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1. Machine learning and statistical learning

• Machine learning is a part of statistical
learning which can be translated in algorithms.

•Mathematical foundation of machine learning
is statistical learning theory (Vladimir Vapnik).

•Machine learning/statistical learning theory
∼Quantum field theory /theoretical physics.

• David Mumford (statistical pattern theory)
and Steve Smale (mathematical foundation
of learning theory) are among first movers.



• “Learning is a problem of function estimation

on the basis of empirical data” (Vapnik).

•Machine learning is also related to Riemannian

geometry, algebraic geometry, topology, non-

linear functional analysis, measure theory, category

theory, logic.

• A mathematical model of statistical learning

consists of a learning machine, observables

which are also called empirical data, and a

learning algorithm.



1. A learning machine has to estimate an

information source - a probability distribution-

by observation. A probability distribution is

a probability measure on (Ω,A). A learning

machine, also called a statistical model, is a

family of probability measures on (Ω,A, P ),

to which we believe/or know that the true

probability distribution belongs.

2. Observables in statistical learning theory

represent “outcomes” of experiments.

The outcomes are subjected to a true probability

distribution which we dont know and we need



to estimate. More often than in physics, we

have to repeat our experiments very long,

and we observe a sequence of usually i.i.d.

(independent identically distributed)

Dn = {X1, · · · , Xn|Xi ∈ Ω}.

Statistical learning: construct a method to

estimate the true probability distribution from

the set Dn, using machine learning.

Definition(classical math. statistics, AJLS

2015, AJLS 2016, AJLS2017)



- Ω - a measurable space,

- S(Ω) - the Banach space of finite signed

measure with total variation norm,

- (M,Ω,p) - a parametrized measure model,

where M is a Banach manifold,

p : M →M(Ω) ⊂ S(Ω) is a Frechét-C1-map.

- (M,Ω,p) is called a statistical model if it

consists only of probability measures.



2. Learning algorithms and estimators

Given a sequence Dn = (X1, · · · , Xn) ∈ (Ω)n

and a statistical model (P,Ω,p), we need to

find out the true distribution ptrue probably

in P using Dn.

Definition. An estimator is a map Ω →
P .

• ptrue may not belong to (P,Ω,p).



The most popular criterion used in mathematical

statistics for rating the efficiency of an estimator

is the Cramér-Rao criterion.

Definition. The Fisher metric g is a quadratic

form on TM of a parametrized measure model

(M,Ω,p) that is defined by

gξ(V,W ) := ||∂V log p · ∂W log p||L1(Ω,p(ξ))

for V,W ∈ TξM .

This formula has been derived in AJLS 2016

to generalize the classical case



when p(ξ) = p(ξ, ω) · µ0 and

∂V log p =
∂V log p(ξ, ω)

p(ξ, ω)
.

=⇒ g(V, V ) =
∫

Ω
(
∂V log p(ξ, ω)

p(ξ, ω)
)2p(ξ, ω)dµ0(ω).

A necessary condition for the existence of

the Fisher metric in the classical case is that

p(ξ, ω) ∈ L2(Ω,p(ξ)). But we also need the

continuity of the Fisher metric, when the

base measure p(ξ) varies. We develop a

new theory of the Banach spaces of roots

of measures.



Definition. (simplified version) A statistical

model is called 2-integrable if the Fisher metric

exists and continuous. A 2-integrable statistical

model is called singular, if the Fisher metric

degenerate at some point.

Remark. The Fisher metric has been invented

by Fisher to quantify “information” of a statistical

model. (close to Shannon’s information: the

same concept of entropy). It has been used

first by Rao as a Riemannian metric .Almost

all statistical models contain singularity and

we cannot ignore them.



People therefore until [JLS2017] assume some

extra conditions for estimation problem on

singular statistical models.

When is the Fisher metric degenerate?

ker g = ker p : P→M+(Ω) ⊂ S(Ω).

Definition. [JLS2017] A reduced tangent

space T̂ξP = TξP/kerp. The Fisher reduced

metric is the metric on the Fisher reduced

tangent space whose pull back is the Fisher

metric.



3. Cramér-Rao inequality and efficient

estimation

Given a statistical model (P,Ω,p), we set

L2
P (Ω) := {ψ ∈ L2(Ω,p(ξ)) for all ξ ∈ P}.

• V - a topological vector space.

• V P the vector space of all V -valued functions

on P .

For an estimator σ̂ : Ω→ P we set

L2
σ̂(P, V ) := {ϕ ∈ V P | l◦ϕ◦σ̂ ∈ L2

P (Ω)∀l ∈ V ∗},



〈ϕσ̂(ξ), l〉 := Ep(ξ)(l◦ϕ◦σ̂) =
∫

Ω
l◦ϕ◦σ̂ dp(ξ)∀l ∈ V ∗.

Definition The difference

b
ϕ
σ̂ := ϕσ̂ − ϕ ∈ (V ∗∗)P

will be called the bias of the estimator σ̂

w.r.t. the map ϕ.

Definition Given ϕ ∈ L2
σ̂(P, V ) the estimator

σ̂ is called ϕ-unbiased, if ϕσ̂ = ϕ, equivalently,

b
ϕ
σ̂ = 0.



For l, k ∈ V ∗ we set

V
ϕ
p(ξ)[σ̂](l, k) :=

Ep(ξ)[(ϕl◦σ̂−Ep(ξ)(ϕl◦σ̂))·(ϕk◦σ̂−Ep(ξ)(ϕk◦σ̂))],

(gϕσ̂)−1(ξ)(l, k) := 〈dϕlσ̂, dϕ
k
σ̂〉g−1(ξ).

If P ⊂ Rn and ϕ : P → Rn defines coordinates

of P , if σ̂ is an biased estimator and, then

(gϕσ̂)−1 is just the inverse of the Fisher metric.



Theorem(JLS2017) Let (P,Ω,p) be a finite

dimensional 2-integrable statistical model, σ̂ :

Ω→ P an estimator and ϕ ∈ L2
σ̂(P, V ). Then

the difference V ϕp(ξ)[σ̂]−(gϕσ̂)−1(ξ) is a positive

semi-definite quadratic form on V ′ for any

ξ ∈ P .

Assume that V is finite dimensional and ϕ is

a coordinate mapping and σ̂ is ϕ-unbiased.

We get from the general Cramér-Rao inequality

the well-known Cramér-Rao inequality

Vξ[σ̂] ≥ g−1(ξ).



This classical Cramer-Rao inequality is often

compared with the Heisenberg uncertainty in

physics !

Further results: - First examples of singular

statistical models that admits efficient estimation.

(Complicated technique using resolution of

singularity in algebraic geometry). This example

show that our extension of the Cramér-Rao

inequality to singular spaces is optimal.



- First examples of infinite dimensional statistical

model that admits efficient biased estimations.

(complicated technique using RKHS).

Future directions

• Define the Fisher gradient flow on singular

statistical model and understand its convergences.

• Prove that biased estimator under certain

condition converges to the true estimation.



• Develop geometric methods for infinite dimensional

exponential models: they are used in big

data theory.

• Improve the gradient flow method and sell

it to Google, Facebook, Elon Musk, etc, .

• Develop geometric theory of unsupervised

learning.
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- H. V. Lê, P. Somberg and J. Vanžura,

Poisson smooth structures on stratified

symplectic spaces, Springer Proceeding in

Mathematics and Statistics, Volume 98,

(2015), chapter 7, p. 181-204.

- K. Muandet, K. Fukumizu, B.

Sriperumbudur and B. Schölkopf, Kernel

Mean Embedding of Distributions: A

Review and Beyonds, arXiv:1605.09522.



- V. N. Vapnik, The nature of statistical

learning theory, Springer, 1999.

- S. Watanabe, Algebraic Geometry and

Statistical Learning Theory, Cambridge

University Press, 2009.

THANK YOU!


