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Introduction
Killing equations are certain natural systems of partial di�erential
equations de�ned on a (pseudo-)Riemannian or Spin manifold.
Di�erent types

I Killing vectors are in�nitesimal generators of isometries.
I Symmetric Killing tensors and Killing forms are direct generalizations.
I Killing spinors arise on Spin manifolds of constant scalar curvature.
I Killing spinor-valued forms are a combination of K. spinors and forms.

Properties and applications

I Overdetermined systems of PDEs
I Intrinsic relationship to the curvature
I Related to some special additional geometric structures:

Sasakian, nearly Kähler, nearly parallel G2-manifolds
I Integrals of motion for the geodesic equation
I In physics: general relativity, super-gravity, super-symmetry,

regarded as “hidden symmetries”
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Prolongation procedure
Prolongation procedure transforms a wide class of overdetermined
systems of PDEs into the equation for a parallel section.
It works roughly in the following steps:

1. Introduce new indeterminates so that the �rst derivative of all
indeterminates is completely determined by algebraic terms.

2. Absorb the algebraic terms into a covariant derivative.
Typically it produces tractor bundles with a modi�ed tractor connection.

Elementary approach
In simple cases the prolongation can be deduced ad hoc by repeated
di�erentiations and projections on suitable components.
I The curvature appears from skew-symmetrizing a second derivative.

General construction
There is a systematic construction based on the Lie algebra cohomology.
I Main assumption is that the highest weight component of the

derivative (the “Twistor operator” ) is prescribed to vanish.
I The basic construction can be further re�ned in order to gain desired

invariance properties. (Branson, Čap, Eastwood and Gover 2006)
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Integrability conditions
Let M be a connected smooth manifold,
I E → M a �nite-dimensional smooth vector bundle over M ,
I and ∇ an arbitrary linear connection in E.

We consider the equation for a parallel section Φ ∈ Γ(E),

∇X Φ = 0, ∀X ∈ T(M). (E)

The integrability conditions of (E) say simply that Φ has to be annihilated
by the curvature R of ∇ and its derivatives:

RX ,Y Φ = 0, (I0)
(∇Zk (. . . (∇Z1 (RX ,Y )) . . . ))Φ = 0, ∀X ,Y ,Z1, . . . ,Zk ∈ X(M). (Ik )

The conditions are tensorial in Φ so we can evaluate them just pointwise
and de�ne subspaces consisting of admissible values in the �bers Ex ,

Sx =
{
ϕ such that (I0) and (Ik ) hold at x

}
⊆ Ex . (S)

Note that dim Sx is not generally constant but only upper semi-continuous.



Integrability conditions
Let M be a connected smooth manifold,
I E → M a �nite-dimensional smooth vector bundle over M ,
I and ∇ an arbitrary linear connection in E.

We consider the equation for a parallel section Φ ∈ Γ(E),

∇X Φ = 0, ∀X ∈ T(M). (E)

The integrability conditions of (E) say simply that Φ has to be annihilated
by the curvature R of ∇ and its derivatives:

RX ,Y Φ = 0, (I0)
(∇Zk (. . . (∇Z1 (RX ,Y )) . . . ))Φ = 0, ∀X ,Y ,Z1, . . . ,Zk ∈ X(M). (Ik )

The conditions are tensorial in Φ so we can evaluate them just pointwise
and de�ne subspaces consisting of admissible values in the �bers Ex ,

Sx =
{
ϕ such that (I0) and (Ik ) hold at x

}
⊆ Ex . (S)

Note that dim Sx is not generally constant but only upper semi-continuous.



Integrability conditions
Let M be a connected smooth manifold,
I E → M a �nite-dimensional smooth vector bundle over M ,
I and ∇ an arbitrary linear connection in E.

We consider the equation for a parallel section Φ ∈ Γ(E),

∇X Φ = 0, ∀X ∈ T(M). (E)

The integrability conditions of (E) say simply that Φ has to be annihilated
by the curvature R of ∇ and its derivatives:

RX ,Y Φ = 0, (I0)
(∇Zk (. . . (∇Z1 (RX ,Y )) . . . ))Φ = 0, ∀X ,Y ,Z1, . . . ,Zk ∈ X(M). (Ik )

The conditions are tensorial in Φ so we can evaluate them just pointwise
and de�ne subspaces consisting of admissible values in the �bers Ex ,

Sx =
{
ϕ such that (I0) and (Ik ) hold at x

}
⊆ Ex . (S)

Note that dim Sx is not generally constant but only upper semi-continuous.



Existence results
Under a simple regularity assumption on Sx the integrability conditions are
in fact su�cient for the existence of at least a local solution.
Theorem
If dim Sx is constant on some neighborhood of x0 ∈ M then for each ϕ ∈ Sx0
exists a unique local solution Φ of (E) such that Φ(x0) = ϕ.
In detail, the hypothesis ensures that Sx form a smooth vector subbundle
S ⊆ E and ∇ consequently restricts to a �at connection in S .

Proposition
If (M,E,∇) are real-analytic then dim Sx is constant onM .
In general, there is no upper bound on the order k of di�erentiation in (Ik )
which needs to be considered, even in the real-analytic case. Let us de�ne

S lx =
{
ϕ such that (I0) and (Ik ) hold at x for k ≤ l

}
⊆ Ex . (Sl )

With assumption on S lx we can determine Sx in a �nite number of steps.
Proposition
If dim S lx is constant on some neighborhood of x0 ∈ M and S lx0 = S l−1x0 then
Sx = S lx = S l−1x on a (possibly smaller) neighborhood of x0.
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Homogeneous spaces
Suppose that M = G/H is a simply connected homogeneous space,
I E → M a �nite-dimensional homogeneous vector bundle over M ,
I and ∇ an invariant linear connection in E.

We compare ∇ with the fundamental derivative D given by the
canonical �at Cartan connection on G/H ,

∇Π(ξ ) Φ = Dξ Φ +Cξ Φ, ∀ξ ∈ A(M), Φ ∈ Γ(E), (C)

where g and h are the Lie algebras corresponding to G and H respectively,
I A(M) = G ×H g is the adjoint tractor bundle over G/H ,
I Π : A(M) → T(M) is the canonical projection,
I D: A(M) ⊗ Γ(E) → E is the fundamental derivative,
I and C : A(M) ⊗ E → E is a tensorial mapping.

Invariance of ∇ implies that C must be G-equivariant and hence, by abuse
of notation, we can identify it with
I an H -equivariant linear mapping C : g ⊗ Eo → Eo ,

where Eo is the �ber of E at the origin o ∈ M .
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Homogeneous spaces
Using the Ricci identity we can write the integrability conditions in form

[Cξ ,Cν ]ϕ = C {ξ ,ν } ϕ, (CI0)
[Cξ ,Cν ]Cζk · · ·Cζ1 ϕ = C {ξ ,ν }Cζk · · ·Cζ1 ϕ, (CIk )

∀ξ ,ν , ζ1, . . . , ζk ∈ g,
where [,] denotes the commutator in L(Eo ,Eo) and {,} the Lie bracket in g.

I So ⊆ Eo is the maximal subspace on which the linear mapping C
restricts to a representation of g.

The subbundle S ⊆ E becomes a (�at) tractor bundle over G/H via expC
and the parallel sections are explicitly given by the formula

Φ(дo) = Lд((expC)(д−1)ϕ), ∀д ∈ G, ϕ ∈ So , (F)

where Lд denotes the left action of G on E.
The regularity of S lx is satis�ed thanks to homogeneity, so the sequence
S0o ⊇ · · · ⊇ S lo ⊇ · · · ⊇ So de�nitely stabilizes once it does not decrease.
Finding So is therefore completely algorithmic. We have implemented this
algorithm in CAS for Kiling forms, spinors and spinor-valued forms.
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Cone construction
The ε-metric cone over a pseudo-Riemannian manifold (M,д) is
I the warped product M = M × R+ with metric д = r 2д + ε dr 2,

where r is the coordinate function on R+ and ε = ±1.

We associate to a vector �eld X on M a vector �eld X on M by

X = 1
r p
∗
1(X ), (MC1)

where p∗1 denotes pull-back along the canonical projection p1 : M → M .

The corresponding Levi-Civita connections on M and M are related by

∇
д
X
Y = 1

r

(
∇
д
XY − εд(X ,Y ) ∂r

)
, ∇

д
∂r
X = 0,

∇
д
X
∂r =

1
r X , ∇

д
∂r
∂r = 0.

(MC2)

The so called cone constructions establish a correspondence between
I solutions of natural systems of PDEs like the Killing equations on M

I and parallel sections of suitable vector bundles over M .
In fact we can view the natural bundles over M as tractor bundles over M .
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Killing forms
From now on let (M,д) be a pseudo-Riemannian manifold,
∇д the Levi-Civita connection and R д its curvature.
Definition
A p-form α on M is a Killing form if there exists a (p + 1)-form β , such that

∇
д
X α = X y β . (KF1)

Prolongation

∇
д
X β = 1

p R
д
X ∧ α , (KF2)

R
д
X ∧ α =

n∑
i=1

ei ∧ (R
д
X ,ei

α).

1st curvature condition

R
д
X ,Y α +

1
p

(
X y (R

д
Y ∧ α) − Y y (R

д
X ∧ α)

)
= 0. (KF3)

I The condition is void for 1-forms.
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Killing forms
Definition
A Killing p-form α on M is special if additionally holds

∇
д
X β = −cX ∗ ∧ α , (KF4)

for some constant c ∈ R and where X ∗ is the metric dual of X .
The equation (KF4) considered alone (with exchanged roles of α and β) is
just a Hodge star dualization of (KF1) called ∗-Killing equation.

Cone construction
We associate to a p-form α on M a p-form α on M by

α = rpp∗1(α). (MC3)

Proposition
Let α be a p-form and β a (p + 1)-form onM . The (p + 1)-form Θ onM ,

Θ = dr ∧ α + β, (KF5)

is parallel if and only if α together with β is special Killing with c = ε .
(Semmelmann 2003)
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Killing spinors

Further suppose that (M,д) is a Spin manifold and denote by ∇д and R д

also the corresponding spin connection and its curvature respectively.
Definition
A spinor �eld Ψ on M is a Killing spinor if

∇
д
X Ψ = aX · Ψ, (KS1)

for some constant a ∈ C called the Killing number and where ‘·’ denotes
the Cli�ord multiplication.
I The prolongation is trivial since (KS1) is already closed.

1st curvature condition

R
д
X ,Y Ψ + a2(X · Y − Y · X ) · Ψ, = 0. (KS2)

I Implies that (M,д) must be Einstein. (Friedrich 1980)
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Killing spinors

Cone construction
The cone M is clearly homotopy equivalent to M , hence any spin structure
on M determines a unique spin structure on M . We denote
I by Σ and Σ the associated spinor bundles on M and M respectively.

The pullback bundle p∗1(Σ) is naturally a subbundle of Σ and we associate to
a spinor �eld Ψ on M spinor �elds Ψ± on M by

Ψ± = (1 ∓
√
ε∂r ) · p

∗
1(Ψ). (MC4)

The two choices of sign of the square root yield inequivalent though
analogous results and we consider both of them.
Proposition
Let Ψ be a spinor �eld onM . The associated spinor �eld Ψ± onM is parallel
if and only if Ψ is Killing with a = ± 1

2
√
ε . (Bär 1993; Bohle 2003)
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∗
1(Ψ). (MC4)

The two choices of sign of the square root yield inequivalent though
analogous results and we consider both of them.
Proposition
Let Ψ be a spinor �eld onM . The associated spinor �eld Ψ± onM is parallel
if and only if Ψ is Killing with a = ± 1

2
√
ε . (Bär 1993; Bohle 2003)



Killing spinor-valued forms

Definition
A spinor-valued p-form Φ on M is a Killing spinor-valued form if there
exists a spinor-valued (p + 1)-form Ξ, such that

∇
д
X Φ = aX · Φ + X y Ξ, (KSF1)

for some constant a ∈ C called the Killing number.

Prolongation
We absorb the Cli�ord multiplication term into covariant derivative ∇ a ,

∇ a
X Ψ = ∇

д
X Ψ − aX · Ψ, ∀Ψ ∈ Γ(Σ), (KSF2)

and extend it to spinor-valued forms by the Levi-Civita connection.

∇
д
X Ξ = aX · Ξ + 1

p

(
R a
X ∧ Φ −

1
2(p+1) X y (R

a ∧ Φ)
)
, (KSF3)

R a
X ∧ Φ =

n∑
i=1

ei ∧ (R a
X ,ei Φ), R a ∧ Φ =

n∑
i=1

ei ∧ (R a
ei ∧ Φ),

where R a denotes the curvature of ∇ a .
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Killing spinor-valued forms

1st curvature condition

R a
X ,Y Φ + 1

p

(
X y (R a

Y ∧ Φ) − Y y (R
a
X ∧ Φ) −

− 1
p+1 X y Y y (R

a ∧ Φ)
)
= 0.

(KSF4)

I The condition is again void for spinor-valued 1-forms.

Definition
A Killing spinor-valued p-form Φ on M is special if additionally holds

∇
д
X Ξ = aX · Ξ − cX ∗ ∧ Φ, (KSF5)

for some constant c ∈ R.
As in the case of ordinary forms, the equation (KSF5) considered alone
(with exchanged roles of Φ and Ξ) is just a Hodge star dualization of (KSF1)
called ∗-Killing equation.
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Killing spinor-valued forms

Cone construction
We associate to a spinor-valued p-form Φ on M spinor-valued p-forms Φ±
on the ε-metric cone M by

Φ± = r
p (1 ∓

√
ε∂r ) · p

∗
1(Φ). (MC5)

Proposition
Let Φ be a spinor-valued p-form and Ξ a spinor-valued (p + 1)-form onM .
The spinor-valued (p + 1)-form Θ± onM ,

Θ± = dr ∧ Φ± + Ξ±, (KSF6)

is parallel if and only if Φ together with Ξ is special Killing with
a = ± 1

2
√
ε and c = ε . (Somberg, Zima 2016)



Constant curvature spaces
Let M = Rn+1 \ {0} with the standard inner product д of signature (p,q),
and (M,д) be the pseudo-Riemannian submanifold

M =
{
x ∈ M | д (x ,x) = ε

}
, (CC1)

with the inherited metric д, where ε = ±1.

I M has constant curvature ε .
I M can be viewed as the homogeneous space O(p,q) /O(p,q).
I M is the ε-metric cone over M .
I The pullbacks of natural bundles over M along the embedding
i : M ↪→ M are trivial and can be viewed as tractor bundles over M .

The Levi-Civita connection on M is just the usual partial derivative ∂.
I Restriction of ∂ to M is the canonical (�at) tractor connection.

The Levi-Civita connection on M and its curvature are given by

∇
д
X = ∂X + ε(x ∧ X ), R

д
X ,Y = ε(X ∧ Y ), (CC2)

where x ∧ X and X ∧ Y are respective elementary matrices in so(p,q).
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Constant curvature spaces
Killing forms

α(x) = x y Θ
β(x) = π (Θ)

}
⇔ Θ = εx∗ ∧ α(x) + β(x) (CC3)

Killing spinors

Ψ(x) = 1
2 φ± · Θ ⇔ Θ = φ∓ · Ψ(x) (CC4)

Killing spinor-valued forms

Φ(x) = 1
2 φ± · (x y Θ)

Ξ(x) = 1
2 φ± · π (Θ)

}
⇔ Θ = φ∓ ·

(
εx∗ ∧ Φ(x) + Ξ(x)

)
(CC5)

where we denote

π (Θ) = Θ − εx∗ ∧ (x y Θ), φ± = 1 ±
√
εx .

I All the solutions are special and the Killing number is a = ± 1
2
√
ε .

I The 1st curvature conditions rule out other solutions except for
spinor-valued forms in degree p = 1.
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New solutions
Algebraic decomposition
We can decompose the space of spinor-valued forms using the technique of
Howe dual pairs. The degree raising and lowering algebraic operators,

γ · ∧ Φ =
n∑
i=1

ei ∧ (ei · Φ), γ ∗· y Φ =
n∑

i, j=1
дi jei y (ej · Φ), (G1)

are Spin-equivariant and generate a Lie algebra isomorphic to sl(2).

I A spinor-valued p-form Φ is called primitive if γ ∗· y Φ = 0.
I Projection on the primitive component in degree p = 1 is given by

πTw(Φ) = Φ + 1
n γ · ∧ (γ

∗· y Φ). (G2)

Higher curvature conditions
The higher curvature conditions for Killing spinor-valued forms in degree
p = 1 allow only one other possibility on M besides a = ± 1

2
√
ε ,

a = ± 3
2
√
ε, Ξ = ∓

√
ε (γ · ∧ Φ). (CC6)
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New solutions
The new solutions in degree p = 1 hence satisfy a stronger equation,

∇
д
X Φ = ±

√
ε
( 3
2 X · Φ − X y (γ · ∧ Φ)

)
. (KSF7)

Cone construction
They correspond to constant primitive spinor-valued 1-forms on M ,

Φ(x) = 1
2
(
φ± · π (Θ) ±

√
ε γ · ∧ (φ± · (x y Θ))

)
⇔

⇔ Θ = πTw
(
φ∓ · Φ(x)

)
.

(CC7)

I Do not attain the maximal dimension from the prolongation (KSF3).
I Not special in the sense of (KSF5).
I Not spanned by tensor products α ⊗ Ψ of K. spinors and forms.
I Φ(x) cannot take values solely in the primitive component.

Comparing (CC7) with (CC5) we get that the new solutions Φ are just
a transformation of special Killing forms (Φ′,Ξ′) in order p = 0,

Φ = Ξ′ ±
√
ε γ · ∧ Φ′. (KSF8)
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