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1. Machine learning and statistical learning

e Machine learning is a part of statistical
learning which can be translated in algorithms.

e Mathematical foundation of machine learning
is statistical learning theory (Vladimir Vapnik).

e Machine learning/statistical learning theory
~ Quantum field theory /theoretical physics.

e David Mumford (statistical pattern theory)
and Steve Smale (mathematical foundation
of learning theory) are among first movers.



e ‘‘Learning is a problem of function estimation
on the basis of empirical data” (Vapnik).

e Machine learning is also related to Riemannian
geometry, algebraic geometry, topology, non-
linear functional analysis, measure theory, category
theory, logic.

e A mathematical model of statistical learning
consists of a learning machine, observables
which are also called empirical data, and a
learning algorithm.



1. A learning machine has to estimate an
information source - a probability distribution-
by observation. A probability distribution is
a probability measure on (€2, A4). A learning
machine, also called a statistical model, is a
family of probability measures on (2, A, P),
to which we believe/or know that the true
probability distribution belongs.

2. Observables in statistical learning theory
represent “outcomes’” of experiments.

The outcomes are subjected to a true probability
distribution which we dont know and we need



to estimate. More often than in physics, we
have to repeat our experiments very long,
and we observe a sequence of usually i.i.d.
(independent identically distributed)

Statistical learning: construct a method to
estimate the true probability distribution from
the set D,, using machine learning.

Definition(classical math. statistics, AJLS
2015, AJLS 2016, AJLS2017)



- 2 - 2 measurable space,
- S(2) - the Banach space of finite signed

measure with total variation norm,
- (M,2,p) - a parametrized measure model,

where M is a Banach manifold,

p: M — M(Q) CS(N) is a Frechét-Cl-map.
- (M,2,p) is called a statistical model if it
consists only of probability measures.



2. Learning algorithms and estimators

Given a sequence Dy = (Xq1,---,Xn) € ()"
and a statistical model (P,€2,p), we need to
find out the true distribution pgqe Probably
in P using Dy,.

Definition. An estimator is a map 2 —
P.

e pirue May not belong to (P, 2, p).



The most popular criterion used in mathematical
statistics for rating the efficiency of an estimator
is the Cramér-Rao criterion.

Definition. The Fisher metric g is a quadratic
form on T'M of a parametrized measure model
(M,2,p) that is defined by

ge(V, W) := |9y log p - Ow 109 PlI11(q p(e))
for V,W € TgM.

This formula has been derived in AJLS 2016
to generalize the classical case



when p(¢) = p(§,w) - o and

Oy log p(§,w)

p(§w)
— a(viv) = [(OIPEDDy2 ¢ yapo(e)

Q  p(&w)

A necessary condition for the existence of
the Fisher metric in the classical case is that
p(&,w) € L2(2,p(£)). But we also need the
continuity of the Fisher metric, when the

base measure p(£) varies. We develop a
new theory of the Banach spaces of roots

of measures.
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Definition. (simplified version) A statistical
model is called 2-integrable if the Fisher metric
exists and continuous. A 2-integrable statistical
model is called singular, if the Fisher metric
degenerate at some point.

Remark. The Fisher metric has been invented

by Fisher to quantify “information’” of a statistical
model. (close to Shannon’s information: the
same concept of entropy). It has been used
first by Rao as a Riemannian metric .Almost

all statistical models contain singularity and

we cannot ignore them.



People therefore until [JLS2017] assume some
extra conditions for estimation problem on
singular statistical models.

When is the Fisher metric degenerate?

kerg=kerp: P — M4 (Q2) C S(92).

Definition. [JLS2017] A reduced tangent
space T§P = T¢P/kerp. The Fisher reduced
metric is the metric on the Fisher reduced
tangent space whose pull back is the Fisher

metric.



3. Cramér-Rao inequality and efficient
estimation

Given a statistical model (P, <2,p), we set

L%(Q) = {y € L?(2,p(£)) for all ¢ € P}.

e IV - a topological vector space.
e V1 the vector space of all V-valued functions
on P.

For an estimator o : €2 — P we set

L2(P,V) = {p € VF|lopos € LH(Q)VI € V*},



(05(6),1) 1= Epy ¢y (lood) = /Q lowod dp(E)VI € V*.

Definition The difference
be 1= 5 —p € (V*)©

will be called the bias of the estimator o
w.r.t. the map .

Definition Given ¢ € L2(P, V) the estimator
o is called p-unbiased, if o5 = ¢, equivalently,
b2 = 0.



For I,k € V* we set
2 -~ - —_
Vp(g)[a](l, k) =
By ey [(¢'06—Ep () ('05))-(¢"06— By ) (9705))],
(02) 1O U k) = (dps, dipk),-1(&).
If PCR"and ¢ : P — R™defines coordinates

of P, if o is an biased estimator and, then
(g2)~ 1 is just the inverse of the Fisher metric.



Theorem(JLS2017) Let (P, 2,p) be a finite
dimensional 2-integrable statistical model, o :
Q — P an estimator and ¢ € L2(P,V). Then
the difference V&g) [6]—(g%)~1(¢) is a positive
semi-definite quadratic form on V/ for any
e P.

Assume that V is finite dimensional and ¢ is

a coordinate mapping and o is p-unbiased.
We get from the general Cramér-Rao inequality
the well-known Cramér-Rao inequality

Vel] > a1 (¢).



This classical Cramer-Rao inequality is often
compared with the Heisenberg uncertainty in
physics !

Further results: - First examples of singular
statistical models that admits efficient estimation.
(Complicated technique using resolution of
singularity in algebraic geometry). This example
show that our extension of the Cramér-Rao
inequality to singular spaces is optimal.



- First examples of infinite dimensional statistical
model that admits efficient biased estimations.
(complicated technique using RKHS).

Future directions

e Define the Fisher gradient flow on singular
statistical model and understand its convergences.

e Prove that biased estimator under certain
condition converges to the true estimation.



e Develop geometric methods for infinite dimensional
exponential models: they are used in big
data theory.

e Improve the gradient flow method and sell
it to Google, Facebook, Elon Musk, etc, .

e Develop geometric theory of unsupervised
learning.
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