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Properads

Generalization of operads

Category of directed corollas: DCor := Cor × Cor :

the objects are pairs (C,D) of finite sets (the outputs and inputs)

morphism (ρ, σ) : (C,D)→ (C ′, D′) is a pair of bijections
ρ : C

∼−→ C ′, σ : D
∼−→ D′.
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Properads

Properad P consists of

collection {P(C,D) | (C,D) ∈ DCor} of dg vector spaces

two collections of degree 0 morphisms{
P(ρ, σ) : P(C,D)→ P(C ′, D′) | (ρ, σ) : (C,D)→ (C ′, D′)

}
{

η
B◦A: P(C1, D1 tB)⊗ P(C2 tA,D2)→P(C1 t C2, D1 tD2)|

η : B
∼−→ A}

satisfying the following axioms:

1. (Σ-bimodule)
P((1C , 1D)) = 1P(C,D), P((ρρ′, σ′σ)) = P((ρ, σ)) P((ρ′, σ′))

2. (equivariance)

(P((ρ1 t ρ2|C2 , σ1|D1 t σ2))
η

B◦A=
ρ2ησ

−1
1

σ1(B)◦ρ2(A)

(P((ρ1, σ1))⊗ P((ρ2, σ2))

3. (associativity)
η

B◦A (1⊗
η′

B′◦A′) =
η′

B′◦A′ (
η

B◦A ⊗1)



Properads and Homotopy algebras related to surfaces

Properads

Additional grading by N0 - genus or the Euler characteristic

χ = 2G+ |C|+ |D| − 2

=⇒ components P(C,D, χ)

We assume only stable components, i.e. χ > 0
G = 0 =⇒ |C|+ |D| ≥ 3
G = 1 =⇒ |C|+ |D| ≥ 1

Example: (Closed) Frobenius properad F :
(C,D) ∈ DCor and χ > 0 put F(C,D, χ) = k
=⇒ has trivial differential and Σ-structure
=⇒

η
B◦A do not depend on sets A,B
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Cobar complex

Directed graph

consists of vertices and half-edges

two half-edges composing one edge have corresponding orientation

no directed circuits

We can assign to the graph G a non-negative integer

G := dimQH1(G,Q) +
∑
i

Gi

The stable graph satisfies for every vertex Vi

2(Gi − 1) + |Ci|+ |Di| > 0
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Cobar complex

Cobar complex of properad P
Elements are iso class of G with ”decoration” by element

(↑V1 ∧ · · · ∧ ↑Vn)⊗ (P1 ⊗ · · · ⊗ Pn)

where Vi are vertices of G and Pi ∈ P(Ci, Di, Gi)
#

The structure maps (
η

B◦A)CP work as grafting together |A| pairs
of half-edges with suitable orientation

The differential ∂CP on one vertex is given as a sum

∂CP = dP#⊗1+
∑

C1tC2=C
D1tD2=D
1≤|A|≤G+1

G1+G2+|A|−1=G
η

1

|A|!
(
(C1,D1tB,G1) η (C2tA,D2,G2)

B◦A )#
P⊗(↑ V ∧·)
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Endomorphism properad

For (V, d) dg vector space, (C,D) ∈ DCor, χ > 0 define

EV (C,D, χ) := Homk(
⊙
D

V,
⊙
C

V )

where
⊙

D V denotes an unordered tensor product.

The Σ-actions and compositions - easily seen from canonical
isomorphism ⊙

c′∈C′
Vc′ ⊗

⊙
c′′∈C′′

Vc′′ ∼=
⊙

c∈C′tC′′
Vc

For f̄ ∈ Homk(
⊗

D V,
⊗

C) corresponding to f ∈ Homk(
⊙

D V,
⊙

C V )

d(f̄) =

m−1∑
i=0

(1⊗i ⊗ d⊗ 1⊗m−i−1)f̄ − (−1)|f̄|
n−1∑
i=0

f̄(1⊗i ⊗ d⊗ 1⊗n−i−1)

The collection EV = {EV (C,D, χ)|(C,D) ∈ DCor, χ > 0} is an
endomorphism properad
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Endomorphism properad

Algebra over properad for dg vector space V is a properad morphism
α : P → EV , i.e. it is a collection

{α(C,D, χ) : P(C,D, χ)→ EV (C,D, χ) | (C,D) ∈ DCor, χ > 0}
satisfying

1. α ◦ P(ρ, σ) = EV (ρ, σ) ◦ α
2. α ◦ (

η
B◦A)P = (

η
B◦A)EV ◦ (α⊗ α)

Theorem: Algebra over the cobar complex CP
Algebra over CP of a properad P on a dg vector space V is uniquely
determined by a collection{
α(C,D, χ) : P(C,D, χ)# → EV (C,D, χ) | (C,D) ∈ DCor, χ > 0

}
of

deg 1 linear maps s.t.

EV (ρ, σ) ◦ α(C,D, χ) = α(C ′, D′, χ) ◦ P(ρ−1, σ−1)#

d ◦ α = α ◦ dP# +
∑ 1

|A|!
(

η
B◦A)EV ◦ (α⊗ α) ◦ (

η
B◦A)#

P
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Barannikov’s type theory

For simplicity assume C = [m], D = [n]

By isomorphism

HomΣm×Σn(P([m], [n], χ)#, EV ([m], [n], χ))
∼=−→

Σm(P([m], [n], χ)⊗ EV ([m], [n], χ))Σn

α 7→
∑
i

pi ⊗ α(p#
i )

where {pi} is a basis of P([m], [n], χ), we can rewrite algebra over CP
as element

L ∈
∏
m,n
χ>0

κχ Σm (P([m], [n], χ)⊗ EV ([m], [n], χ))Σn

satisfying Master equation d(L) + L ◦ L = 0 with differential

d = dP ⊗ 1EV − 1P ⊗ dEV
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Interpretation as “homological differential operators”

But the invariants are isomorphic to coinvariants (with respect to the
diagonal Σm × Σn action)

Σm (P([m], [n], χ)⊗ EV ([m], [n], χ))Σn ∼=
P([m], [n], χ) Σm ⊗Σn V

⊗m ⊗ ((V #)⊗n)

Put fpi := α(p#
i ) and pick basis {ai} of V and the dual basis {φi}.∑

i

pi ⊗ α(p#
i ) 7→ 1

m!n!

∑
i,I,J

fJpiI(pi Σm ⊗Σn (aJ ⊗ φI))

We get an isomorphism∏
m,n
χ>0

κχ Σm (P([m], [n], χ)⊗ EV ([m], [n], χ))Σn ∼=

∏
m,n,χ

κχ
(
P([m], [n], χ) Σm ⊗Σn (V ⊗m ⊗ (V #)⊗n

)
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Interpretation as “homological differential operators”

The “transfered” differential is

d̃
(
pΣm ⊗Σn (aJ ⊗ φI)

)
=

= dP(p) Σm ⊗Σn (aJ ⊗ φI)− (−1)|p|pΣm ⊗Σn dEV (aJ ⊗ φI)

and the composition is(
p1 Σm1

⊗Σn1
(aJ1 ⊗ φI1)

)
◦̃
(
p2 Σm2

⊗Σn2
(aJ2 ⊗ φI2)

)
=

=
∑
M,N,ξ

(
(

ξ
¯N◦M )P(p1 ⊗ p2)

)
Σm1+m2−|M|

⊗Σn1+n2−|M|(
(

ξ
¯N◦M )EV (aJ1 ⊗ φI1)⊗ (aJ2 ⊗ φI2)

)
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Interpretation as “homological differential operators”

If m,n ≥ 1 we can introduce positional derivations

∂(k)

∂aj

(
ai1 . . . aim2

)
= (−1)|aj |(|ai1 |+...|aik−1

|) δikj
(
ai1 . . . âik . . . aim2

)
for sets J = {j1, . . . j|N |} and K = {k1, . . . k|N |}

∂(K)

∂aJ
=
∂(k1)

∂aj1
. . .

∂(k|N|)

∂aj|N|
.

And interpret the “inputs” as partial derivations acting on “outputs”

p1 Σm1
⊗Σn1

(aJ1 ⊗ φI1) : p2 Σm2
⊗ aJ2 7→

±
∑
M,N,ξ

∂ξ(N)

∂aN
(aM ) (

ξ
¯N◦M )P(p1 ⊗ p2) Σm1+m2−|M|

⊗Σn1−|M|
aJ1aJ2−M
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Interpretation as “homological differential operators”

Thank you for your attention!


	Properads
	Cobar complex
	Endomorphism properad
	Barannikov's type theory
	Interpretation as ``homological differential operators''

