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Abstract. We find necessary and sufficient conditions for the integrability of

one type of multisymplectic 3-forms on a 3-dimensional manifold.

Let V be a 6-dimensional real vector space. The general linear group GL(V )
operates naturally on the space of 3-forms Λ3V ∗ by

ϕα(v, v′, v′′) = α(ϕ−1v, ϕ−1v′, ϕ−1v′′), α ∈ Λ3V ∗, ϕ ∈ GL(V ).

This action has six orbits, see e.g. [1]. They can be described by their representa-
tives. Let us choose a basis v1, . . . , v6 of V , and let α1, . . . , α6 be the corresponding
dual basis. Let us recall that a 3-form α ∈ Λ3V ∗ is called regular or multisymplectic
if the linear mapping

ι : V → Λ2V ∗, ι(v) = ιvα

is injective. All the other forms are then called singular. Obviously, all forms
belonging to an orbit are either regular or singular. We then speak about regular
orbits and singular orbits. We denote R+, R− and R0 the regular orbits and by ρ+,
ρ−, ρ0 their representatives. Similarly we denote S1, S2 and S3 the singular orbits
and by σ1, σ2, σ3 their representatives.

(R+) ρ+ = α1 ∧ α2 ∧ α3 + α4 ∧ α5 ∧ α6,

(R−) ρ− = α1 ∧ α2 ∧ α3 + α1 ∧ α4 ∧ α5 + α2 ∧ α4 ∧ α6 − α3 ∧ α5 ∧ α6,

(R0) ρ0 = α1 ∧ α4 ∧ α5 + α2 ∧ α5 ∧ α6 + α3 ∧ α6 ∧ α4,

(S1) σ1 = 0,

(S2) σ2 = α1 ∧ α2 ∧ α3,

(S3) σ3 = α1 ∧ (α2 ∧ α3 + α4 ∧ α5).

We recall that a 2-form β on a vector space is called decomposable if there exist 1-
forms γ and γ′ such that β = γ∧γ′. It is well known that a 2-form β is decomposable
if and only if β ∧ β = 0.

With every 3-form α ∈ Λ3V ∗ we can associate a subset ∆(α) ⊂ V defined by

∆(α) = {v ∈ V ; ιvα ∧ ιvα = 0}.

In other words ∆(α) consists of all v ∈ V such hat the 2-form ιvα is decomposable.

1. Algebraic properties

We take now an element α ∈ R0. We find easily that

∆(ρ0) = [v1, v2, v3].
1



2 JIŘÍ VANŽURA

This shows that the subset ∆(α) is a 3-dimensional subspace of V . For simplicity
we denote V0 = ∆(α). There is also another possible description of ∆(α).

1. Lemma. ∆(α) = {v ∈ V ; (ιvα) ∧ α = 0}.

Proof. Obviously it suffices to prove this equality for α = ρ0. We take v = a1v1 +
· · ·+ a6v6 and we find

(ιvρ0) ∧ ρ0 = −2a6α2 ∧ α3 ∧ α4 ∧ α5 ∧ α6 + 2a4α1 ∧ α3 ∧ ∧α4 ∧ α5 ∧ α6

−2a5α1 ∧ α2 ∧ α4 ∧ α5 ∧ α6.

This proves the lemma. �

For ρ0, and consequently for every α ∈ R0 we have the following lemma.

2. Lemma. If α ∈ R0 and v, v′ ∈ ∆(α), then α(v, v′, ·) = 0.

Inspired by ρ0 we introduce the following definition.

3. Definition. A basis w1, . . . , w6 of V is called canonical basis for α if the following
conditions are satisfied

α(w1, w2, w3) = 0, α(wi, wj , wk) = 0 for 1 ≤ i < j ≤ 3, k = 4, 5, 6,

α(w1, w4, w5) = 1, α(w1, w5, w6) = 0, α(w1, w6, w4) = 0,

α(w2, w4, w5) = 0, α(w2, w5, w6) = 1, α(w2, w6, w4) = 0,

α(w3, w4, w5) = 0, α(w3, w5, w6) = 0, α(w3, w6, w4) = 1,

α(w4, w5, w6) = 0.

A dual basis β1, . . . , β6 to a canonical basis will be called canonical dual basis for
α.

It is easy to see that β1, . . . , β6 is a canonical dual basis for α if and only if there
is

α = β1 ∧ β4 ∧ β5 + β2 ∧ β5 ∧ β6 + β3 ∧ β6 ∧ β4.

Because the forms α and ρ0 are equivalent (= belong to the same orbit), it is
obvious that

4. Lemma. Every 3-form α ∈ R0 has a canonical basis.

Nevertheless for the later considerations within the framework of differential
geometry we shall present a constructive proof.

Proof. We choose first a complement Vc of V0 in V . In this complement we take
three linearly independent vectors z4, z5, z6. We denote a = α(z4, z5, z6). Because
the form α is regular, there is v0 ∈ V0 such that α(v0, z5, z6) = b 6= 0. Taking
w4 = z4 − (a/b)v0, w5 = z5, and w6 = z6 we get

α(w4, w5, w6) = α(z4 − (a/b)v0, z5, z6) = α(z4, z5, z6)− (a/b)α(v0, z5, z6) =

= a− (a/b)b = 0.

Now we have on V0 three linear forms, namely the forms α(·, w4, w5), α(·, w5, w6),
and α(·, w6, w4). The regularity of α implies again that these three forms are
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linearly independent. Consequently, there are uniquely determined w1, w2, w3 ∈ V0

such that

α(w1, w4, w5) = 1, α(w1, w5, w6) = 0, α(w1, w6, w4) = 0,

α(w2, w4, w5) = 0, α(w2, w5, w6) = 1, α(w2, w6, w4) = 0,

α(w3, w4, w5) = 0, α(w3, w5, w6) = 0, α(w3, w6, w4) = 1.

The equations α(w1, w2, w3) = 0 and α(wi, wj , wk) = 0 for 1 ≤ i < j ≤ 3, k = 4, 5, 6
are satisfied automatically by virtue of Lemma 2. �

Let us consider two canonical dual bases β1, . . . , β6 and β′1, . . . , β
′
6. We can write

β′1 = c11β1 + c12β2 + c13β3+c14β4 + c15β5 + c16β6

β′2 = c21β1 + c22β2 + c23β3+c24β4 + c25β5 + c26β6

β′3 = c31β1 + c32β2 + c33β3+c34β4 + c35β5 + c36β6

β′4 = c44β4 + c45β5 + c46β6

β′5 = c54β4 + c55β5 + c56β6

β′6 = c64β4 + c65β5 + c66β6

We start with the equation

β′1 ∧β′4 ∧β′5 +β′2 ∧β′5 ∧β′6 +β′3 ∧β′6 ∧β′4 = β1 ∧β4 ∧β5 +β2 ∧β5 ∧β6 +β3 ∧β6 ∧β4.

Comparing the coefficients at β1 ∧β4 ∧β5, β1 ∧β5 ∧β6, and β1 ∧β6 ∧β4, we obtain∣∣∣∣∣∣
c21 c44 c45

c31 c54 c55

c11 c64 c65

∣∣∣∣∣∣ = 1,

∣∣∣∣∣∣
c21 c45 c46

c31 c55 c56

c11 c65 c66

∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣
c21 c46 c44

c31 c56 c54

c11 c66 c64

∣∣∣∣∣∣ = 0.

Let us introduce the vectors

z = (c21, c31, c11), z4 = (c44, c54, c64), z5 = (c45, c55, c65), z6 = (c46, c56, c66).

It is obvious that the vectors z4, z5, z6 are linearly independent. The last two
determinant identities show that z is a linear combination of z5 and z6 as well as a
linear combination of z6 and z4. This implies that z is a multiple of z6, i.e. z = τz6.
From the first determinant identity we get then

τ

∣∣∣∣∣∣
c46 c44 c45

c56 c54 c55

c66 c64 c65

∣∣∣∣∣∣ = 1.

We denote

δ =

∣∣∣∣∣∣
c44 c45 c46

c54 c55 c56

c64 c65 c66

∣∣∣∣∣∣
From the identity z = τz6 we get

c11 = c66 · δ−1, c21 = c46 · δ−1, c31 = c56 · δ−1.

Comparing coefficients at the monomials β2 ∧β4 ∧β5, β2 ∧β5 ∧β6, and β2 ∧β6 ∧β4

we obtain along the same lines as above

c12 = c64 · δ−1, c22 = c44 · δ−1, c32 = c54 · δ−1.
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Further, comparing coefficients at the monomials β3 ∧ β4 ∧ β5, β3 ∧ β5 ∧ β6, and
β3 ∧ β6 ∧ β4 we have

c13 = c65 · δ−1, c23 = c45 · δ−1, c33 = c55 · δ−1.

It remains to compare coefficients at β4 ∧ β5 ∧ β6. Here we obtain the identity

(*)

∣∣∣∣∣∣
c14 c15 c16

c44 c45 c46

c54 c55 c56

∣∣∣∣∣∣ +

∣∣∣∣∣∣
c24 c25 c26

c54 c55 c56

c64 c65 c66

∣∣∣∣∣∣ +

∣∣∣∣∣∣
c34 c35 c36

c64 c65 c66

c44 c45 c46

∣∣∣∣∣∣ = 0.

We have thus proved the following

5. Lemma. If β′1, . . . , β
′
6 and β1, . . . , β6 are canonical dual bases, then their tran-

sition matrix has the form


c66 · δ−1 c64 · δ−1 c65 · δ−1 c14 c15 c16

c46 · δ−1 c44 · δ−1 c45 · δ−1 c24 c25 c26

c56 · δ−1 c54 · δ−1 c55 · δ−1 c34 c35 c36

0 0 0 c44 c45 c46

0 0 0 c54 c55 c56

0 0 0 c64 c65 c66


satisfying (∗). If β1, . . . , β6 is a canonical dual basis and β′1, . . . , β

′
6 is a basis of V ∗

such that the transition matrix between both bases has the above form and satisfies
(∗) , then β′1, . . . , β

′
6 is also a canonical dual basis.

2. Geometric properties

Now we start to consider a 6-dimensional differentiable manifold M . From now
on all structures will be differentiable, i.e. of class C∞. A 3-form ω on M will be
called a form of class R0 if for every x ∈ M there is an isomorphism hx : TxM → V
such that h∗xρ0 = ωx. (Quite analogical definitions can be introduced for other
types of forms.) We consider now on M a 3-form of type R0. We get easily on
M a 3-dimensional distribution D defined by Dx = ∆(ωx). But here we need the
following lemma.

6. Lemma. The distribution D is differentiable.

Proof. Around any point x ∈ M we can find a local basis X1, . . . , X6 of TM . We
take a vector field X = f1X1 + · · · + f6X6, where f1, . . . , f6 are (locally defined)
differentiable functions. To find differentiable vector fields Y1, Y2, Y3 which span
the distribution D it is necessary to solve the equation (ιXω) ∧ ω = 0. This
leads to a system of six linear homogeneous equations the coefficients of which are
differentiable functions. The rest of the proof is then completely standard. �
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7. Definition. A local basis X1, . . . , X6 of TM around a point x ∈ M is called
local canonical basis for ω if the following conditions are satisfied

α(X1, X2, X3) = 0, α(Xi, Xj , Xk) = 0 for 1 ≤ i < j ≤ 3, k = 4, 5, 6,

α(X1, X4, X5) = 1, α(X1, X5, X6) = 0, α(X1, X6, X4) = 0,

α(X2, X4, X5) = 0, α(X2, X5, X6) = 1, α(X2, X6, X4) = 0,

α(X3, X4, X5) = 0, α(X3, X5, X6) = 0, α(X3, X6, X4) = 1,

α(X4, X5, X6) = 0.

8. Proposition. Around every point x ∈ M there exists a canonical basis for the
3-form ω.

Proof. We choose first a complement Dc of D in TM . This complement is also
a differentiable distribution. In this complement we take locally three linearly
independent vector fields Y4, Y5, Y6. We denote f = ω(Y4, Y5, Y6). Because the
form ωx is regular, there is v0 ∈ Dx such that ωx(v0, Y5,x, Y6,x) = b 6= 0. Then we
take a vector field Y0 around x lying in D such that X0,x = v0. Obviously, then
ω(Y0, Y5, Y6) = g is non-zero in a neighborhood of x. Taking X4 = Y4 − (f/g)Y0,
X5 = Y5, and X6 = Y6 we get

ω(X4, X5, X6) = α(Y4 − (f/g)Y0, Y5, Y6) = ω(Y4, Y5, Y6)− (f/g)ω(Y0, Y5, Y6) =

= f − (f/g)g = 0.

Now we have in a neighborhood of x ∈ M three 1-forms, namely the forms
ω(·, X4, X5), ω(·, X5, X6), and ω(·, X6, X4). The regularity of ωx implies again
that these three forms are linearly independent. Consequently, there are uniquely
determined vector fields X1, X2, X3 in D such that

ω(X1, X4, X5) = 1, ω(X1, X5, X6) = 0, ω(X1, X6, X4) = 0,

ω(X2, X4, X5) = 0, ω(X2, X5, X6) = 1, ω(X2, X6, X4) = 0,

ω(X3, X4, X5) = 0, ω(X3, X5, X6) = 0, ω(X3, X6, X4) = 1.

The equations ω(X1, X2, X3) = 0 and ω(Xi, Xj , Xk) = 0 for 1 ≤ i < j ≤ 3, k =
4, 5, 6 are again satisfied automatically by virtue of Lemma 2. This finihes the
proof. �

Now it suffices to take dual 1-forms ω1, . . . , ω6 to the vector fields X1, . . . , X6

and we get the following proposition.

9. Proposition. For a 3-form ω of type R0 on M locally there exist 1-forms
ω1, . . . , ω6 such that

ω = ω1 ∧ ω4 ∧ ω5 + ω2 ∧ ω5 ∧ ω6 + ω3 ∧ ω6 ∧ ω4.

10. Example. On R6 let us consider the 3-form

ω = dx1 ∧ (dx4 + x1dx3) ∧ dx5 + dx2 ∧ dx5 ∧ dx6 + dx3 ∧ dx6 ∧ (dx4 + x1dx3).

We have

dω = dx1 ∧ dx1 ∧ dx3 ∧ dx5 + dx3 ∧ dx6 ∧ dx1 ∧ dx3 = 0.

On the other hand the distribution D = ∆(ω) is spanned by the vector fields
∂

∂x1
,

∂

∂x2
,

∂

∂x3
− x1

∂

∂x4
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and is not integrable. This shows that the closeness of the 3-form ω does not imply
the integrability of the associated distribution ∆(ω).

We shall need a version of the Poincaré lemma. On R6 we take coordinates
(x1, . . . , x6) and consider an integrable 3-dimensional distribution D defined by the
equations dx4 = dx5 = dx6 = 0.

11. Lemma. Let θ be a 2-form on R6 such that dθ = 0 and θ|D = 0. Then there
exists a 1-form η on R6 such that θ = dη and η|D = 0.

Proof. We denote Ωk the vector space of k-forms on R6 and Z(Ωk) the subspace
consisting of closed forms. It is well known that there exists a linear mapping
E : Z(Ω2) → Ω1 such that for every ξ ∈ Z(Ω2) there is ξ = dE(ξ). The problem is
that E(θ) need not satisfy E(θ)|D = 0. But we have

dE(θ)|D = θ|D = 0.

On any leaf L(c4, c5, c6) of the distribution D (i.e. x4 = c4, x5 = c5, x6 = c6) we
can again apply the Poincaré lemma and we find that there exists on L(c4, c5, c6) a
function f(c4,c5,c6) such that E(θ)|L(c4, c5, c6) = df(c4,c5,c6). Of course, this does not
solve our problem. But we can use an obvious parametric version of the Poincaré
lemma. We can consider R3 with coordinates (x1, x2, x3). On R3 we take a fam-
ily of 1-forms ζc4,c5,c6 depending on three parameters c4, c5, c6. Namely, the 1-
form ζc4,c5,c6 with parameters c4, c5, c6 is the form E(θ)|L(c4, c5, c6) transferred to
R3 under the natural identification (x1, x2, x3) 7→ (x1, x2, x3, c4, c5, c6). Now the
Poincaré lemma with three parameters gives us a three parametric system of func-
tions fc4,c5,c6 on R3 such that ζc4,c5,c6 = dfc4,c5,c6 . In other words this means that
the function f(x1, x2, x3, x4, x5, x6) = fx4,x5,x6(x1, x2, x3) satisfies

E(θ)|D = df |D.

Taking now η = E(θ)− df we can see that dη = θ and η|D = 0. �

Let us recall now the following definition.

12. Definition. A 3-form ω of type R0 on a manifold M is called integrable if
locally there exist coordinates x1, . . . , x6 such that

ω = dx1 ∧ dx4 ∧ dx5 + dx2 ∧ dx5 ∧ dx6 + dx3 ∧ dx6 ∧ dx4.

It is obvious that if the 3-form ω is integrable then ω is closed and the associated
distribution ∆(ω) is integrable. Now we are going to prove that these two conditions
are also sufficient for the integrability.

13. Theorem. A 3-form ω of type R0 on a manifold M is integrable if and only if
the following two conditions are satisfied

(1) dω = 0,
(2) the distribution D = ∆(ω) is integrable.

Proof. We must show that the conditions are sufficient. Acording to Proposition 9
around every point x ∈ M we can find 1-forms ω′′1 , . . . , ω′′6 such that

ω = ω′′1 ∧ ω′′4 ∧ ω′′5 + ω′′2 ∧ ω′′5 ∧ ω′′6 + ω′′3 ∧ ω′′6 ∧ ω′′4 .

Because ∆(ω) is integrable, we can find three functions f ′4, f
′
5, f

′
6 such that their

differentials df ′4, df
′
5, df

′
6 are linearly independent and df ′4|D = df ′5|D = df ′6|D = 0.
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Then using Lemma 5 we can find 1-forms ω′1, ω
′
2, ω

′
3 such that

ω = ω′1 ∧ df ′4 ∧ df ′5 + ω′2 ∧ df ′5 ∧ df ′6 + ω′3 ∧ df ′6 ∧ df ′4.

We denote X ′
1, . . . , X

′
6 the canonical basis associated to the canonical dual basis

ω′1, ω
′
2, ω

′
3, df

′
4, df

′
5, df

′
6. Obviously, we have

(d) 0 = dω = dω′1 ∧ df ′4 ∧ df ′5 + dω′2 ∧ df ′5 ∧ df ′6 + dω′3 ∧ df ′6 ∧ df ′4.

Applying ιX′
2
ιX′

1
on both sides we get

0 = (ιX′
2
ιX′

1
dω′1) · df ′4 ∧ df ′5 + (ιX′

2
ιX′

1
dω′2) · df ′5 ∧ df ′6 + (ιX′

2
ιX′

1
dω′3) · df ′6 ∧ df ′4.

This shows that dω′1(X
′
1, X

′
2) = dω′2(X

′
1, X

′
2) = dω′1(X

′
1, X

′
2) = 0. Similarly we

find that dω′1(X2, X3) = dω′2(X2, X3) = dω′3(X2, X3) = 0 and dω′1(X3, X1) =
dω′2(X3, X1) = dω′3(X3, X1) = 0. We have thus proved that

dω′1|D = dω′2|D = dω′3|D = 0.

Consequently dω′1 must have the following form

dω′1 =g114ω
′
1 ∧ df ′4 + g115ω

′
1 ∧ df ′5 + g116ω

′
1 ∧ df ′6+

g124ω
′
2 ∧ df ′4 + g125ω

′
2 ∧ df ′5 + g126ω

′
2 ∧ df ′6+

g134ω
′
3 ∧ df ′4 + g135ω

′
3 ∧ df ′5 + g136ω

′
3 ∧ df ′6+

g145df
′
4 ∧ df ′5 + g156df

′
5 ∧ df ′6 + g164df

′
6 ∧ df ′4.

Similar formulas we can write for dω′2 and dω′3. Now taking into account the
equation (d) we find the following identities.

g116 + g214 + g315 = 0,

g126 + g224 + g325 = 0,

g136 + g234 + g335 = 0.

Let us consider now the 2-form dω′1. This form is closed because ddω′1 = 0 and
dω′1|D = 0. According to Lemma 11 there exists a 1-form θ1 such that θ1|D = 0
and dθ1 = dω′1. Again similar considerations are possible with the 2-forms dω′2 and
dω′3. In this way we obtain three 1-forms θ1, θ2, and θ3, which can be expressed in
the form

θ1 = h14df
′
4 + h15df

′
5 + h16df

′
6,

θ2 = h24df
′
4 + h25df

′
5 + h26df

′
6,

θ3 = h34df
′
4 + h35df

′
5 + h36df

′
6.

The 1-forms ω′1 − θ1, ω′2 − θ2, and ω′3 − θ3 are closed and consequently we can find
functions f ′1, f

′
2, f

′
3 such that ω′1 − θ1 = df ′1, ω′2 − θ2 = df ′2, and ω′3 − θ3 = df ′3. Now

it is obvious that the functions f ′1 . . . , f ′6 represent a local coordinate system. The
local dual basis df ′1, df

′
2, df

′
3, df

′
4, df

′
5, df

′
6 is a relatively good basis, but unfortunately

it need not be a canonical basis. The transition matrix from the canonical basis
ω′1, ω

′
2, ω

′
3, df

′
4, df

′
5, df

′
6 to the last basis is

1 0 0 −h14 −h15 −h16

0 1 0 −h24 −h25 −h26

0 0 1 −h34 −h35 −h36

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


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and it may happen that h16 + h24 + h35 6= 0.
Considering the equations dω′1 = dθ1, dω′2 = dθ2, and dω′3 = dθ3 we get the

identities

X ′
1h16 = g116, X ′

2h16 = g126, X ′
3h16 = g136,

X ′
1h24 = g214, X ′

2h24 = g224, X ′
3h24 = g234,

X ′
1h35 = g315, X ′

2h35 = g325, X ′
3h35 = g335.

Hence we obtain

X1(h16 + h24 + h35) = g116 + g214 + g315 = 0,

X2(h16 + h24 + h35) = g126 + g224 + g325 = 0,

X3(h16 + h24 + h35) = g136 + g234 + g335 = 0.

We can see that the function h = h16 + h24 + h35 is constant on the leaves of the
foliation associated with the distribution D. In our coordinate system f ′1, . . . , f

′
6

this means that h is a function of variables f ′4, f
′
5, f

′
6 only. We can choose a function

l of variables f ′4, f
′
5, f

′
6 only such that ∂l/∂f ′6 = h. Now we take a dual basis in the

form
df ′1 + dl, df ′2, df

′
3, df

′
4, df

′
5, df

′
6.

The transition matrix of this basis with respect to the basis ω′1, ω
′
2, ω

′
3, df

′
4, df

′
5, df

′
6

is 
1 0 0 −h14 + ∂l/∂f ′4 −h15 + ∂l/∂f ′5 −h16 + h
0 1 0 −h24 −h25 −h26

0 0 1 −h34 −h35 −h36

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


and obviously satisfies the condition (*). This implies that the dual basis df ′1 +
dl, df ′2, df

′
3, df

′
4, df

′
5, df

′
6 is canonical. Now it suffices to set f1 = f ′1 + l, f2 = f ′2, f3 =

f ′3, f4 = f ′4, f5 = f ′5, f6 = f ′6 and we have

ω = df1 ∧ df4 ∧ df5 + df2 ∧ df5 ∧ df6 + df3 ∧ df6 ∧ df4.

�

Let us assume now that there exists on M a symmetric conection ∇ such that
∇ω = 0. Then using [2], Cor. 8.6 we find that dω = Alt(∇ω) = 0. Next for
arbitrary vector fields X, X1, X2, Y we can calculate

(∇Y (ιXω)(X1, X2) = Y ((ιXω)(X1, X2)

−(ιXω)(∇Y X1, X2)− (ιXω)(X1,∇Y X2) =

= Y (ω(X, X1, X2))− ω(X,∇Y X1, X2)− ω(X, X1,∇Y X2) =

= (∇Y ω)(X, X1, X2) + ω(∇Y X, X1, X2) + ω(X,∇Y X1, X2) + ω(X, X1,∇Y X2)

−ω(X,∇Y X1, X2)− ω(X, X1,∇Y X2) = ω(∇Y X, X1, X2) = (ι∇Y Xω)(X1, X2).

Now let us assume that a vector field X lies in the distribution D. We have then
ιXω) ∧ ω = 0 and consequently

0 = ∇Y ((ιXω) ∧ ω) = (∇Y (ιXω)) ∧ ω = (ι∇Y Xω) ∧ ω,
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which show that ∇ preserves the distribution D. Because the connection ∇ is
symmetric, this implies that the distribution D is integrable. Together this means
that the 3-form ω is integrable. We will see that the converse is also true.

14. Theorem. A 3-form ω of type R0 on a paracompact manifold M is integrable
if and only if there exists on M a symmetric connection ∇ such that ∇ω = 0.

Proof. We must prove that if ω is integrable then there exists a symmetric connec-
tion ∇ such that ∇ω = 0. We can cover M by a locally finite open covering of M
consisting of charts {Uλ}λ∈I with coordinates xλ

1 , . . . , xλ
6 such that on Uλ we have

ω = dxλ
1 ∧ dxλ

4 ∧ dxλ
5 + dxλ

2 ∧ dxλ
5 ∧ dxλ

6 + dxλ
3 ∧ dxλ

6 ∧ dxλ
4 .

On each Uλ we take a connection ∇λ defined by

∇λ
∂/∂xλ

i
(∂/∂xλ

j ) = 0, i, j = 1, . . . , 6.

It is obvious that this connection is symmetric and satisfies ∇λω = 0. Now it
remains to glue these connections together. We take a partition of unity {aλ}λ∈I

subordinate to the covering {Uλ}λ∈I . Then it suffices to define

∇ =
∑
λ∈I

aλ∇λ,

and we have on M a symmetric connection satisfying ∇ω = 0. �

References
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