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Introduction

Killing equations are certain natural systems of partial di�erential
equations de�ned on a (pseudo-)Riemannian (spin-)manifold.
I Di�erent types: vectors, symmetric tensors, forms, spinors,

spinor-valued forms
I Invariant and overdetermined systems of PDEs
I Important applications both in mathematics and physics
I Closely related to some special geometric structures: Sasakian,

nearly parallel Kähler, nearly parallel G2-manifolds

Explicitly solve the system on homogeneous space G/H:
1. The so called prolongation procedure transforms the system into

a closed system by introducing new indeterminates.
2. The integrability conditions of the prolongated system restrict

possible values in a point by a condition involving curvature.
3. Extend the solution from a point to its neighborhood or possibly the

whole G/H.
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Homogeneous Cartan geometry

Let (P→ M = G/H,ω) be a homogeneous Cartan geometry of type (L,K).
It corresponds to homomorphisms i : H→ K and α : g→ l, such that
(a) α is Ad(H)-invariant,
(b) α |h = i ′, and
(c) α : g/h→ l/k is an isomorphism.

Description of the geometry

I P = G ×H K and i induces a bundle map I : G→ P.
I All the natural bundles are associated also to G.
I I ∗ω = α ◦ ωG, where ωG is the Maurer-Cartan form on G.
I The curvature function is given by

κ(ξ ,η) = {ξ ,η}l − α({α−1(ξ ),α−1(η)}g), ∀ξ ,η ∈ AM, (1)

where {,}l and {,}g are the (algebraic) brackets in l and g respectively.
I G acts transitively on (P→ M,ω) by automorphisms.
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Infinitesimal automorphisms
≡ Vector �elds whose �ow is a one-parameter group of automorphisms.
I By the prolongation they naturally correspond to adjoint tractor �elds
ξ ∈ a ⊂ Γ(AM), such that

Dη ξ = κ(η, ξ ) − {η, ξ }l, ∀η ∈ AM, (2)

where D is the fundamental derivative.
I 1st integrability condition of (2)

Dξ κ = 0. (3)

I Lie bracket of in�nitesimal automorphisms is algebraic

[ξ1, ξ2] = κ(ξ1, ξ2) − {ξ1, ξ2}l =: {ξ1, ξ2}a, ∀ξ1, ξ2 ∈ a. (4)

I Bianchi identity implies (3)⇒ Jacobi identity for {,}a∑
cycl.
(Dξ1 κ)(ξ2, ξ3) =

∑
cycl.
{ξ1, {ξ2, ξ3}a}a, ∀ξ1, ξ2, ξ3 ∈ AM. (5)
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Infinitesimal automorphisms

At x ∈ M we de�ne a1x = {ξ ∈ AMx | Dξ κ = 0} and consider {,}a .
I Problem: In general a1x is not closed under {,}a!
I We need higher integrability conditions of (2)

Dξ (Di κ) = 0, i = 0, 1, 2, . . . . (6)

We de�ne akx = {ξ ∈ AMx | Dξ (Di κ) = 0, i = 0, . . . ,k − 1}.
I Ricci identity implies ξ1, ξ2 ∈ ak+1x ⇒ {ξ1, ξ2}a ∈ akx

D2
ξ1,ξ2 −D

2
ξ2,ξ1 = −D{ξ1,ξ2 }a , ∀ξ1, ξ2 ∈ AM. (7)

Hence a∞x =
⋂
akx with {,}a is a well-de�ned Lie algebra.

I The chain a1x ⊇ a2x ⊇ · · · ⊇ a∞x stabilizes after �nitely many steps.
Question: How many steps are needed?

I Evaluation at x is a Lie algebra homomorphism a → a∞x .
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Infinitesimal automorphisms

Now let (P→ M = G/H,ω) be homogeneous.
I The in�nitesimal left action l ′ : g→ a yields in�nitesimal

automorphisms (in every tangent direction).
I Evaluating at x and composing with the adjoint representation of a∞x

we get a representation λx : g→ gl(a∞x )

λx (X ) ξ = {l ′(X )x , ξ }a, ∀X ∈ g, ξ ∈ a∞x . (8)

Proposition
On a homogeneous space, for each ξ0 ∈ a∞x there exists a unique locally
de�ned in�nitesimal automorphism ξ ∈ a given by

ξ (exp(X )x) = exp(λx (X )) ξ0, ∀X ∈ U (0) ⊂ g. (9)
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General closed invariant system

Let E be a natural vector bundle over (P→ M = G/H,ω).
I We consider an equation for Φ ∈ Γ(E) in form

Dξ Φ = Bξ Φ, where B ∈ Γ(A∗M ⊗ E). (10)

I We suppose B is invariant in the following sense

Dξ (Di B) = 0, ∀ξ ∈ a, i = 0, 1, 2, . . . . (11)

I This is satis�ed, e.g. if B comprises of K-invariant tensors and the
curvature κ.

I Integrability conditions using the Ricci identity

B{η,ξ }a Bζ1 · · · Bζi Φ = (Bη Bξ −Bξ Bη)Bζ1 · · · Bζi Φ +
+ terms with Dj B, j ≥ 1.

(12)

Hence B de�nes a representation of ax on
S∞x = {Φ ∈ EMx | such that (12) holds for each i = 0, 1, 2, . . . }.
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µx (X )Φ = Bl ′(X )x Φ, ∀X ∈ g,Φ ∈ S∞x . (13)

Proposition
On a homogeneous space, for each Φ0 ∈ S∞x there exists a unique locally
de�ned solution Φ ∈ Γ(E) of the equation (10) given by

Φ(exp(X )x) = exp(µx (X ))Φ0, ∀X ∈ U (0) ⊂ g. (14)
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Killing forms

Let (M,д) be a (pseudo-)Riemannian manifold, ∇ the Levi-Civita
connection and R its curvature.
I A Killing p-form is a di�erential p-form α such that

∇X α = 1
p+1 X y dα , ∀X ∈ TM. (15)

I Generalization of Killing vectors which correspond to 1-forms.

I The invariant prolongation of (15) is

∇X α = X y β, ∇X β = 1
p RX ∧ α , ∀X ∈ TM, (16)

where β is an additional (p + 1)-form and RX ∧ α is partially
skew-symmetrized action of the curvature on α .

I The 1st integrability condition is

R♦α = 0, R♦β = (∇ R)4α , (17)

where ‘♦’ and ‘4’ are another invariant algebraic actions.
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Berger sphere

Odd dimensional sphere S2m+1 = U(m + 1)/U(m).
I Hopf �bration S1 → S2m+1 → CPm .
I The �ber direction corresponds to the center of u(m + 1).
I Berger metrics дs , s ∈ R+: Take the round metric д1 and rescale the

�ber direction by s .
I Almost contact metric structure: unit vector �eld ξ in the �ber

direction, almost complex structure φ on ξ⊥, in particular φ(ξ ) = 0.

I For s , 1 the 1st integrability condition for Killing forms implies

φ · α = 0, if p > 1, and
φ · β = 0, if α = 0.

(18)

I For 1-forms (� vectors) the condition (18) is su�cient.
I The Lie algebra of Killing vectors is exactly u(m + 1).
I Work in progress: higher ordinary forms, spinor-valued forms.
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