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Symbol at regular point x

(M,D, I) a CR manifold, D⊗ C = D10 ⊕D01, [D10,D10] ⊂ D10

· · · ⊃ D−i = [D,D−i+1] ⊃ · · · ⊃ D−2 = [D,D] ⊃ D ⊃ K ⊃ 0

K ... the Levi kernel, i.e., [K ,D] ⊂ D, [K ,K ] ⊂ K

. . . (D−i/D−i+1)(x)
⊕

. . .
⊕

(D−2/D)(x)
⊕

(D/K)(x)
⊕

K(x)
⊕

. . . g−i
⊕

. . .
⊕

g−2
⊕

g−1
⊕

k
⊕

g−1 and k carry induced complex structures I,
[I(X), I(Y)] = [X ,Y ] for X ,Y ∈ g−1 ⊕ k

(g− = · · · ⊕ g−i ⊕ · · · ⊕ g−1, I) a non–degenerate CR algebra
(non–degenerate part of the symbol)
(k, I)... a complex vector space (degenerate part of the symbol)
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Symbol at regular point x

(M,D, I) a CR manifold, D⊗ C = D10 ⊕D01, [D10,D10] ⊂ D10

· · · ⊃ D−i = [D,D−i+1] ⊃ · · · ⊃ D−2 = [D,D] ⊃ D ⊃ K ⊃ 0

K ... the Levi kernel, i.e., [K ,D] ⊂ D, [K ,K ] ⊂ K

. . . (D−i/D−i+1)(x)
⊕

. . .
⊕

(D−2/D)(x)
⊕

(D/K)(x)
⊕

K(x)
⊕

. . . g−i
⊕

. . .
⊕

g−2
⊕

g−1
⊕

k
⊕

g−1 and k carry induced complex structures I,
[I(X), I(Y)] = [X ,Y ] for X ,Y ∈ g−1 ⊕ k

(g− = · · · ⊕ g−i ⊕ · · · ⊕ g−1, I) a non–degenerate CR algebra
(non–degenerate part of the symbol)
(k, I)... a complex vector space (degenerate part of the symbol)

Jan Gregorovič
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Second order symbol – Idea

We want to add more algebraic data to the symbol (g− ⊕ k, I).
The properties [K ,D] ⊂ D, [K ,K ] ⊂ K suggest to map k inside
gl(g−1).

The conjugation by I defines an involutive automorphism of the Lie
algebra gl(g−1).

gl(g−1)
+ := {X ∈ gl(g−1)|X(I(Y)) = I(X(Y)) for all Y ∈ g−1}

gl(g−1)
− := {X ∈ gl(g−1)|X(I(Y)) = −I(X(Y)) for all Y ∈ g−1}

The corresponding symmetric space ... Gl(2n,R)/Gl(n,C).

The infinitesimal CR automorphisms vanishing at x live in gl(g−1)
+.

This suggests to map k inside gl(g−1)
−.
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Second order symbol – Realization

Observation (Freeman series):
The bracket of vector fields of D⊗ C = D10 ⊕D01 and
K ⊗ C = K10 ⊕ K01 has tensorial parts:

l2 : K10 ⊗D01/K01 → D10/K10, l−2 : K01 ⊗D10/K10 → D01/K01

ad(X)(Y) :=
1
8
(l2(X − iI(X),Y + iI(Y)) + l−2(X + iI(X),Y − iI(Y)))

for X ∈ k,Y ∈ g−1

Theorem

The map ad is a well–define map k→ gl(g−1)
− that satisfies

ad(I(X))(Y) = I(ad(X)(Y)), [ad(X)(Y),Z ] + [Y , ad(X)(Z)] = 0

for all X ∈ k and Y ,Z ∈ g−1.
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Second order symbol

Definition

We call the triple (g−, I, ad(k)) the second order symbol of the CR
manifold (M,D, I) at the regular point x.
We say that (M,D, I) is 2–nondegenerate at x if the map ad is
injective.

We say that the second order symbol is weakly regular if
ad(k) ⊂ der(g−).
We say that the second order symbol is regular if the second order
symbol is weakly regular and

[[ad(k), ad(k)], ad(k)] ⊂ ad(k)

holds in der(g−).

If g−3 = 0, then the symbol is always weakly regular, otherwise, the
symbol does not have to be weakly regular.

Jan Gregorovič
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Characterization of all possible (weakly) regular second
order symbols

Definition

Let (g−, I) be a non–degenerate fundamental CR algebra.
Suppose the subspace h of der(g−)− consisting of complex
anti–linear grading preserving derivations of g− that are acting
trivially on g−2 is non–trivial, i.e., 0 , h ⊂ der(g−)−. Suppose k ⊂ h is
preserved by the left multiplication by I. Then we say that a triple
(g−, I, k) is a weakly regular fundamental CR algebra of second
order. If [[k, k], k] ⊂ k holds in der(g−) then we call it a regular
fundamental CR algebra of second order.

Theorem
Each (weakly) regular second order symbol is a (weakly) regular
fundamental CR algebra of second order. Each (weakly) regular
fundamental CR algebra of second order is a (weakly) regular
second order symbol of a 2–nondegenerate CR manifold.
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Construction of models in the regular case

Conjugation by I restricts to an involutive automorphism of the Lie
algebra l := k ⊕ [k, k]. There is the corresponding (complex)
symmetric space L/L+ for L ⊂ Aut(g−).

Theorem

The triple (exp(g−) o L/L+, exp(g−) o L ×L+ (g−1 ⊕ k), I) is a
homogeneous 2–nondegenerate CR manifold with the regular
second order symbol isomorphic to (g−, I, k) at every point.

There is a local embedding φ : g− ⊕ k→ (g− ⊗ C)/g
01
−1 ⊕ k

10 given by

φ(X+Y) = exp−1(exp(X) exp(
1
2
(Y−iI(Y))) exp(−

1
2
(X−1+iI(X−1))))

for X ∈ g− and Y ∈ k. This provides polynomial/rational defining
equations that are homogeneous w.r.t. the weighted order.
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Construction of models in the weakly regular case

If [[k, k], k] 1 k, then one would need to modify the Lie brackets (by
some curvature/torsion) to get a homogeneous model.
Instead consider k̃ := k+ [[k, k], k] + . . . and the corresponding
regular fundamental CR algebra of second order (g−, I, k̃) with
model (exp(g−) o L/L+, exp(g−) o L ×L+ (g−1 ⊕ k̃), I).

Theorem

The CR submanifold of the manifold exp(g−) o L/L+ given by
points exp(X) exp(Y)L+ for all X ∈ g−1 and all Y ∈ k (for exp in
L/L+) is a 2–nondegenerate CR manifold with (weakly) regular
second order symbol isomorphic to (g−, I, k) at every point.

There is a local embedding φ : g− ⊕ k→ (g− ⊗ C)/g
01
−1 ⊕ k

10 given by
φ(X+Y) = exp−1(exp(X) exp(1

2(Y−iI(Y))) exp(−1
2(X−1+iI(X−1))))

for X ∈ g− and Y ∈ k.
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Construction of models in general case

There is a “free” fundamental CR algebra of second order of the
form (f− = · · · ⊕ f−i ⊕ · · · ⊕ f−3 ⊕ g−2 ⊕ g−1, I). Therefore (f−, I, k) is a
weakly regular second order symbol. This symbol has polynomial
model provided by the (local) embedding
φ : f− ⊕ k→ (f− ⊗ C)/g

01
−1 ⊕ k

10 given by
φ(X+Y) = exp−1(exp(X) exp(1

2(Y−iI(Y))) exp(−1
2(X−1+iI(X−1))))

for X ∈ f− and Y ∈ k.

There is an (graded) ideal q ⊂ f− such that f−/q = g−. For any
complement m of q in f−, there is a 2–non–degenerate CR
submanifold φ(m ⊕ k) in (q ⊗ C)\(f− ⊗ C)/g

01
−1 ⊕ k

10.
In general, φ(m ⊕ k) depends on the choice of m and only the
second order symbol at 0 is isomorphic to (g−, I, k).
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