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Kontsevich integral

valued in the vector space of chord diagrams. Chord is a pair of points on a
1-dim manifold, the support.

O “o O

— support is a disjoint union of oriented circles S and intervals I.
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Chord diagrams

P(X) contains linear combination of chord diagrams on X:
@ chord connects two points on X

@ for n chords, all 2n points are distinct
@ graded by the number of chords 4
@ quotient by diffeomorphisms and the 4-term

relation:
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How to compute Z(T)

a la Le, Murakami

Main ingredient is the Drinfeld associator ®: element of free associative

algebra C((X,Y")) satisfying some consistency equations.
O(X,Y)=1+ 4(XY YX)+

Unnormalized Kontsevich integral Z:

/ — ><+ ><+ X ”:exp%{
Ao (4 Lt )=

M

N RS P

e No normalization: v’ M\ —
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Normalization of N, U

Why normalize?

=3P+ =v!

Normalized Z is defined as before, but
G/ — /2
A\ VT

which implies Z(M) = +
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Last thing we need: Z(#/u,b

On a doubled component, use a Leibniz rule:

— o el

For k chord endpoints on a component C' C X, sum over 2¥ possible
combinations.

This gives a map A¢ : P(X) — P(XZ0)),

For example, A : P(I) — P(I UI) acts as

b bbb+ fh+ B =tpr2H +

{1 I, I3

i 20— ) = 2,82 2(L )

Jan Pulmann (University of Geneva) Kontsevich integral and cabling 6 /12




Recapitulation

e 7,7 is a map: tangles — chord diagrams P(T).
@ Defined by values on X, N, U, I—1 and then stacked to form a tangle.
o For multiple strands in associator, use A¢ : P(X) — P(X(20)).

Cabling

We can double components of tangles as well:

¢ o

M\’T\ A

T(2,0)

Question: Is it true that Z(T%)) = AcZ(T)
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Question: Is it true that Z(T(2)) = Ao Z(T)

@ For |, true by definition
e For X%, true (the hexagon identity for the associator)
o Is it true for N, i.e. Z(M) = AZ(N) = Av!/?

Theorem (Le & Murakami, 95)

Z(m) = Av'/2 = Z(U) if the associator is even, i.e. if it contains only
terms with even numbers of chords ®(X,Y) = &(—X,-Y)

Thus, Z(T*)) = AcZ(T). For knots and links, this is true for any

~

associator, as Z does not depend on this associator.

Can we make this work for any associator? (already posed by Le &
Murakami)
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Cabling for any associator

o For general associator Z(M) # Z(W) — normalize cap and cup
differently

o Let us define Z(N) = o, Z(U) = 3, both in P(I)
o We still need a8 = v: the snake equation Z(M) = +
o The other equation is Z(M) = Aa <= Z(A) = (a ' @ o )Aa

@ Similar equation for U would follow from the previous two.

Proposition (J.P.)

Such « and 3 do not exist.

Proof by twisting of associator ®.
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Associator twists

Let us take (symmetric, invertible) F' € P(I L I).

Then, for an associator ®, define & as:

This ®F' is again an associator (satisfies all the necessary equations).
Simple observation: if F; = (o' ® a~!)Aq, then ®t = &,

(the opposite implication: a theorem by Drinfeld, 1990)
= twist ® by Z(m).
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Recall that we want to find a such that Z(@) = (o ! ® a~!)Aa

Proposition (J.P.)
The associator ®(X,Y") twisted by Z(M) is equal to

®(X, V)M = ¢(—X,-Y).

Thus, if ®(X,Y) # ®(—X, -Y), there exists no « such that
Z(m) = (et ®aHAa.

Proof: use the siphon identity

1 -
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Moduli space of flat connections
with Pavol Severa

Moduli space of flat connections on a surface ’ ‘

with marked points: gauge transformations
are trivial in the points.

Algebra of functions: g-quasi-Poisson algebra. *

Li-Bland & Severa, 2013: Quantization of this moduli space: algebra in the
category Ug—mod?®, where ®(X,Y’) specifies the associative structure.

wﬁ{,—’r e minus: algebra in Ug—mod®—%~Y),
L v,.,-a’/ o fusion (as in picture): monoidal functor
Ug— mod *5Y) —-Ug— mod®(—%—Y),

{D e monoidal structure given by Z(m).
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