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Metaplectic group and SSW-representation

1 G metaplectic group associated to (V , ω0, L, J), where (V , ω0)
is a symplectic vector space, L is a Lagrangian subspace of
(V , ω) and J is a compatible almost complex structure,
λ : G → Sp(V , ω) covering map

2 σ : G → U(L2(L)′) the dual of the unitary Segal-Shale-Weil
representation (as appear in Folland [4], Wallach [18]) See also
Weil [19], Shale [16] for original definitions.

3 σ is not irreducible L2(L)′ ' L2
+(L)′ ⊕ L2

−(L)′, continuous
duals of even and odd functions - irreducible

4 Set H = L2(L)
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Metaplectic structure

(M, ω) symplectic manifold
A principal G -bundle πP : P → M is called a metaplectic
structure, if there exists a bundle homomorphism Λ : P → Q
such that the diagram commutes

P × G

Λ×λ

��

// P

Λ

��

πP

  
M

Q× Sp(V , ω) // Q
πQ

??

πQ : Q → M is the bundle of symplectic bases in each point of
M
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Forms with values in the SSW-representation

1 Hk = C∞(P,
∧k V ∗ ⊗ H ′)G = {f : P →

∧k V ∗ ⊗ H ′|
σk(g)(f (p)) = f (p · g−1), g ∈ G , p ∈ P}
where · denotes the action of G on the metaplectic structure
and σk is the tensorial extension of σ and of the dual of
covering homomorphism λ : G → Sp(V , ω), i.e.,

σk(g)(α⊗ f ) = λ(g)∗α⊗ σ(g)f ,

g ∈ G , α ∈
∧k V ∗, f ∈ H ′. Note λ(g)∗ ∈ GL(V ∗).

2 H0 – Kostant’s spinors, see Kostant [11].
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An algebra of observables

Let us set
A = 〈σ(G )〉 = {

∑r
i=1 λiσ(gi )|λi ∈ C , gi ∈ G , i = 1, . . . , r , r ∈ N}

We have

Lemma
For any n ∈ N,

1 A is an associative C -algebra
2 ∗ :

∑r
i=1 λiσk(gi ) 7→

∑r
i=1 λiσk(gi )

∗ defines an
anti-involution on A

3 A ⊆ B(H)
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An algebra of observables

Definition
The completion of A in (B(H), | |op) is called the algebra of
observables.

We infer

Theorem
The algebra of observables is a C ∗-subalgebra of the C ∗-algebra
(B(L2(L)), ∗, | |op).
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An algebra of observables

Lemma
For i = 1, 2, let ρi : A→ B(Vi ) be a representation of A on
Banach space Vi which is continuous as a map of normed spaces
A× Vi → Vi , and D : V1 → V2 be a continuous intertwiner, i.e.,
Dρ1(X ) = ρ2(X )D for any X ∈ A. Suppose that the
representations ρi have continuous extensions to A. Then D
commutes with them as well.

Remark: If Vi = L2(L)′ and ρi (X )f = X (f ), X ∈ A then the
condition on the existence of the continuous extension is satisfied
(automatically).
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Certain B(H)-Hilbert modules

Let (M, ω) be a symplectic manifold with a fixed metaplectic
structure and an adapted positive almost complex structure J

1 Let X ∈ B(H), and f ∈ Hk . With (f · X )(p) = f (p) ◦ X for
any p ∈ P, H0 becomes a right B(H)-module.

2 Extending by ((α⊗ f ) · X )(p) = α(p)⊗ (f (p) ◦ X ), Hk

becomes a right B(H)-module
3 For α⊗ f , β ⊗ g ∈ Hk we define a B(H)-valued function

(, ) : Hk × Hk → B(H),
(α⊗ f , β ⊗ g)(p) = h(α, β)(p)(f (p)] ⊗ g(p)), p ∈ P, where
f (p)] is the inner space dual vector of f (p),
(f (p)], v) = f (p)v , v ∈ H.
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Certain B(H)-Hilbert modules

4 (f , g) =
∫
p∈M(f , g)(p)dp, f , g ∈ Hk , is the Dunford-Pettis

integral induced by the measure on M associated to the
volume form and the operator norm on B(H)

5 ||f || =
√
|(f , f )|op norm on Hk

6 HDF
k = {f ∈ Hk | P 3 p 7→

(f , f )(p) is Dunford-Pettis integrable}
7 Lk denotes the norm completion of (HDF

k , || · ||)

Theorem

Spaces (HDF
k , (, )) are pre-Hilbert C ∗-modules and (Lk , (, )) are

Hilbert B(H)-modules, k = 0, . . . , dimM.
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Connection on symplectic manifolds

Definition
Any connection ∇ on a symplectic manifold (M, ω) which preserves
the symplectic form is called a symplectic connection, i.e., ∇ω = 0.
If moreover, ∇ is torsion-free, it is call a Fedosov connection.

Remark: Fedosov connections form an infinite dimensional affine
space. See Tondeur [17], Gelfand, Retakh, Shubin [6].
Any symplectic manifold admits so-called complex metaplectic
structure. Since one can pass to complexification, we’ll not mention
existence of metaplectic structures, and consider the complex
version without explicit mention. (See Robinson, Rawnsley [15],
Cahen, La Fuente Gravy, Gutt, Rawnsley [3].)
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Covariant derivatives

If (M, ω) is a symplectic manifold, a symplectic connection ∇
induces a principal G -bundle connection ω on P.

Lemma
Let M be a compact symplectic manifold equipped with a Fedosov
connection. The covariant derivative dω is a homomorphism of
Hilbert B(H)-modules H0 and H1. The extensions of dω to forms
with values in H ′ is a Hilbert B(H)-homomorphism as well.

Symbols of PDO’s are useful due to the Mishchenko–Fomenko
elliptic operator theory (also in the infinite fiber case).

Lemma
On a symplectic manifold, the principal symbol of dω is given by
σ(dω, ξ)f = ξ ∧ f for any f ∈ Hk and ξ ∈ T ∗M.
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Based on theory of Mishchenko–Fomenko [5] for elliptic operators
and Hodge theory for them (K [13, 14]), we deduce

Theorem
For a compact symplectic manifold with a flat symplectic
connection, the complex (Lk , dω |Lk )k∈Z is an elliptic complex in the
category of Hilbert B(H)-modules. Moreover, its cohomology
groups are finitely generated projective K (H)-modules by
restriction.

The product satisfies (, ) : Lk × Lk → K (H) ⊂ B(H).
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When does Hodge theory holds? Categories and Hilbert
modules

Definition
Let (R,+, †) be and additive dagger category and K (R) the
category of complexes in R. We say that
R = (Rk , dk : Rk → Rk+1)k∈Z ∈ K (R) is of Hodge type if and only
if

Rk = Im dk−1 ⊕ Im d∗k ⊕ Ker∆k ,

where ∆k = d∗kdk + dk−1d
∗
k−1 is the associated Laplacian, and

Ker∆k → Hk(R)

is an isomorphism.

For dagger and so-called correspondence categories, see Brinkmann,
Puppe [2].
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Examples of Hodge type complexes

1 Category of finite dimensional inner product vector spaces and
linear maps. Each complex is of Hodge type.

2 C. of finite rank vector bundles over compact manifolds.
Elliptic complexes are of Hodge type.

3 C. of Hilbert spaces and continuous maps. All complexes
whose differentials have closed images. Especially, all
complexes with Fredholm differentials.

4 C. of Hilbert modules over a compact algebra K and
adjointable maps. All complexes with K -Fredholm Laplacians
of H. t.

5 C. of Hilbert spaces and continuous maps. Each complexes
whose Laplacians have self-adjoint parametrix of H. t.
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Further example, Krýsl [14]:

6 Finitely generated projective A-Hilbert bundles over compact
manifolds and bundle maps which are adjointable A-Hilbert
module homomorphism. All elliptic complexes invariant over
C ∗-algebras of compact operators are of H. t.

Theorem
If (M, ω) is compact, (Lk , dω |Lk )k∈Z is an elliptic complex in the
category of Hilbert K (H)-modules. In particular, the Hodge theory
holds for it. The cohomology groups are finitely generated
projective K (H)-modules.
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Modified Habermann’s construction

It is well known that L2(L)′ ⊗ V contains a complemented
G -submodule isomorphic to L2(L)′ with multiplicity one (Krýsl
[12]). Denote the unique G -equivariant projection onto it by q.

Definition
For a symplectic manifold (M, ω) and a symplectic connection ∇,
we set

(Df )(p) = q(dωf )(p), p ∈ P, f ∈ H0

and call it the Habermann’s principal Dirac operator.

See Habermann [7] and Habermann, Habermann [8]

Lemma
D : L0 → L0 is an A-Hilbert module homomorphism.

Proof. Lemma + G-invariance of q. 2
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