natural structure of a
symplectic cyclic orbifold, and the projection M → M/S1 is a Seifert
bundle. If (M, η, ξ,Φ,g) is Sasakian, then M/S1 is a cyclic Kaehler
orbifold.



Arbitrary K-contact and Sasakian

Theorem (Rukimbira)
Any K-contact (Sasakian) admits a quasi-regular K-contact (Sasakian)
structure.



Understanding the construction of K-contact manifolds

Orbifolds are oriented 4-dimensional with atlas
({Ũα, φα, Γα)}, Ũα ⊂ R4, Γα < SO(4), Γα = Zmα .
Locally: x ∈ X , a chart φ : Ũ → U, φ(0) = x , isotropy group
Γ = Zm =⇒ any γ ∈ Γ is conjugate to
diag(exp(2πij1/m),exp(2πij2/m)),

Ũ = C2, Γ = 〈ξ〉, ξ = e
2πi
m ,

ξ · (z1, z2) = (ξj1z1, ξ
j2z2).

m is an order of a point x ∈ X .
set m1 = gcd(j1,m),m2 = gcd(j2,m2) - multiplicities of the
isotropy surfaces.



Understanding, local classification of points

1 Regular points: m(x) = m = 1,
2 isotropy points: m(x) > 1
3 smooth points: m(x) > 1, but U ∼= to a ball in C2:

m(x) > 1,m1 > 1,m2 > 1,m1m2 = m
4 singular points = not smooth.

Extra assumption of semi-regularity
We consider orbifolds X , whose all points are smooth.



Example: smooth points

m = m1m2,Zm = 〈ξ〉,m1 > 1,m2 > 1,gcd(j1, j2,m) = 1

Locally
D1 = {(z1,0)},D2 = {(0, z2)}

D1 and D2 are the isotropy surfaces intersecting transversely in one
point, e.g. the multiplicity of D1 is m2, the multiplicity of D2 is m1, and

Zm acts on C2 as Zm2 × Zm1 =⇒ C2/Zm ∼= C2.



Construction and determining orbit invariants

Proposition
Let X be a symplectic smooth oriented 4-manifold with symplectic
surfaces Di intersecting transversely and positively, and coefficients
mi > 1 such that gcd(mi ,mj) = 1 if Di and Dj intersect. Then, there
exists a smooth symplectic orbifold X with isotropy sufaces Di of
multiplicities mi .



Seifert bundles

A Seifert bundle over X is an oriented 5-manifold equipped with a
smooth S1-action and a continuous map π : M → X such that for each
orbifold chart (Ũ, φ,Zm), there is a commutative diagram

(S1 × Ũ)/Zm
∼=−−−−→ π−1(U)

π

y π

y
Ũ/Zm

∼=−−−−→ U

where the action of Zm on S1 is by multiplication by ξ, and the top
diffeomorphism is S1-equivariant.



Construction of Seifert bundles from orbit invariants

Proposition
Let X be an orbifold with orbit invariants Di ,mi . Let 0 < ji < mi with
gcd(ji ,mi) = 1. Let 0 < bi < ji such that jibj = 1(mod mi). Finally, let B
be a complex line bundle over X . Then there exists a Seifert bundle
f : M → X with orbit invariants {(Di ,mi , ji)} and the first Chern class

c1(M/X ) = c1(B) +
∑

i

bi

mi
[Di ].



First Chern class

If f : M → X is a Seifet bundle, and Zm ⊂ S1, then S1/Zm = S1

=⇒ M/Zm is again a Seifert bundle. If µ = lcmx (m(x)) then
M/µ = M/Zµ is a manifold.

c1(M/X ) =
1
µ

c1(M/µ) ∈ H2(X ,Q).



Conclusion

Now we view K-contact and Sasakian manifolds as Seifert bundles
over smooth cyclic orbifolds with symplectic (Kaehler) structures. Our
data are:

a smooth symplectic (Kaehler) manifold X ,
orbit invariants {Di ,mi , ji}
c1(M/X )



Boyer and Galicki program, 2009

Topological obstructions to the existence of K-contact/Sasakian
structures on a compact manifold M of dimension 2n + 1:

1 the evenness of the p-th Betti number for p odd with 1 ≤ p ≤ n,
of a Sasakian manifold,

2 some torsion obstructions in dimension 5 discovered by Kollár,
3 the fundamental groups of Sasakian manifolds are special,
4 the cohomology algebra of a Sasakian manifold satisfies (a

version of) the hard Lefschetz property,
5 formality properties of the rational homotopy type.

Program
Study topological properties of K-contact and Sasakian manifolds, in
particular, understand the question of “K-contact vs. Sasakian”.



K-contact vs Sasaki

Do there exist simply connected closed K-contact manifolds which do
not carry Sasakian structures?

Biswas, Fernández, Muñoz, A.T. : yes, dim M ≥ 17, 2016
Hajduk, A.T. , independently Cappelletti-Montano et. al., yes,
dim M ≥ 9
Muñoz, A.T., dim M = 7

Challenging: dim M = 5
Do there exist Smale-Barden manifolds which carry K-contact but do
not carry Sasakian structures?



Dimension 5?

Converse
Let (X , ω) be a symplectic orbifold and let M → X be a Seifert bundle
with Chern class c1(M/X ) = [ω] ∈ H2(X ,Z). Then M admits a
quasi-regular K-contact structure. If (X , ω) is Kaehler, then this
structure is Sasakian.

Kodaira-Baily theorem
The Hodge orbifold is a projective algebraic variety.



Possible strategy?

1 It is easy (now) to find symplectic manifold/orbifold which is not
Kaehler, and to build a Seifert bundle

S1 → M → X

determined by c1(M/X ) = [ω] ∈ H2(X ,Z).
2 How to prove that there is NO other Seifert fibering

S1 → M → X ′

with X ′ as a projective algebraic variety?



Result: Muñoz, Rojo, A.T.

An orbifold X is semi-regular if all points of X are smooth. We say that
a 5-manifold M is homology Smale-Barden if H1(M) = 0.

Theorem
There exists a homology Smale-Barden manifold which admits
K-contact structures and does not carry any semi-regular Sasakian
structure.



Scheme

Theorem 1
There exists a simply connected symplectic 4-manifold (X , ω) with
b2(X ) = 36 and with 36 disjoint symplectic surfaces S1, ...,S36 such
that:

[Si ] generate H2(X ,Z),
g(S1) = ... = g(S9) = g(S11) = ... = g(S19) = g(S21) = ... =
g(S29) = 1,g(S10) = g(S20) = g(S30) = 3,g(S31) = g(S32) =
g(S33) = 2,g(S34) = g(S35) = g(S36) = 1,
Si · Si = −1, i = 1, ...,9.11, ...,19,21, ...,29,Sj · Sj = 1, j =
10,20,30,S31 · S31 = −1,S32 · S32 = −1,S33 · S33 = 1,S34 · S34 =
−1,S35 · S35 = −1,S36 · S36 = 1.



Scheme, continiuation

Proposition 1
Take a prime p and choose gi = g(Si) as in Theorem 1. There exists a
5-dimensional K-contact manifold with H1(M,Z) = 0 and

H2(M,Z) = Z35 ⊕ (⊕36
i=1(Z/pi)2gi . (∗)



Scheme, continuation

Proposition 2
Suppose M is a 5-manifold with

H1(M,Z) = 0,H2(M,Z) = Zk ⊕ (⊕k+1
i=1 (Z/pi)2gi , k ≥ 0,

with p prime and gi ≥ 1. If M → X is a semi-regular Seifert bundle,
then, necessarily

H1(X ) = 0,H2(X ,Z) = Zk+1

and the ramification locus of X has k + 1 disjoint surfaces Di linearly
independent in rational homology and of genus g(Di) = gi .

Proposition 3
Under the assumptions of Proposition 2, if X is a smooth Kaehler
orbifold, then X is a smooth complex manifold and Di are complex
curves intersecting transversally.



Scheme, completion

Theorem 2
Let S be a smooth Kaehler surface with H1(S,Z) = 0 and containing
b = b2(S) smooth disjoint complex curves with g(Di) = gi > 0 and
spanning H2(S,Z). Assume that

at least two gi > 1,
g = max{gi} ≤ 3

Then b ≤ 2g + 3.



Main steps of understanding

Kollár’s work on homology of Smale-Barden manifolds with circle
actions (Topology, 2006). There are no geometric restrictions on
formulas, relating H∗(M,Z) and H∗(X ,Z).
An algebraic geometry argument. From the data, using geometric
genus, irregularity, Noether formula, Riemann-Hodge relations,
data on line bundles O(D1)... one derives b2 ≤ 2g + 3 (under the
assumptions on genera)
Constructing a simply connected symplectic 4-manifold X with a
pattern of symplectic surfaces Si generating the second
homology, intersecting transversely, with the same genera but
violating b2 ≤ 2g + 3.
Defining an orbifold structure on X (with smooth points) by
declairing Si to constitue a ramification locus (isotropy sufaces),
miltiplicities mi = pi , and taking a Seifert bundle M → X with
c1(M/X ) = [ω].



Construction of X

Needed: (X , ω) 4-dimensional, simply connected, S1, ...,S36
symplectic surfaces with g(Si) ≤ 3, at least 2 have g(Si) > 1 and such
that Si generate H2(X ,Z).

What to do: try to do symplectic surgery of building blocks with “visible”
symplectic surfaces realizing homology classes and controlling the
resulting genera and simply connectedness. Tori, elliptic fibrations?

What constructions to use? Symplectic resolution of transverse
intersections, symplectic blow up, Gompf symplectic sum.



Construction technique: Gompf symplectic sum

(M4
1 , ω1), (M4

2 , ω2), j1 : N1 → M1, j2 : N2 → M2 - symplectic
embeddings, ν1(N1), ν2(N2) - normal bundles, e(ν(N1)) = −e(ν(N2)),
g(N1) = g(N2).

Fix a symplectomorphism N1
∼= N2 and the orientation-reversing and

orinetation preseving diffeomorphisms

ψ : ν1 → ν2, ϕ : ν1(N1) \ N1 → ν(N2) \ N2

where ϕ : θ ◦ ψ, θ(x) = x
||x ||2 .

Definition

M1#N1=N2M2 = (M1 \ N1)
∐

(M2 \ N2)/ '

where ' denotes the gluing by ϕ.

Gompf
M = M1#N1=N2M2 is a symplectic manifold.



Symplectic blow-up

Given: (X , ω), q ∈ X , Darboux ball D around q, J - standard complex
structure in D.

D̃ = {(z1, z2), [w1 : w2]) ∈ D × CP1 | z1w2 = z2w1}

E = {(0,0)} × CP1 ⊂ D̃

X̃ = X \ D ∪∂D∼=∂D̃ D̃.

Known

Topologically X̃ = X#CP
2
, E = CP

1 ⊂ CP
2

[E ] · [E ] = −1.



Elliptic fibration E(1)

Two generic cubics in CP2: p0([x : y : z]) = 0, p1([x : y : z]) = 0
intersect in 9 points p1, ...,p9. For any point q ∈ CP2 \ {p1, ...,p9} ∃
only one cubic t0p0 + t1p1 going through q =⇒

f : CP2 \ {p1, ...,p9} → CP1, f (q) = [t0 : t1]

Blow up CP2 in p1, ...,p9 and extend f : CP2#9CP
2 → CP1.

The generic fiber is a torus.



Two important properties

Proposition
Suppose S1 ⊂ M1,S2 ⊂ M2 are symplectic surfaces intersecting
transversely and positively with symplectic surfaces N1,N2. Assume
S1 · N1 = S2 · N2 = d . Then one can do the Gompf symplectic sum

M1#N1=N2M2

in a way that S = S1#S2 ⊂ M1#N1=N2M2 will be a symplectic surface
with selfintersection S2

1 + S2
2 and the genus

g(S) = g(S1) + g(S2)− 1 + d .

Known fact

Every exceptional sphere Ei in the blow up CP2#9CP
2

at pi is a
section of the elliptic fibration f : E(1)→ CP1.



Symplectic manifold X

A configuration of six tori in T4:

T12 = {(x1, x2, α3, α4},T34 = {(α1, α2, x3, x4)}

T23 = {(β1, x2, x3, β4},T14 = {(x1, β2, β3, x4}

T13 = {((x1, γ2, x3, γ4)},T24 = {(γ1, x2, γ3, x4)}

Symplectic form

ω = dx1 ∧ dx2 + dx3 ∧ dx4 + dx2 ∧ dx3 + δdx1 ∧ dx4 − δdx1 ∧ dx3, δ > 0.

Z = T4#T12=F2E(1)2
#T13=F3E(1)#T14=F4E(1)4

F2 ⊂ E(1)2,F3 ⊂ E(1)3,F4 ⊂ E(1)4 are generic fibers.

X = Z #2CP
2



Surfaces which are easily visible

E(1)2 = CP2#9CP
2

has 9 sections E1, ...,E9, Ei · Ei = −1. They
intersect a generic fiber F in one point. We have:

E1 and F2 intersect transversely, T12 intersects T34 transversely =⇒

S1 = E1#T34 ⊂ X

It is still a torus, with selfintersection −1. We get

S1, ...,S9 for the first copy F2

S11, ...,S19 fo the second copy F3,

S21, ...,S29 for the third copy F4.

Total: 27 sufaces.



3 more surfaces

L ⊂ E(1) a generic line.

Known
L intersects a generic fiber F in exactly 3 points.

In T4#T12=F2E(1) we see that ANY “parallel” copy of T34 intersects T12
transversely =⇒ S10 = T ′34#T ′′34#T ′′′34#L is a surface of genus 3. We
get

S10,S20,S30.



Problem with the fundamental group

X is one connected by Van Kampen. We don’t know how to calculate
π1(M) in the case of a Seifert bundle

S1 → M → X .
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Quotations

J.-P. Bourgignon
“... several dominant figures of the mathematical scene of the XX
century have, step after step along a 50 year period, transformed the
subject [Kaehler geometry] into a major area of mathematics that has
influenced the evolution of the discipline much further than could have
conceivably been anticipated by anyone. “

Krzysztof Galicki
“Sasaki seemed to have had both the necessary intuition and a broad
vision in understanding what is and what is not of true importance...”



Shigeo Sasaki (1912-1987)

born in 1912 in Yamagate prefecture to a farmer’s family, brought
up by his uncle who was a superior of a Buddist Temple
studied in Tohoku Imperial University (1932-1935)
since 1935 worked in differential geometry under the guidance of
Professor Kubota, Ph. D. in 1943
in 1946 appointed to the vacant chair after Kubota’s retirement
1962 - introduced the notion of “normal metric contact structure’
which is equivalent to “Sasakian structure”;
Major works in 1962-1967, notes in Japanese, creation of a
subfield in Riemannian geometry
professorship in Tohoku University until 1976, visited to Princeton
in 1952-1954, worked with Veblen, Morse and Chern
His biography is not well known, even his obituary appeared only
in a local newspaper


