CONDITIONS FOR INTEGRABILITY OF A 3-FORM

JIRf VANZURA

ABSTRACT. We find necessary and sufficient conditions for the integrability of
one type of multisymplectic 3-forms on a 3-dimensional manifold.

Let V be a 6-dimensional real vector space. The general linear group GL(V)
operates naturally on the space of 3-forms A3V* by

pa(v,v V") = alp v, o), a e ABV* o e GL(V).

This action has six orbits, see e.g. [1]. They can be described by their representa-
tives. Let us choose a basis vy, ...,vg of V, and let aq, ..., ag be the corresponding
dual basis. Let us recall that a 3-form o € A3V * is called regular or multisymplectic
if the linear mapping

LV = A2V () =
is injective. All the other forms are then called singular. Obviously, all forms
belonging to an orbit are either regular or singular. We then speak about regular
orbits and singular orbits. We denote R, R_ and Ry the regular orbits and by p,

p—, po their representatives. Similarly we denote S1, Sz and S5 the singular orbits
and by o1, 02, o3 their representatives.

) pr =a1 ANag Aasg+ ag A as A ag,

) p—=arANasAaz+ag Aag Aas+as Aag Aag — as A as A ag,

) po=0a1 Nag ANas+ ag ANas Aag +ag \ag A\ oy,

Sl) o1 = 01

) 0'21011/\Ot2/\043,

) 0'32041/\(042/\0434—(14/\045).

We recall that a 2-form ( on a vector space is called decomposable if there exist 1-
forms v and + such that 5 = yA~'. It is well known that a 2-form 3 is decomposable
if and only if BA B = 0.

With every 3-form a € A3V* we can associate a subset A(a) C V defined by

Aa) ={v € Via A o = 0}

In other words A(«) consists of all v € V such hat the 2-form ¢, v is decomposable.

1. ALGEBRAIC PROPERTIES

We take now an element o € Ry. We find easily that

A(po) = [v1,v2,v3).
1
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This shows that the subset A(«) is a 3-dimensional subspace of V. For simplicity
we denote Vo = A(a). There is also another possible description of A(«).

1. Lemma. A(a) ={v € V;(,,a) Aa=0}.

Proof. Obviously it suffices to prove this equality for a = py. We take v = ajv; +
-+ -+ agvg and we find
(tupo) A po = —2agaa A az A ag A as A ag + 2a401 A az A Nag A as A ag
—2as0q N\ as A\ oy N as A ag.

This proves the lemma. U

For pg, and consequently for every a € Ry we have the following lemma.
2. Lemma. If a € Ry and v,v’' € A(a), then a(v,v’,-) = 0.
Inspired by pg we introduce the following definition.

3. Definition. A basis wy,...,ws of V is called canonical basis for « if the following
conditions are satisfied
a(wy, we,ws) =0, a(w;, wj,w,) =0for 1 <i<j<3 k=456,
a(wy,wy, ws) = 1, a(wy, ws, we) = 0, a(wy, wg, wq) =0,
a(we, wy, ws) = 0, a(wa, ws, we) = 1, a(wa, wg, wq) = 0,
a(ws, wy, ws) = 0, a(ws, ws, we) = 0, a(ws, ws, wy) =1,
a(wy, ws, wg) = 0.

A dual basis 1,...,0s to a canonical basis will be called canonical dual basis for
Q.

It is easy to see that (1, ..., B¢ is a canonical dual basis for « if and only if there
is
a=P1ABsABs+ B2 ABsABs+ B3N Bs A Pa.

Because the forms « and py are equivalent (= belong to the same orbit), it is
obvious that

4. Lemma. FEvery 3-form a € Ry has a canonical basis.

Nevertheless for the later considerations within the framework of differential
geometry we shall present a constructive proof.

Proof. We choose first a complement V, of V5 in V. In this complement we take
three linearly independent vectors zq4, 25, 26. We denote a = «(zy4, 25, 26). Because
the form « is regular, there is vg € Vp such that a(vo,25,26) = b # 0. Taking
wy = 24 — (a/b)vg, ws = 25, and wg = 2z¢ we get

a(wy, ws, wg) = az4 — (a/b)vo, 25, 26) = a(z4, 25, 26) — (a/b)a(vy, 25, 26) =
=a—(a/b)b=0.

Now we have on Vj three linear forms, namely the forms a(-, ws, ws), a(-, ws, we),
and o, wg,ws). The regularity of o implies again that these three forms are
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linearly independent. Consequently, there are uniquely determined wy,wo, w3 € Vj
such that

a(wi,ws,ws) =1,  a(w,ws,ws) =0, a(wy,ws, wy) =0,
O[(U)Q, w4aw5) = 03 OZ(UJQ, ’lU5,’lU6) = 13 Ol(wg, w63w4) = 03
=0, =0, o(ws, ws,wy)=1.

a(ws, wy, ws) a(ws, ws, we)

The equations o(wy, we, w3) = 0 and a(w;, w;,wy) =0for1 <i< j<3,k=4,56
are satisfied automatically by virtue of Lemma 2. O

Let us consider two canonical dual bases 1, ...,0s and 81, ..., B;. We can write

B = c11B1 + c1282 + c13B3+c14B4 + 1505 + 1606

By = €211 + 2202 + ca3f3+coafa + c2585 + €266
By = c3181 + 3202 + c3303+C344 + €3505 + €366
By = CaafB4 + 4585 + ca66
By = 5434 + ¢5505 + 566
Bs = 6434 + co585 + o656

We start with the equation

Bi A By A Bs + By NGBS A B+ B3 AN Bs A By = B A BaABs + B2 A\ Bs A Bs + B3 A Bs A Ba-
Comparing the coefficients at 51 A B4 A Bs, 81 A Bs A B, and (81 A Bg A B4, we obtain

C21 C44 C45 C21  C45 C46 C21 C46 C44
€31 Cs4 Cs5|0 =1, a1 cs5 cse| =0, |31 cs6 cs4| = 0.
C11 Ce4 Ce5s C11 Ce5 Ce66 C11 Ceé6 Co4

Let us introduce the vectors
z = (021,031,011)724 = (0447054,064),25 = (045,655,065),26 = <C46a0567066)-

It is obvious that the vectors z4,zs, 2 are linearly independent. The last two
determinant identities show that z is a linear combination of z5 and zg as well as a
linear combination of zg and z4. This implies that z is a multiple of zg, i.e. z = T2¢.
From the first determinant identity we get then

C46 C44 C45
T |Cs6 Cs4 Cs5| = 1.
Cé6 Ce64 Cé5
We denote
Cq4 C45 C46
0=|cs4 C55 Cs6
Cea Co5 Co6

From the identity z = 724 we get
1 —1 —1
c11=c¢e6-0 , Co1=cC46-0 , €31 =Cs6-0 .

Comparing coefficients at the monomials G2 A B4 A Bs, B2 A Bs A Bg, and B2 A Bg A B4
we obtain along the same lines as above

—1 1 —1
Cla=Ce4-0 ", Cop=cC44-0 ~, C3p=Css-0 .
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Further, comparing coefficients at the monomials 83 A B4 A 85, B3 A 85 A (g, and
B3 N Bg N\ B4 we have

—1 —1 —1
c13==¢Ce5-0 ~, Ca3=cC45-0 ~, C33=cCs5-0 .

It remains to compare coefficients at G4 A 05 A Bs. Here we obtain the identity

C14 Ci15 Ci6 C24 C25 C26 C34 €35 C36
* Ca4 C45 Cip|+ |C54 C55 Cs6| + |Cosa o5 Ces| = 0.
Cs4 Cs5 Cs6 Cés Co5 Co6 C44 C45 C46

We have thus proved the following

5. Lemma. If 8,...,0 and B1,..., 06 are canonical dual bases, then their tran-
sition matrixz has the form

-1 -1 -1

Ce6 - 0 Cea - 0 Ce5 - 0 Cl4 Ci5 Cig
-1 -1 -1

Ca6 - 0 Caq - 0 C45 - 6 Coq4 C25 C26
-1 -1 -1

56+ 6 Cs54 -6 55+ 6 C34 €35 C36

0 0 0 C44 C45 C46
0 0 0 C54 €55 C56
0 0 0 Cea Cg5 Co6

satisfying (). If B1, ..., Bs is a canonical dual basis and B, ..., 5§ is a basis of V*
such that the transition matrix between both bases has the above form and satisfies
(%), then By, ..., 0% is also a canonical dual basis.

2. GEOMETRIC PROPERTIES

Now we start to consider a 6-dimensional differentiable manifold M. From now
on all structures will be differentiable, i.e. of class C*°. A 3-form w on M will be
called a form of class Ry if for every © € M there is an isomorphism h, : T,M — V
such that hlpy = wy. (Quite analogical definitions can be introduced for other
types of forms.) We consider now on M a 3-form of type Ry. We get easily on
M a 3-dimensional distribution D defined by D, = A(w,). But here we need the
following lemma.

6. Lemma. The distribution D is differentiable.

Proof. Around any point x € M we can find a local basis Xi,..., Xg of TM. We
take a vector field X = f1X7 + -+ + f6X6, where f1,..., f¢ are (locally defined)
differentiable functions. To find differentiable vector fields Y7, Y5, Y3 which span
the distribution D it is necessary to solve the equation (txw) A w = 0. This
leads to a system of six linear homogeneous equations the coefficients of which are
differentiable functions. The rest of the proof is then completely standard. |
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7. Definition. A local basis Xi,..., Xg of TM around a point x € M is called
local canonical basis for w if the following conditions are satisfied

a(X1,X9,X3) =0,0(X;, X;, X)) =0for 1 <i<j<3,k=4,5,6,
(X1, X4, X5) = 1, (X1, X5, X6) = 0, (X1, X¢, X4) =0,
a(Xo, X4, X5) =0, (X2, X5, Xg) = 1, a(X2, X6, X4) =0,
(X3, X4, X5) =0, (X3, X5, Xg) =0, (X3, X6, X4) =1,
(X4, X5, X6) = 0.
8. Proposition. Around every point x € M there exists a canonical basis for the

3-form w.

Proof. We choose first a complement D, of D in TM. This complement is also
a differentiable distribution. In this complement we take locally three linearly
independent vector fields Yy, Y5, Ys. We denote f = w(Yy,Ys,Ys). Because the
form w, is regular, there is vy € D, such that wy(vg, Ys 4, Ys2) = b # 0. Then we
take a vector field Y; around x lying in D such that Xy, = vo. Obviously, then
w(Yy,Ys,Ys) = g is non-zero in a neighborhood of . Taking X4 = Y3 — (f/g)Yo,
X5 =Y5, and Xg = Yg we get
w(Xa, X5, Xo) = a(Ys — (f/9)Y0,Y5,Ys) = w(Ya, Y5, Ys) — (f/9)w (Yo, Y5, Y6) =
=f=(f/9)g=0.
Now we have in a neighborhood of x € M three 1-forms, namely the forms
w(+, X4, X5), w(-, Xs5,Xs), and w(-, Xg,X4). The regularity of w, implies again
that these three forms are linearly independent. Consequently, there are uniquely
determined vector fields X, X2, X3 in D such that

W(X1>X43X5) = 17 w(XlaX57X6) = 07 W(X17X65X4) = 07
W(X27X47X5) = 07 W(XZaXEnXG) = 17 w(X27X67X4) = 07
w(X3, X4, X5) =0, w(X3,X5,X6) =0, w(Xs, Xe,Xq)=1.

The equations w(Xq, X2, X3) = 0 and w(X;, X;, X)) =0for 1 <i<j<3k=
4,5,6 are again satisfied automatically by virtue of Lemma 2. This finihes the
proof. (]

Now it suffices to take dual 1-forms wq,...,ws to the vector fields Xy,..., X4
and we get the following proposition.

9. Proposition. For a 3-form w of type Ry on M locally there exist 1-forms
Wi, ...,ws such that

w=wi ANwg Nws +wo2 ANws N\ wg + w3z Nwg N\ wy.
10. Example. On R let us consider the 3-form
w =dx1 A (dzg + z1d23) A dxs + dxg A das A dag + das A dag A (daey + x1dxs).
We have
dw = dxy Ndxy ANdzxs N\ dxs + des A dxg N dxy Adzs = 0.
On the other hand the distribution D = A(w) is spanned by the vector fields
o ad 0 0

—_—— — — T]——
8.231 ’ 8$27 8333 8334
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and is not integrable. This shows that the closeness of the 3-form w does not imply
the integrability of the associated distribution A(w).

We shall need a version of the Poincaré lemma. On RS we take coordinates
(z1,...,26) and consider an integrable 3-dimensional distribution D defined by the
equations dry = dxs = dxg = 0.

11. Lemma. Let 6 be a 2-form on R® such that df = 0 and 6|D = 0. Then there
exists a 1-form 1 on R® such that 6 = dn and n|D = 0.

Proof. We denote Q¥ the vector space of k-forms on R® and Z(QF) the subspace
consisting of closed forms. It is well known that there exists a linear mapping
E : Z(Q%) — Q! such that for every & € Z(92?) there is £ = dE(£). The problem is
that F(0) need not satisfy F(¢)|D = 0. But we have

dE(0)|D = 0|D = 0.

On any leaf L(eq,c5,c¢6) of the distribution D (i.e. x4 = ¢4, T5 = ¢5, T = Cg) We
can again apply the Poincaré lemma and we find that there exists on L(cq, c5,c6) a
function f(c, c;.cs) such that E(6)|L(ca, cs,c6) = df(cy,c5,c)- OF course, this does not
solve our problem. But we can use an obvious parametric version of the Poincaré
lemma. We can consider R? with coordinates (z1,z2,23). On R? we take a fam-
ily of 1-forms (¢, c;,cs depending on three parameters ca,cs,cs. Namely, the 1-
form (¢, ¢s.cs With parameters cq, cs, ¢g is the form E(6)|L(cq, ¢, cg) transferred to
R? under the natural identification (w1, 2, 23) — (21,22, 23,c4,¢5,¢6). Now the
Poincaré lemma with three parameters gives us a three parametric system of func-
tions fe, cs.co on R? such that (e, cq.co = dfey,cs,c5- I other words this means that
the function f(x1,z2, %3, T4, T5,%6) = fu, 5,206 (T1, T2, T3) satisfies

E(6)|D = df|D.
Taking now n = E(6) — df we can see that dn = 6 and n|D = 0. O
Let us recall now the following definition.

12. Definition. A 3-form w of type Ry on a manifold M is called integrable if
locally there exist coordinates z1,...,zg such that

w =dry Ndxy Ndrs + dxo N drs A dre + drs A drg A dxy.

It is obvious that if the 3-form w is integrable then w is closed and the associated
distribution A(w) is integrable. Now we are going to prove that these two conditions
are also sufficient for the integrability.

13. Theorem. A 3-form w of type Ry on a manifold M is integrable if and only if
the following two conditions are satisfied

(1) dw =0,

(2) the distribution D = A(w) is integrable.

Proof. We must show that the conditions are sufficient. Acording to Proposition 9
around every point € M we can find 1-forms wf,...,w{ such that

w=w ANwj Awf +wy Awi Awg +wh Awg Awy.

Because A(w) is integrable, we can find three functions fj, f¢, f& such that their
differentials df}, df¢, df§ are linearly independent and dfj|D = dfi|D = df§|D = 0.
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Then using Lemma 5 we can find 1-forms wf, wj,w} such that

w = wi Adfy Adfi +wh AdfE A df§+ wi A df A dfy.

We denote X7,..., X4 the canonical basis associated to the canonical dual basis
wl, wh, wh, dfy, dft, dfs. Obviously, we have
(d) 0 = dw = dwj Adfy Ndfy + dwh A dfs A df§ + dwh A dfg A dfy.

Applying tx;tx; on both sides we get
0 = (exyexydwy) - dfy Adfs + (exgexydws) - dfs A dfg + (exgexpdws) - dfg A dfy.
This shows that dw!(X], X}) = dwh(X1, X)) = dwi(X],X}) = 0. Similarly we
find that dw{ (X2, X3) = dwh(Xo,X3) = dw(X2,X3) = 0 and dwj(Xs,X1) =
dwh (X3, X1) = dwh (X3, X1) = 0. We have thus proved that
dw}|D = dwh|D = dw|D = 0.
Consequently dw] must have the following form
dwy =g11awy A dfy + grisw) Adfs + guiew) A dfg+
G12awy A dfy + graswy A dfs + graews A dfg+
g13awy A dfy + gizswy A dfs + gizews A dfg+
guasdfs A dfs + gisedfs A dfg + gieadfs A dfy.
Similar formulas we can write for dwj and dwj. Now taking into account the
equation (d) we find the following identities.
9116 + go14 + g315 = 0,
9126 + 9224 + g325 = 0,
9136 + 9234 + 9335 = 0.

Let us consider now the 2-form dwj. This form is closed because ddw] = 0 and
dwi|D = 0. According to Lemma 11 there exists a 1-form 6; such that 6;|D = 0
and df; = dw’. Again similar considerations are possible with the 2-forms dw/ and
dw. In this way we obtain three 1-forms 61, 65, and 65, which can be expressed in
the form

01 = haadfy + hisdfs + hisdfs,

O = hoadfy + hosdff + hosdf,

03 = hsadfy + hasdfy + haedf.
The 1-forms w] — 61, w) — 02, and wj — O3 are closed and consequently we can find
functions fi, f3, f4 such that wi — 6y = df}, W) — b2 = df}, and wh — 03 = df}. Now
it is obvious that the functions fi ..., f§ represent a local coordinate system. The
local dual basis dfy, dfs, df}, dfy, dfs, dff is a relatively good basis, but unfortunately

it need not be a canonical basis. The transition matrix from the canonical basis
wl, wh, wh, dfy, dft, df§ to the last basis is

1 0 0 —hys —his —hig

0 1 0 —hos —hos —hos
0 0 1 —hsy —hss —hss
0 0 0 1 0 0
0 0 O 0 1 0
0 0 O 0 0 1
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and it may happen that hig + hog + hss # 0.
Considering the equations dw| = df;, dw) = df3, and dwfy = dfs we get the
identities
Xihie = g116, Xshis = g126.  Xsh1i6 = G136,
Xihos = go14, Xohos = gooa, Xihos = goga,
Xihss = 9315, Xohss = gsas, Xshss = gsss.

Hence we obtain

X1(hi6 + haa + h3s) = gi16 + ga14 + g315 = 0,

Xo(hi6 + haa + has) = gi26 + gaza + g325 = 0,

X3(hi6 + haa + has) = g136 + gaza + g335 = 0.
We can see that the function h = hig + haa + h3s is constant on the leaves of the
foliation associated with the distribution D. In our coordinate system fi,..., f§
this means that h is a function of variables f}, f¢, f; only. We can choose a function
[ of variables fj, fZ, fs only such that 9I/0f§ = h. Now we take a dual basis in the
form

dfy + dl, df3, dfs, dfy, dfs, dfs.

The transition matrix of this basis with respect to the basis wi, wh,ws, df}, dft, df§
is

1 0 0 —huu+ 61/3]21 —his + 8[/8]05/) —hig+h
010 —has4 —has —hae

0 0 1 —h34 —h3s —hse

0 0 O 1 0 0

0 0 O 0 1 0

0 0 O 0] 0 1

and obviously satisfies the condition (*). This implies that the dual basis df] +
di, dfs, dfs, dfy, dft, dff is canonical. Now it suffices to set f1 = f{ + 1, fa = f4, f3 =
féaf4 = fz,/vaE) = févfG = ff/j and we have

w = dfi Ndfs Ndfs + df2 Ndfs A dfs + dfs A dfe A df.

O

Let us assume now that there exists on M a symmetric conection V such that
Vw = 0. Then using [2], Cor. 8.6 we find that dw = Alt(Vw) = 0. Next for
arbitrary vector fields X, X1, X5,Y we can calculate

(Vy (xw)(X1, X2) = Y((txw) (X1, X2)
—(xw)(Vy Xy, X3) — (txw) (X1, Vy Xa) =
=Y (w(X, X1,X5)) —w(X,Vy X1, X2) —w(X, X1,Vy Xs) =
= (Vyw)(X, X1, X2) + w(Vy X, X1, Xo) + w(X, Vy X1, Xo) + w(X, X1, Vy Xs)

—w(X,Vy X1, Xo) —w(X, X1,Vy X)) =w(Vy X, X1, Xs) = (tvy xw) (X1, Xa2).

Now let us assume that a vector field X lies in the distribution D. We have then

txw) Aw = 0 and consequently

0=Vy((txw) Aw) = (Vy(ixw)) ANw = (tvyxw) A w,
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which show that V preserves the distribution D. Because the connection V is
symmetric, this implies that the distribution D is integrable. Together this means
that the 3-form w is integrable. We will see that the converse is also true.

14. Theorem. A 3-form w of type Ry on a paracompact manifold M is integrable
if and only if there exists on M a symmetric connection V such that Vw = 0.

Proof. We must prove that if w is integrable then there exists a symmetric connec-
tion V such that Vw = 0. We can cover M by a locally finite open covering of M
consisting of charts {U*}e; with coordinates z7, ...,z such that on U we have
w = da} Adz) Adad + dey A ded A dag + doy Adag A dxy.
On each U* we take a connection V* defined by
Vg/ax%(a/axﬁ) =0, 4,j=1,...,6.

It is obvious that this connection is symmetric and satisfies V*w = 0. Now it
remains to glue these connections together. We take a partition of unity {a*}xer
subordinate to the covering {U*}xc7. Then it suffices to define
V=) o'V
el
and we have on M a symmetric connection satisfying Vw = 0. O
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