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Basic definitions and construction

Metaplectic group and SSW-representation

1 G metaplectic group associated to (V,wo, L, J), where (V,wp)
is a symplectic vector space, L is a Lagrangian subspace of
(V,w) and J is a compatible almost complex structure,

A G — Sp(V,w) covering map

2 0: G — U(L%(L)') the dual of the unitary Segal-Shale-Weil
representation (as appear in Folland [4], Wallach [18]) See also
Weil [19], Shale [16] for original definitions.

3 o is not irreducible L2(L)" ~ L2 (L) & L? (L)', continuous
duals of even and odd functions - irreducible
4 Set H = L?(L)
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Metaplectic structure

(M, w) symplectic manifold

A principal G-bundle wp : P — M is called a metaplectic
structure, if there exists a bundle homomorphism A : P — Q
such that the diagram commutes

PxG

Q x Sp(V,w)—>Q

mQ : @ — M is the bundle of symplectic bases in each point of
M
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Forms with values in the SSW-representation

1 He=C®(P, N VF o HNC = {f: P> N Vo H|
o(g)(f(p)) =f(p-g').g € G,pecP}
where - denotes the action of G on the metaplectic structure
and oy is the tensorial extension of o and of the dual of
covering homomorphism A : G — Sp(V,w), i.e.,

ok(g)a® f) = ANg)'a®oa(g)f,

ge G aec N\ Vs feH. Note Ag)* € GL(V*).
2 Hp — Kostant's spinors, see Kostant [11].
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An algebra of observables

Let us set
A= (o(G))y={> i1 Nio(g)|rieC geG,i=1,...r,reN}
We have

For any ne N,

1 A is an associative C-algebra

2 x>0 Nok(g) = Yol Niok(gi)* defines an
anti-involution on A

3 A C B(H)




Basic definitions and construction

An algebra of observables

Definition
The completion of A in (B(H), ||op) is called the algebra of
observables.

We infer

The algebra of observables is a C*-subalgebra of the C*-algebra
(B(LA(L)), %] |op)-




Basic definitions and construction

An algebra of observables

Lemma

Fori=1,2, let p; : A — B(V;) be a representation of A on
Banach space V; which is continuous as a map of normed spaces
AxV;— Vi, and D : V; — V, be a continuous intertwiner, i.e.,
Dp1(X) = p2(X)D for any X € A. Suppose that the
representations p; have continuous extensions to A. Then D
commutes with them as well.

Remark: If V; = L2(L) and p;(X)f = X(f), X € A then the
condition on the existence of the continuous extension is satisfied
(automatically).
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C*-Hilbert structures

Certain B(H)-Hilbert modules

Let (M,w) be a symplectic manifold with a fixed metaplectic
structure and an adapted positive almost complex structure J

1 Let X € B(H), and f € Hy. With (f - X)(p) = f(p) o X for
any p € P, Hy becomes a right B(H)-module.

2 Extending by ((a ® f) - X)(p) = a(p) @ (f(p) o X), Hx
becomes a right B(H)-module

3 Fora®f,5® g € Hy we define a B(H)-valued function
(,) . Hk X Hk — B(H),
(@@ f,B@g)(p) = h(a, B)(p)(f(p)* © g(p)), p € P, where
f(p)* is the inner space dual vector of f(p),

(f(p)f,v) = f(p)v, v € H.
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Certain B(H)-Hilbert modules

4 (f,g) = fpeM(f,g)(p)dp, f,g € Hy, is the Dunford-Pettis
integral induced by the measure on M associated to the
volume form and the operator norm on B(H)

5 ||l = \/I(f, f)|op norm on Hy
6 HF ={f e Hl|P>pr—
(f, f)(p) is Dunford-Pettis integrable}

7 Ly denotes the norm completion of (HPF, || - ||)

Spaces (HPF, (,)) are pre-Hilbert C*-modules and (Ly, (,)) are
Hilbert B(H)-modules, k =0, ..., dim M.
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Connection on symplectic manifolds

Definition

Any connection V on a symplectic manifold (M, w) which preserves
the symplectic form is called a symplectic connection, i.e., Vw = 0.
If moreover, V is torsion-free, it is call a Fedosov connection.

Remark: Fedosov connections form an infinite dimensional affine
space. See Tondeur [17], Gelfand, Retakh, Shubin [6].

Any symplectic manifold admits so-called complex metaplectic
structure. Since one can pass to complexification, we'll not mention
existence of metaplectic structures, and consider the complex
version without explicit mention. (See Robinson, Rawnsley [15],
Cahen, La Fuente Gravy, Gutt, Rawnsley [3].)
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Covariant derivatives

If (M,w) is a symplectic manifold, a symplectic connection V
induces a principal G-bundle connection w on P.

Let M be a compact symplectic manifold equipped with a Fedosov
connection. The covariant derivative d,, is a homomorphism of
Hilbert B(H)-modules Hy and Hy. The extensions of d,, to forms
with values in H' is a Hilbert B(H)-homomorphism as well.

Symbols of PDQO's are useful due to the Mishchenko—Fomenko
elliptic operator theory (also in the infinite fiber case).

On a symplectic manifold, the principal symbol of d,, is given by
o(d,,§)f =ENf forany f € He and § € T*M.
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Based on theory of Mishchenko—Fomenko [5] for elliptic operators
and Hodge theory for them (K [13, 14]), we deduce

For a compact symplectic manifold with a flat symplectic
connection, the complex (Lk, d.,)kez is an elliptic complex in the
category of Hilbert B(H)-modules. Moreover, its cohomology
groups are finitely generated projective K(H)-modules by
restriction.

The product satisfies (,) : Lx x Ly — K(H) C B(H).
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When does Hodge theory holds? Categories and Hilbert

modules

Definition

Let (R, 4+, T) be and additive dagger category and K(R) the
category of complexes in R. We say that

R = (Rk, dk : Rk = Rk+t1)kez € K(R) is of Hodge type if and only
if

Rk =Imdk_1 @ Imd; & Ker Ay,

where Ay = djdx + dx_1d}_; is the associated Laplacian, and
Ker Ak = Hk(R)

is an isomorphism.

v

For dagger and so-called correspondence categories, see Brinkmann,
Puppe [2].
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Examples of Hodge type complexes

1 Category of finite dimensional inner product vector spaces and
linear maps. Each complex is of Hodge type.

2 C. of finite rank vector bundles over compact manifolds.
Elliptic complexes are of Hodge type.

3 C. of Hilbert spaces and continuous maps. All complexes
whose differentials have closed images. Especially, all
complexes with Fredholm differentials.

4 C. of Hilbert modules over a compact algebra K and
adjointable maps. All complexes with K-Fredholm Laplacians
of H. t.

5 C. of Hilbert spaces and continuous maps. Each complexes
whose Laplacians have self-adjoint parametrix of H. t.
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Further example, Krysl [14]:

6 Finitely generated projective A-Hilbert bundles over compact
manifolds and bundle maps which are adjointable A-Hilbert
module homomorphism. All elliptic complexes invariant over
C*-algebras of compact operators are of H. t.

If (M,w) is compact, (Lk, du1, )kez is an elliptic complex in the
category of Hilbert K(H)-modules. In particular, the Hodge theory
holds for it. The cohomology groups are finitely generated
projective K(H)-modules.
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Symplectic Dirac and KK-theory

Modified Habermann's construction

It is well known that L?(L) ® V contains a complemented
G-submodule isomorphic to L2(L)" with multiplicity one (Krysl
[12]). Denote the unique G-equivariant projection onto it by g.

Definition

For a symplectic manifold (M, w) and a symplectic connection V,
we set

(Df)(p) = q(d.f)(p),p € P, f € Ho

and call it the Habermann's principal Dirac operator.

See Habermann [7] and Habermann, Habermann [8]

D : Ly — Lg is an A-Hilbert module homomorphism.

Proof. Lemma + G-invariance of q. O
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