Homology Smale-Barden manifolds with K-contact and Sasakian structures

Aleksy Tralle
joint work with Vicente Muñoz and Juan Angel Rojo

University of Warmia and Mazury

Symplectic and Kaehler manifolds

$\left(M^{2 n}, \omega\right), \omega \in \Omega^{2}(M)$ such that $d \omega=0$ and $\omega^{n}=\omega \wedge \cdots \wedge \omega \neq 0$. $J: T M \rightarrow T M, J^{2}=-\mathrm{Id}$ is called compatible with ω :

$$
\omega(J X, J Y)=\omega(X, Y), \text { and } g(X, Y)=\omega(J X, Y)
$$

is a Riemannian metric on M. Kaehler manifolds:
$(g, \omega, J), J$ is integrable, if

$$
[J X, J Y]-J[J X, Y]-J[X, J Y]-[X, Y]=0
$$

If J is integrable, we say that (M, ω, J, g) is Kaehler.

Contact manifolds

(Closed) $M^{2 n+1}$.
A contact form: $\eta \in \Omega^{1}(M)$ such that

$$
\eta \wedge(d \eta)^{n} \neq 0
$$

. Associates:

- $\mathcal{F} \subset T M$ a distribution $\mathcal{F}=\mathrm{Ker} \eta$ of codimension 1 ;
- Reeb vector field $\xi: M \rightarrow T M$ on M with the properties

$$
\eta(\xi)=1, i_{\xi} d \eta=0
$$

K-contact manifolds

(M, η) is K-contact if there is an endomorphism Φ of $T M$ such that:
(1) $\Phi^{2}=-l d+\xi \otimes \eta$,
(2) η is compatible with Φ :

$$
d \eta(\Phi X, \Phi Y)=d \eta(X, Y)
$$

for all X, Y and $d \eta(\Phi X, X)>0$ for all nonzero $X \in \operatorname{Ker} \eta$;
B

$$
g(X, Y)=d \eta(\Phi(X), Y)+\eta(X) \eta(Y)
$$

is a Riemannian metric on M;
(4) ξ is a Killing vector field with respect to the Riemannian metric g, $\left(\mathcal{L}_{\xi} g=0\right)$.

Sasakian manifolds

For $(M, \eta, \Phi, \xi, g))$ define the metric cone as

$$
\mathcal{C}(M)=\left(M \times \mathbb{R}^{>0}, t^{2} g+d t^{2}\right)
$$

Define I: TC $(M) \rightarrow T \mathcal{C M}$:
(1) $I(X)=\Phi(X)$ on Ker η;
(2) $I(\xi)=t \frac{\partial}{\partial t}, I\left(t \frac{\partial}{\partial t}\right)=-\xi$.

Definition

(M, η, ξ, Φ, g) is Sasakian if I is integrable.

Examples of K-contact and Sasakian: Boothby-Wang

$\left(B, \omega_{B}\right)$ symplectic, $[\omega] \in H^{2}(B, \mathbb{Z}), S^{1} \rightarrow M \rightarrow B,\left[\omega_{B}\right] \in H^{2}(B, \mathbb{Z})$. Kobayashi connection:

$$
\theta \in \Omega^{1}\left(M, L\left(S^{1}\right)\right)=\Omega(M), d \theta=\pi^{*} \omega_{B}, \pi: M \rightarrow B .
$$

\Longrightarrow a connection metric g on M, θ is contact.

Prototype

Any Boothby-Wang S^{1}-bundle carries a K-contact structure. If B is Kaehler, then M is Sasakian.
the Hopf bundle

$$
S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C} P^{n}
$$

General case

$(M, \eta, \xi, \Phi, g), \xi$ is Killing $\Longrightarrow S^{1} \times M \rightarrow M, \xi \Longrightarrow$ a Riemannian foliation.

Definition

(M, η, ξ, Φ, g) is quasi-regular, if \exists a positive $q \in \mathbb{Z}$ such that $\forall m \in M \exists U_{m}$ each leaf passes U_{m} at most q times.

Theorem

(M, η, ξ, Φ, g) is quasi-regular, then M / S^{1} has a natural structure of a symplectic cyclic orbifold, and the projection $M \rightarrow M / S^{1}$ is a Seifert bundle. If (M, η, ξ, Φ, g) is Sasakian, then M / S^{1} is a cyclic Kaehler orbifold.

Arbitrary K-contact and Sasakian

Theorem (Rukimbira)
Any K-contact (Sasakian) admits a quasi-regular K-contact (Sasakian) structure.

Understanding the construction of K-contact manifolds

- Orbifolds are oriented 4-dimensional with atlas $\left(\left\{\tilde{U}_{\alpha}, \phi_{\alpha}, \Gamma_{\alpha}\right)\right\}, \tilde{U}_{\alpha} \subset \mathbb{R}^{4}, \Gamma_{\alpha}<S O(4), \Gamma_{\alpha}=\mathbb{Z}_{m_{\alpha}}$.
- Locally: $x \in X$, a chart $\phi: \tilde{U} \rightarrow U, \phi(0)=x$, isotropy group $\Gamma=\mathbb{Z}_{m} \Longrightarrow$ any $\gamma \in \Gamma$ is conjugate to $\operatorname{diag}\left(\exp \left(2 \pi i j_{1} / m\right), \exp \left(2 \pi i j_{2} / m\right)\right)$,
- $\tilde{U}=\mathbb{C}^{2}, \Gamma=\langle\xi\rangle, \xi=e^{\frac{2 \pi i}{m}}$,

$$
\xi \cdot\left(z_{1}, z_{2}\right)=\left(\xi^{1^{1}} z_{1}, \xi^{j_{2}} z_{2}\right)
$$

- m is an order of a point $x \in X$.
- set $m_{1}=\operatorname{gcd}\left(j_{1}, m\right), m_{2}=\operatorname{gcd}\left(j_{2}, m_{2}\right)$ - multiplicities of the isotropy surfaces.

Understanding, local classification of points

(1) Regular points: $m(x)=m=1$,
(2) isotropy points: $m(x)>1$
(3) smooth points: $m(x)>1$, but $U \cong$ to a ball in \mathbb{C}^{2} :
$m(x)>1, m_{1}>1, m_{2}>1, m_{1} m_{2}=m$
(4) singular points $=$ not smooth.

Extra assumption of semi-regularity

We consider orbifolds X, whose all points are smooth.

Example: smooth points

$$
m=m_{1} m_{2}, \mathbb{Z}_{m}=\langle\xi\rangle, m_{1}>1, m_{2}>1, \operatorname{gcd}\left(j_{1}, j_{2}, m\right)=1
$$

Locally

$$
D_{1}=\left\{\left(z_{1}, 0\right)\right\}, D_{2}=\left\{\left(0, z_{2}\right)\right\}
$$

D_{1} and D_{2} are the isotropy surfaces intersecting transversely in one point, e.g. the multiplicity of D_{1} is m_{2}, the multiplicity of D_{2} is m_{1}, and \mathbb{Z}_{m} acts on \mathbb{C}^{2} as $\mathbb{Z}_{m_{2}} \times \mathbb{Z}_{m_{1}} \Longrightarrow \mathbb{C}^{2} / \mathbb{Z}_{m} \cong \mathbb{C}^{2}$.

Construction and determining orbit invariants

Proposition

Let X be a symplectic smooth oriented 4-manifold with symplectic surfaces D_{i} intersecting transversely and positively, and coefficients $m_{i}>1$ such that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ if D_{i} and D_{j} intersect. Then, there exists a smooth symplectic orbifold X with isotropy sufaces D_{i} of multiplicities m_{i}.

Seifert bundles

A Seifert bundle over X is an oriented 5-manifold equipped with a smooth S^{1}-action and a continuous map $\pi: M \rightarrow X$ such that for each orbifold chart ($\tilde{U}, \phi, \mathbb{Z}_{m}$), there is a commutative diagram

$$
\begin{array}{ccc}
\left(S^{1} \times \tilde{U}\right) / \mathbb{Z}_{m} & \cong & \pi^{-1}(U) \\
\pi \downarrow & & \pi \downarrow \\
\tilde{U} / \mathbb{Z}_{m} & \cong & U
\end{array}
$$

where the action of \mathbb{Z}_{m} on S^{1} is by multiplication by ξ, and the top diffeomorphism is S^{1}-equivariant.

Construction of Seifert bundles from orbit invariants

Proposition

Let X be an orbifold with orbit invariants D_{i}, m_{i}. Let $0<j_{i}<m_{i}$ with $\operatorname{gcd}\left(j_{i}, m_{i}\right)=1$. Let $0<b_{i}<j_{i}$ such that $j_{i} b_{j}=1\left(\bmod m_{i}\right)$. Finally, let B be a complex line bundle over X. Then there exists a Seifert bundle $f: M \rightarrow X$ with orbit invariants $\left\{\left(D_{i}, m_{i}, j_{i}\right)\right\}$ and the first Chern class

$$
c_{1}(M / X)=c_{1}(B)+\sum_{i} \frac{b_{i}}{m_{i}}\left[D_{i}\right]
$$

First Chern class

If $f: M \rightarrow X$ is a Seifet bundle, and $\mathbb{Z}_{m} \subset S^{1}$, then $S^{1} / \mathbb{Z}_{m}=S^{1}$ $\Longrightarrow M / \mathbb{Z}_{m}$ is again a Seifert bundle. If $\mu=\operatorname{lc} m_{x}(m(x))$ then $M / \mu=M / \mathbb{Z}_{\mu}$ is a manifold.

$$
c_{1}(M / X)=\frac{1}{\mu} c_{1}(M / \mu) \in H^{2}(X, \mathbb{Q})
$$

Conclusion

Now we view K-contact and Sasakian manifolds as Seifert bundles over smooth cyclic orbifolds with symplectic (Kaehler) structures. Our data are:

- a smooth symplectic (Kaehler) manifold X,
- orbit invariants $\left\{D_{i}, m_{i}, j_{i}\right\}$
- $c_{1}(M / X)$

Boyer and Galicki program, 2009

Topological obstructions to the existence of K-contact/Sasakian structures on a compact manifold M of dimension $2 n+1$:
(1) the evenness of the p-th Betti number for p odd with $1 \leq p \leq n$, of a Sasakian manifold,
(2) some torsion obstructions in dimension 5 discovered by Kollár,
(3) the fundamental groups of Sasakian manifolds are special,
(4) the cohomology algebra of a Sasakian manifold satisfies (a version of) the hard Lefschetz property,
(5) formality properties of the rational homotopy type.

Program

Study topological properties of K-contact and Sasakian manifolds, in particular, understand the question of "K-contact vs. Sasakian".

K-contact vs Sasaki

Do there exist simply connected closed K-contact manifolds which do not carry Sasakian structures?

- Biswas, Fernández, Muñoz, A.T. : yes, $\operatorname{dim} M \geq 17,2016$
- Hajduk, A.T. , independently Cappelletti-Montano et. al., yes, $\operatorname{dim} M \geq 9$
- Muñoz, A.T., $\operatorname{dim} M=7$

Challenging: $\operatorname{dim} M=5$

Do there exist Smale-Barden manifolds which carry K-contact but do not carry Sasakian structures?

Dimension 5?

Converse

Let (X, ω) be a symplectic orbifold and let $M \rightarrow X$ be a Seifert bundle with Chern class $c_{1}(M / X)=[\omega] \in H_{2}(X, \mathbb{Z})$. Then M admits a quasi-regular K-contact structure. If (X, ω) is Kaehler, then this structure is Sasakian.

Kodaira-Baily theorem

The Hodge orbifold is a projective algebraic variety.

Possible strategy?

(1) It is easy (now) to find symplectic manifold/orbifold which is not Kaehler, and to build a Seifert bundle

$$
S^{1} \rightarrow M \rightarrow X
$$

determined by $c_{1}(M / X)=[\omega] \in H^{2}(X, \mathbb{Z})$.
(2) How to prove that there is NO other Seifert fibering

$$
S^{1} \rightarrow M \rightarrow X^{\prime}
$$

with X^{\prime} as a projective algebraic variety?

Result: Muñoz, Rojo, A.T.

An orbifold X is semi-regular if all points of X are smooth. We say that a 5-manifold M is homology Smale-Barden if $H_{1}(M)=0$.

Theorem

There exists a homology Smale-Barden manifold which admits K-contact structures and does not carry any semi-regular Sasakian structure.

Scheme

Theorem 1

There exists a simply connected symplectic 4-manifold (X, ω) with $b_{2}(X)=36$ and with 36 disjoint symplectic surfaces S_{1}, \ldots, S_{36} such that:

- [S_{i}] generate $H_{2}(X, \mathbb{Z})$,
- $g\left(S_{1}\right)=\ldots=g\left(S_{9}\right)=g\left(S_{11}\right)=\ldots=g\left(S_{19}\right)=g\left(S_{21}\right)=\ldots=$
$g\left(S_{29}\right)=1, g\left(S_{10}\right)=g\left(S_{20}\right)=g\left(S_{30}\right)=3, g\left(S_{31}\right)=g\left(S_{32}\right)=$
$g\left(S_{33}\right)=2, g\left(S_{34}\right)=g\left(S_{35}\right)=g\left(S_{36}\right)=1$,
- $S_{i} \cdot S_{i}=-1, i=1, \ldots, 9.11, \ldots, 19,21, \ldots, 29, S_{j} \cdot S_{j}=1, j=$ $10,20,30, S_{31} \cdot S_{31}=-1, S_{32} \cdot S_{32}=-1, S_{33} \cdot S_{33}=1, S_{34} \cdot S_{34}=$ $-1, S_{35} \cdot S_{35}=-1, S_{36} \cdot S_{36}=1$.

Scheme, continiuation

Proposition 1

Take a prime p and choose $g_{i}=g\left(S_{i}\right)$ as in Theorem 1. There exists a 5-dimensional K-contact manifold with $H_{1}(M, \mathbb{Z})=0$ and

$$
\begin{equation*}
H_{2}(M, \mathbb{Z})=\mathbb{Z}^{35} \oplus\left(\oplus_{i=1}^{36}\left(\mathbb{Z} / p^{i}\right)^{2 g_{i}} .\right. \tag{*}
\end{equation*}
$$

Scheme, continuation

Proposition 2

Suppose M is a 5-manifold with

$$
H_{1}(M, \mathbb{Z})=0, H_{2}(M, \mathbb{Z})=\mathbb{Z}^{k} \oplus\left(\oplus_{i=1}^{k+1}\left(\mathbb{Z} / p^{i}\right)^{2 g_{i}}, k \geq 0\right.
$$

with p prime and $g_{i} \geq 1$. If $M \rightarrow X$ is a semi-regular Seifert bundle, then, necessarily

$$
H_{1}(X)=0, H_{2}(X, \mathbb{Z})=\mathbb{Z}^{k+1}
$$

and the ramification locus of X has $k+1$ disjoint surfaces D_{i} linearly independent in rational homology and of genus $g\left(D_{i}\right)=g_{i}$.

Proposition 3

Under the assumptions of Proposition 2, if X is a smooth Kaehler orbifold, then X is a smooth complex manifold and D_{i} are complex curves intersecting transversally.

Scheme, completion

Theorem 2

Let S be a smooth Kaehler surface with $H_{1}(S, \mathbb{Z})=0$ and containing $b=b_{2}(S)$ smooth disjoint complex curves with $g\left(D_{i}\right)=g_{i}>0$ and spanning $H_{2}(S, \mathbb{Z})$. Assume that

- at least two $g_{i}>1$,
- $g=\max \left\{g_{i}\right\} \leq 3$

Then $b \leq 2 g+3$.

Main steps of understanding

- Kollár's work on homology of Smale-Barden manifolds with circle actions (Topology, 2006). There are no geometric restrictions on formulas, relating $H_{*}(M, \mathbb{Z})$ and $H_{*}(X, \mathbb{Z})$.
- An algebraic geometry argument. From the data, using geometric genus, irregularity, Noether formula, Riemann-Hodge relations, data on line bundles $\mathcal{O}\left(D_{1}\right) \ldots$ one derives $b_{2} \leq 2 g+3$ (under the assumptions on genera)
- Constructing a simply connected symplectic 4-manifold X with a pattern of symplectic surfaces S_{i} generating the second homology, intersecting transversely, with the same genera but violating $b_{2} \leq 2 g+3$.
- Defining an orbifold structure on X (with smooth points) by declairing S_{i} to constitue a ramification locus (isotropy sufaces), miltiplicities $m_{i}=p^{i}$, and taking a Seifert bundle $M \rightarrow X$ with $c_{1}(M / X)=[\omega]$.

Construction of X

Needed: (X, ω) 4-dimensional, simply connected, S_{1}, \ldots, S_{36} symplectic surfaces with $g\left(S_{i}\right) \leq 3$, at least 2 have $g\left(S_{i}\right)>1$ and such that S_{i} generate $H_{2}(X, \mathbb{Z})$.

What to do: try to do symplectic surgery of building blocks with "visible" symplectic surfaces realizing homology classes and controlling the resulting genera and simply connectedness. Tori, elliptic fibrations?
What constructions to use? Symplectic resolution of transverse intersections, symplectic blow up, Gompf symplectic sum.

Construction technique: Gompf symplectic sum

$\left(M_{1}^{4}, \omega_{1}\right),\left(M_{2}^{4}, \omega_{2}\right), j_{1}: N_{1} \rightarrow M_{1}, j_{2}: N_{2} \rightarrow M_{2}$ - symplectic embeddings, $\nu_{1}\left(N_{1}\right), \nu_{2}\left(N_{2}\right)$ - normal bundles, $e\left(\nu\left(N_{1}\right)\right)=-e\left(\nu\left(N_{2}\right)\right)$, $g\left(N_{1}\right)=g\left(N_{2}\right)$.
Fix a symplectomorphism $N_{1} \cong N_{2}$ and the orientation-reversing and orinetation preseving diffeomorphisms

$$
\psi: \nu_{1} \rightarrow \nu_{2}, \varphi: \nu_{1}\left(N_{1}\right) \backslash N_{1} \rightarrow \nu\left(N_{2}\right) \backslash N_{2}
$$

where $\varphi: \theta \circ \psi, \theta(x)=\frac{x}{\|x\|^{2}}$.

Definition

$$
M_{1} \#_{N_{1}=N_{2}} M_{2}=\left(M_{1} \backslash N_{1}\right) \coprod\left(M_{2} \backslash N_{2}\right) / \simeq
$$

where \simeq denotes the gluing by φ.

Gompf

$M=M_{1} \#_{N_{1}=N_{2}} M_{2}$ is a symplectic manifold.

Symplectic blow-up

Given: $(X, \omega), q \in X$, Darboux ball D around q, J - standard complex structure in D.

$$
\begin{gathered}
\left.\tilde{D}=\left\{\left(z_{1}, z_{2}\right),\left[w_{1}: w_{2}\right]\right) \in D \times \mathbb{C} P^{1} \mid z_{1} w_{2}=z_{2} w_{1}\right\} \\
E=\{(0,0)\} \times \mathbb{C} P^{1} \subset \tilde{D} \\
\tilde{X}=X \backslash D \cup_{\partial D \cong \partial \tilde{D}} \tilde{D}
\end{gathered}
$$

Known

Topologically $\tilde{X}=X \# \overline{\mathbb{C}}^{2}, E=\overline{\mathbb{C P}}^{1} \subset \overline{\mathbb{C}}^{2}$

$$
[E] \cdot[E]=-1
$$

Elliptic fibration E(1)

Two generic cubics in $\mathbb{C} P^{2}: p_{0}([x: y: z])=0, p_{1}([x: y: z])=0$ intersect in 9 points p_{1}, \ldots, p_{9}. For any point $q \in \mathbb{C} P^{2} \backslash\left\{p_{1}, \ldots, p_{9}\right\} \exists$ only one cubic $t_{0} p_{0}+t_{1} p_{1}$ going through $q \Longrightarrow$

$$
f: \mathbb{C} P^{2} \backslash\left\{p_{1}, \ldots, p_{9}\right\} \rightarrow \mathbb{C} P^{1}, f(q)=\left[t_{0}: t_{1}\right]
$$

Blow up $\mathbb{C} P^{2}$ in p_{1}, \ldots, p_{9} and extend $f: \mathbb{C} P^{2} \# 9 \overline{\mathbb{C}} P^{2} \rightarrow \mathbb{C} P^{1}$.
The generic fiber is a torus.

Two important properties

Proposition

Suppose $S_{1} \subset M_{1}, S_{2} \subset M_{2}$ are symplectic surfaces intersecting transversely and positively with symplectic surfaces N_{1}, N_{2}. Assume $S_{1} \cdot N_{1}=S_{2} \cdot N_{2}=d$. Then one can do the Gompf symplectic sum

$$
M_{1} \# N_{1}=N_{2} M_{2}
$$

in a way that $S=S_{1} \# S_{2} \subset M_{1} \#_{N_{1}=N_{2}} M_{2}$ will be a symplectic surface with selfintersection $S_{1}^{2}+S_{2}^{2}$ and the genus $g(S)=g\left(S_{1}\right)+g\left(S_{2}\right)-1+d$.

Known fact

Every exceptional sphere E_{i} in the blow up $\mathbb{C} P^{2} \# 9 \overline{\mathbb{C}}^{2}$ at p_{i} is a section of the elliptic fibration $f: E(1) \rightarrow \mathbb{C} P^{1}$.

Symplectic manifold X

A configuration of six tori in \mathbb{T}^{4} :

$$
\begin{gathered}
T_{12}=\left\{\left(x_{1}, x_{2}, \alpha_{3}, \alpha_{4}\right\}, T_{34}=\left\{\left(\alpha_{1}, \alpha_{2}, x_{3}, x_{4}\right)\right\}\right. \\
T_{23}=\left\{\left(\beta_{1}, x_{2}, x_{3}, \beta_{4}\right\}, T_{14}=\left\{\left(x_{1}, \beta_{2}, \beta_{3}, x_{4}\right\}\right.\right. \\
T_{13}=\left\{\left(\left(x_{1}, \gamma_{2}, x_{3}, \gamma_{4}\right)\right\}, T_{24}=\left\{\left(\gamma_{1}, x_{2}, \gamma_{3}, x_{4}\right)\right\}\right.
\end{gathered}
$$

Symplectic form
$\omega=d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{4}+d x_{2} \wedge d x_{3}+\delta d x_{1} \wedge d x_{4}-\delta d x_{1} \wedge d x_{3}, \delta>0$.

$$
Z=\mathbb{T}^{4} \# T_{12}=F_{2} E(1)_{2} \# T_{13}=F_{3} E(1) \# T_{14}=F_{4} E(1)_{4}
$$

$F_{2} \subset E(1)_{2}, F_{3} \subset E(1)_{3}, F_{4} \subset E(1)_{4}$ are generic fibers.

$$
X=Z \# 2{\overline{\mathbb{C}} P^{2}}^{2}
$$

Surfaces which are easily visible

$E(1)_{2}=\mathbb{C} P^{2} \# 9 \overline{\mathbb{C}}^{2}$ has 9 sections $E_{1}, \ldots, E_{9}, E_{i} \cdot E_{i}=-1$. They intersect a generic fiber F in one point. We have:
E_{1} and F_{2} intersect transversely, T_{12} intersects T_{34} transversely \Longrightarrow

$$
S_{1}=E_{1} \# T_{34} \subset X
$$

It is still a torus, with selfintersection -1 . We get
S_{1}, \ldots, S_{9} for the first copy F_{2}
S_{11}, \ldots, S_{19} fo the second copy F_{3},
S_{21}, \ldots, S_{29} for the third copy F_{4}.
Total: 27 sufaces.

3 more surfaces

$L \subset E(1)$ a generic line .

Known

L intersects a generic fiber F in exactly 3 points.
In $\mathbb{T}^{4} \# T_{12}=F_{2} E(1)$ we see that ANY "parallel" copy of T_{34} intersects T_{12} transversely $\Longrightarrow S_{10}=T_{34}^{\prime} \# T_{34}^{\prime \prime} \# T_{34}^{\prime \prime \prime} \# L$ is a surface of genus 3 . We get

$$
S_{10}, S_{20}, S_{30} .
$$

Problem with the fundamental group

X is one connected by Van Kampen. We don't know how to calculate $\pi_{1}(M)$ in the case of a Seifert bundle

$$
S^{1} \rightarrow M \rightarrow X
$$

Some references

- I. Biswas, M. Fernández, V. Muñoz, A.T., Formality of Sasakian manifolds, J. Topol. 9(2016), 161-180
- V. Muñoz, A.T., Simply connected K-contact and Sasakian manifolds in dimension 7, Math. Z. 281(2015), 457-470
- V. Muñoz, J.A. Rojo, A.T., Homology Smale-Barden manifolds with K-contact and Sasakian structures, ArXiv: 1601.06136
- J. Oprea, A.T., Symplectic manifolds with no Kaehler structure, Springer, 1997
- J. Kollár, Circle actions on simply connected 5-manifolds, Topology 45(2006), 643-672

Quotations

J.-P. Bourgignon

"... several dominant figures of the mathematical scene of the XX century have, step after step along a 50 year period, transformed the subject [Kaehler geometry] into a major area of mathematics that has influenced the evolution of the discipline much further than could have conceivably been anticipated by anyone. "

Krzysztof Galicki

"Sasaki seemed to have had both the necessary intuition and a broad vision in understanding what is and what is not of true importance..."

Shigeo Sasaki (1912-1987)

- born in 1912 in Yamagate prefecture to a farmer's family, brought up by his uncle who was a superior of a Buddist Temple
- studied in Tohoku Imperial University (1932-1935)
- since 1935 worked in differential geometry under the guidance of Professor Kubota, Ph. D. in 1943
- in 1946 appointed to the vacant chair after Kubota's retirement
- 1962 - introduced the notion of "normal metric contact structure' which is equivalent to "Sasakian structure";
- Major works in 1962-1967, notes in Japanese, creation of a subfield in Riemannian geometry
- professorship in Tohoku University until 1976, visited to Princeton in 1952-1954, worked with Veblen, Morse and Chern
- His biography is not well known, even his obituary appeared only in a local newspaper

