Non－involutive symmetries on parabolic contact geometries

Jan Gregorovič

（joint work with L．Zalabova）

Parabolic contact geometry

Let G be simple Lie group and P parabolic subgroup
corresponding to contact grading $\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathrm{~g}_{2}$. Parabolic contact geometry is Cartan geometry ($p: \mathcal{G} \rightarrow M, \omega$) of type (G, P).

Parabolic contact geometry

Let G be simple Lie group and P parabolic subgroup corresponding to contact grading $\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$. Parabolic contact geometry is Cartan geometry $(p: \mathcal{G} \rightarrow M, \omega)$ of type (G, P).

Equivalently, a parabolic geometry is a contact distribution $\mathcal{D} \subset T M$ together with an additional structure depending on the type (G, P). Automorphisms of the parabolic contact geometry are diffeomorphisms of M preserving the contact distribution and the additional structure.

Symmetries of parabolic contact geometries

Definition

We say that automorphism $f: M \rightarrow M$ of the parabolic contact geometry $(p: \mathcal{G} \rightarrow M, \omega)$ is a symmetry at $x \in M$ if
(1) $f(x)=x$
(2) $\left.T_{x} f\right|_{\mathcal{D}}=-i d_{\mathcal{D}}$

We say that symmetry is involutive if $f^{2}=\mathrm{id}_{M}$. We say that parabolic contact geometry is symmetric if there is symmetry at each $x \in M$.

Symmetries of parabolic contact geometries

Definition

We say that automorphism $f: M \rightarrow M$ of the parabolic contact geometry $(p: \mathcal{G} \rightarrow M, \omega)$ is a symmetry at $x \in M$ if
(1) $f(x)=x$
(2) $\left.T_{x} f\right|_{\mathcal{D}}=-i d_{\mathcal{D}}$

We say that symmetry is involutive if $f^{2}=\operatorname{id}_{M}$. We say that parabolic contact geometry is symmetric if there is symmetry at each $x \in M$.

If there is symmetry at x, then harmonic torsion vanishes at x.
There can be symmetry at a point with non-zero harmonic curvature only of parabolic contact geometries of (para)-CR type or contact projective type.

Description of symmetries of parabolic contact geometries

Theorem

Let $\phi: \mathcal{G} \rightarrow \mathcal{G}$ be the P-bundle morphism covering symmetry f at x. Then there are $u \in \mathcal{G}$ in the fiber over x, inner automorphism of g given by element $s \in G_{0}$ acting as $(-1)^{i}$ on \mathfrak{g}_{i} and $Z \in \mathfrak{g}_{2}$ such that

$$
\phi(u)=u s \exp (Z)
$$

Description of symmetries of parabolic contact geometries

Theorem

Let $\phi: \mathcal{G} \rightarrow \mathcal{G}$ be the P-bundle morphism covering symmetry f at x. Then there are $u \in \mathcal{G}$ in the fiber over x, inner automorphism of \mathfrak{g} given by element $s \in G_{0}$ acting as $(-1)^{i}$ on \mathfrak{g}_{i} and $Z \in \mathfrak{g}_{2}$ such that

$$
\phi(u)=u s \exp (Z)
$$

If $\phi(u)=u s \exp (Z)$, then the symmetry is involutive if and only if $Z=0$.
Thus involutive symmetries are linear in normal coordinates at u. However, non-involutive symmetries are not linear in any normal coordinates at u.

Involutive symmetries in normal coordinates

We denote $F l_{t}^{\omega^{-1}(X)}$ the flow of the constant vector field $\omega^{-1}(X)$ for $X \in \mathfrak{g}_{-}$.
Then $f\left(p \circ \mathrm{Fl}_{t}^{\omega^{-1}(X)}(u)\right)$ is normal coordinate system given by $u \in \mathcal{G}$ with coordinates (in some neighborhood of 0) in \mathfrak{g}_{-}.

Involutive symmetries in normal coordinates

We denote $F l_{t}^{\omega^{-1}(X)}$ the flow of the constant vector field $\omega^{-1}(X)$ for $X \in \mathfrak{g}_{-}$.
Then $f\left(p \circ F l_{t}^{\omega^{-1}(X)}(u)\right)$ is normal coordinate system given by $u \in \mathcal{G}$ with coordinates (in some neighborhood of 0) in \mathfrak{g}_{-}.

Suppose $\phi(u)=u s$ holds. Then the underlying involutive symmetry f of ϕ has form

$$
f\left(p \circ F l_{t}^{\omega^{-1}(X)}(u)\right)=p \circ F l_{t}^{\omega^{-1}(\operatorname{Ad}(s) X)}(u)
$$

and thus

$$
\begin{aligned}
& f\left(p \circ F l_{t}^{\omega^{-1}}(X)(u)\right)=p \circ F l_{-t}^{\omega^{-1}(X)}(u) \text { holds for } X \in \mathfrak{g}_{-1} \\
& f\left(p \circ F l_{t}^{\omega^{-1}(X)}(u)\right)=p \circ F l_{t}^{\omega^{-1}(X)}(u) \text { holds for } X \in \mathfrak{g}_{-2}
\end{aligned}
$$

Comparison with model

Theorem (Frances, Melnick 2010)

Let φ be an automorphism of the parabolic geometry $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P). Assume:
(1) $\varphi(u)=u p$ for $u \in \mathcal{G}$ and $p \in P$,
(2) $\mathrm{Fl}_{t}^{\omega^{-1}(X)}(u)$ is defined for t in an interval I around 0 and for some $X \in \mathfrak{g}$
(3) $p e^{t X}=e^{c(t) X} r(t)$ in G, where $r(t): I \rightarrow P$ with $r(0)=p$ and $C: I \rightarrow I^{\prime}$ is a diffeomorphism fixing 0 .
Then $\mathrm{Fl}_{t}^{\omega^{-1}(X)}(u)$ is also defined on I^{\prime} and

$$
\varphi \circ \mathrm{Fl}_{t}^{\omega^{-1}(X)}(u)=F l_{c(t)}^{\omega^{-1}(X)}(u) r(t)
$$

Non-involutive symmetries in normal coordinates

If $\phi(u)=u s \exp (Z)$ for $0 \neq Z \in g_{2}$, then the comparison with the model provides the following results:
There is unique $X_{-2} \in g_{-2}$ such that $\left(X_{-2}, E=\left[X_{-2}, Z\right], Z\right)$ is an $s l_{2}$-triple, where E is the grading element, and

$$
s \exp (Z) e^{t X_{-2}}=e^{\frac{t}{1+t} X_{-2}} s \exp (\log (1+2 k t) E) \exp \left(\frac{1}{1+t} Z\right)
$$

thus $f\left(p \circ F l_{t}^{\left(\omega^{-1}\right.}\left(X_{-2}\right)(u)\right)=p \circ F l_{\frac{t}{1+t}}^{\omega^{-1}}\left(X_{-2}\right)(u)$ holds.

Non-involutive symmetries in normal coordinates

If $\phi(u)=u s \exp (Z)$ for $0 \neq Z \in \mathrm{~g}_{2}$, then the comparison with the model provides the following results:
There is unique $X_{-2} \in g_{-2}$ such that $\left(X_{-2}, E=\left[X_{-2}, Z\right], Z\right)$ is an $s l_{2}$-triple, where E is the grading element, and

$$
s \exp (Z) e^{t X_{-2}}=e^{\frac{t}{1+t} X_{-2}} s \exp (\log (1+2 k t) E) \exp \left(\frac{1}{1+t} Z\right)
$$

thus $f\left(p \circ F l_{t}^{\omega^{-1}\left(X_{-2}\right)}(u)\right)=\left.p \circ F\right|_{\frac{t}{1+t}} ^{\omega^{-1}}\left(X_{-2}\right)(u)$ holds.
There are $X \in \mathfrak{g}_{-1}$ (they form open subset of projectivization of \mathfrak{g}_{-1}) such that $[X,[X,[X, Z]]]=0$ and

$$
s \exp (Z) e^{t X}=e^{-t X} s \exp \left(Z-[t X, Z]+\frac{1}{2}[t X,[t X, Z]]\right)
$$

thus $f\left(p \circ F l_{t}^{\omega^{-1}(X)}(u)\right)=p \circ F l_{-t}^{\omega^{-1}(X)}(u)$ holds for such X.

Powers of non-involutive symmetries

If $\phi(u)=u s \exp (Z)$ for $0 \neq Z \in \mathfrak{g}_{2}$, then $\phi^{2}(u)=u \exp (2 Z)$, $\phi^{2 k}(u)=u \exp (2 k Z)$ and

$$
\exp (2 k Z) e^{t X_{-2}}=e^{\frac{t}{1+2 t k} X-2} \exp (\log (1+2 t k) E) \exp \left(\frac{2 k}{1+2 t k} Z\right)
$$

Powers of non-involutive symmetries

$$
\begin{aligned}
& \text { If } \phi(u)=u s \exp (Z) \text { for } 0 \neq Z \in \mathfrak{g}_{2} \text {, then } \phi^{2}(u)=u \exp (2 Z), \\
& \phi^{2 k}(u)=u \exp (2 k Z) \text { and } \\
& \quad \exp (2 k Z) e^{t X_{-2}}=e^{\frac{t}{1+2 t k} X-2} \exp (\log (1+2 t k) E) \exp \left(\frac{2 k}{1+2 t k} Z\right) .
\end{aligned}
$$

Thus from comparison with model the following holds for harmonic curvature κ_{H} of homogeneity $h \geq 1$

$$
(1+2 t k)^{h} \kappa_{H}\left(p \circ F l_{t}^{\omega^{-1}\left(X_{-2}\right)}(u)\right)=\kappa_{H}\left(p \circ F l_{\frac{t}{1+2 \pi k}}^{\omega^{-1}\left(X_{-2}\right)}(u)\right)
$$

Powers of non-involutive symmetries

$$
\begin{aligned}
& \text { If } \phi(u)=u s \exp (Z) \text { for } 0 \neq Z \in \mathfrak{g}_{2} \text {, then } \phi^{2}(u)=u \exp (2 Z), \\
& \phi^{2 k}(u)=u \exp (2 k Z) \text { and }
\end{aligned}
$$

$$
\exp (2 k Z) e^{t X_{-2}}=e^{\frac{t}{1+2 t k} X-2} \exp (\log (1+2 t k) E) \exp \left(\frac{2 k}{1+2 t k} Z\right)
$$

Thus from comparison with model the following holds for harmonic curvature κ_{H} of homogeneity $h \geq 1$

$$
(1+2 t k)^{h} \kappa_{H}\left(p \circ F l_{t}^{\omega^{-1}\left(X_{-2}\right)}(u)\right)=\kappa_{H}\left(p \circ F l_{\frac{+}{1+2 t k}}^{\omega^{-1}\left(X_{-2}\right)}(u)\right) .
$$

For $t \neq 0$ and $k \rightarrow \infty, \kappa_{H}\left(p \circ \mathrm{Fl}_{\frac{t}{1+21 k}}^{\omega^{-1}\left(X_{-2}\right)}(u)\right)$ converges to $\kappa_{H}(x)$ and
$(1+2 t k)^{h}$ converges to $\pm \infty$. This implies that $\kappa_{H}\left(p \circ F l_{t}^{\omega^{-1}\left(X_{-2}\right)}(u)\right)=0$ for all $t \in I$.

Consequences of existence of non-involutive symmetry

The same arguments using chains as in [Cap, Melnick 2012] allow us to prove.

Theorem

On parabolic contact geometry, suppose there is non-involutive symmetry at x, then there is open neighborhood of x, where the parabolic contact geometry is flat.

Consequences of existence of non-involutive symmetry

The same arguments using chains as in [Cap, Melnick 2012] allow us to prove.

Theorem

On parabolic contact geometry, suppose there is non-involutive symmetry at x, then there is open neighborhood of x, where the parabolic contact geometry is flat.

This to together with our results for involutive symmetries prove.

Theorem

A symmetric parabolic contact geometry is either flat or a one dimensional fiber bundle over a symmetric space with conformaly symplectic structure invariant w.r.t. to the symmetries.

References

- C. Frances and K. Melnick, Nilpotent groups of conformal flows on compact pseudo-Riemannian manifolds, Duke Math. J., vol. 153, no. 3, pp. 511550, 2010.
- J. Gregorovič, General construction of symmetric parabolic geometries, Differential Geometry and its Applications 30, (2012), 450-476
- J. Gregorovič, L. Zalabová, Symmetric parabolic contact geometries and symmetric spaces, Transformation Groups, Volume 18 (2013), Issue 3 (September), 711-737
- A. Čap, and K. Melnick, Essential Killing fields of parabolic geometries, Indiana Univ. Math. J. 62, (2013), 1917-1953.

