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Part I: Compactification

Some motivation (partly näıve) via a general question:
Taming big spaces: Suppose we have an infinite space (i.e.
non-compact manifold, geodesically complete):

How do we deal with the “far region”? Can we make a notion of
“infinity” that is mathematically useful? If so what geometry does
it have? Are there many ways to do such things, or is any success
essentialy unique?

A Compactification of a non-compact (“large”) topological space
M is an embedding of M as a dense subset of a compact (“small”)

space M̃: So M ↪→ M injective cts and a homeo. onto its image .
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Example: A compactification of Minkowski space

R× Sn−1

Mn
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Figure: The standard embedding of n-dimensional Minkowski space Mn

into the Einstein cylinder. This is conformal: gMink = Ω2gLorentzian cyln

Questions: Is this essentially the only way to conformally
compactify M? Is it forced that i± and i0 are points? That I is
an open subset of ∂M?
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Penrose’s “generalisation” and conformal infinity

Definition

A smooth (time- and space-orientable) spacetime (M+, g+) is
called asymptotically simple if there exists another smooth
Lorentzian manifold (M, g) such that

1 M+ is an open submanifold of M with smooth boundary
∂M+ = I ;

2 there exists a smooth scalar field Ω on M, such that
g = Ω2g+ on M+, and so that Ω = 0, dΩ 6= 0 on I ;

3 every null geodesic in M acquires a future and a past endpoint
on I .

An asymptotically simple spacetime is called asymptotically flat if
in addition Ricg+ = 0 in a neighbourhood of I .

Questions: How would we re-discover the Einstein cylinder
compactification or this useful definition? Treat other geometries
similarly?
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Compactification, boundary calculus, and applications

Compactification: M ↪→ M smooth injective, M open dense. (In
general M may be a manifold with boundary, a manifold with
corners,) . . .
Question: What is a right way to do this when geometry is
involved?
In many simple cases the result is
a manifold with boundary M so
that M is the interior and
∂M has codimension 1.

Questions: How do we find the geometry on ∂M?
Boundary calculus: Relate the goemetries/fields on ∂M and M?
Applications: 1. Discovery new links between different
geometries; geometric tools PDE boundary problems; invariant
theory and invariant operators; representation theory; scattering
and non-local operators; AdS/CFT correspondence in physics
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A flat model – compactifying Euclidean space

Stereographic projection p : Sn+1 \ {N} → En+1 is a
diffeomorphism (even C∞)

and p−1 : En+1 → Sn+1 is a conformal embedding. That is it
preserves angles and circles are mapped to circles.

BUT: the conformal infinity of this compactification is the one
point N ∈ Sn+1 – so this cannot encode much information about
En+1, or analysis on En+1. For example:
• The Euclidean group action on En+1 extends to Sn+1, but it
acts trivially on N.
• It is clearly a bad compactification for Euclidean scattering.
Q: Other ways to compactify?
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Making models

Answering these questions has several steps. The first step is
linked to another problem:
Problem: Suppose a Lie group H acts on a manifold X with a
finite number of orbits. Then: (i) understand and relate the
different (Klein) geometries on the orbits; and (ii) construct and
treat a well defined curved version of this theory.

E.g. Example H := SO(n, 1) orbits
X = the Klein Ball:

Note: The Klein ball is a compactification of Hn linked to
projective geometry.
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H = SO(n, 1) orbits on the sphere

Sn = P+(Rn+1 \ {0}) is model of flat projective geometry.
Symmetry reduction by h (plus time↑): ⇒ North polar cap is projective
compactification of Hn; τ = 0 projective ∞ with conformal str.

NB: Embeddings relate the orbits – but these encoded in H ↪→ G .
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Conformal compactification of Hn+1 – the Poincaré ball

Escher’s circle limit

H2 = H2 + ∂H2

The embedding gives the
compactification

Hn+1 embedded conformally

in Euclidean En+1

g+ = 4
(1−|x |2)2

∑n+1 dx2
i

Hn+1 = Hn+1 + ∂Hn+1

Sn = ∂Hn+1
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Poincaré compactification via via P+(nullcone)

Conformal compactification of Hn+1 by symmetry breaking:

N+

i.e. Rn+3

with
−1

1

. . .

1

 I

σ̃=0 σ̃=1

σ̃ = IAX
A

P+
Hn+1

Sn = ∂Hn+1

Sn+1 = P+(N+ ⊂ Rn+3 \ {0}) is model of flat conformal geometry.
G := SOo(n + 2, 1) acts transitively. I ∈ Rn+3, spacelike h(I , I ) = 1
Symmetry reduction by I : ⇒ H = SOo(n + 1, 1) orbits. Right hemi. is conformal
compactification Mc of Hn+1; σ = 0 conformal ∞ with conformal str.
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Bigger groups: H vs G

In each example above there is implicitly a larger group G ⊃ H:
• Poincaré ball and compactifying boundary arise as two
H = SO+(n + 1, 1) orbits on Sn+1 = G/P where

G = S0+(n + 2, 1) and P maximal parabolic in .

The larger homogeneous space G/P encodes how the orbits
smoothly fit together – i.e. the conformal compactification.
Similarly:

Stereographic (conformal) compactification of En+1 arises
as two H = Euclidean group orbits on Sn+1 = G/P – with

same G and P. I.e. Stereo. encoded by H ↪→ G

Klein (projective) compactification of Hn+1 arises as two
H = SO+(n + 1, 1) orbits on Sn+1 = G/P where now

G = SL(n + 2) and P maximal parabolic in SL(n + 2).

Projective compactification of En+1 arises as two · · ·
(Exercise!)
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Curving homogeneous spaces

For a Lie group G and closed Lie group P, homogeneous spaces
G/P are geometries in the sense of Klein. There are often
canonical curved generalisations:

Theorem (Cartan,Tanaka, · · · )
If P is a parabolic subgroup of a semisimple Lie group G then
there is a canonical notion of geometry

G ← P
↓
M

modelled on
G ← P
↓

G/P

where G is equipped with a Cartan connection ω – viz. a suitably
equivariant Lie(G̃ )-valued 1-form, cf. Maurer-Cartan form on G̃ .

E.g. Conformal geometry, projective DG, CR geometry, · · ·
For conformal DG: G = SOo(p + 1, q + 1), and P subgroup
stabilising a ray in Rp+q+2.
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Tractor bundles

If we have a representation V of the group G then we have an
associated vector bundle G ×P V with a linear connection ∇.
This is the associated tractor connection. In fact for (G, ω)
modelled on (G ,P), with G semi-simple, P parabolic:

Theorem (Čap+G.)

Cartan bundle G + connection ω ⇔ Tractor bundle and tractor
connection.

Then:

parallel tractors lead to curved analogues of orbit decompositions.

The point is that even on the model we can think of the orbit
decomposition as arising from a parallel tractor of some type.
Then the corresponding parallel tractor leads to a corresponding
stratification of the curved manifold.
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Theorem (Curved orbit decomposition - Čap,G., Hammerl)

Suppose (G, ω)→ M is a Cartan geometry (modelled on
G → G/P) endowed with a parallel tractor field h giving a Cartan
holonomy reduction with holonomy group H. Then:
(1) M is canonically stratified M =

⋃
i∈H\G/P Mi in a way locally

diffeomorphic to the the H-orbit decomposition of G/P; and
(2) there ∃ a Cartan geometry on Mi of the same type as the
model.

Thus there is a general way to define a curved analogue of an
orbit decomposition of a homogeneous space.
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Curving the conformal compactification of Hn+1

Recall the H = SOo(n + 1, 1) orbits on conformal sphere G/P,
where G = SOo(n + 2, 1), H fixes I ∈ Rn+3 spacelike:

N+

i.e. Rn+2,1x

I

σ̃=0 σ̃=1

σ̃ = IAX
A

P+ Hn+1

Sn = ∂Hn+1

Curved: A conformal manifold has a canonical Cartan bundle G
modeled on (G ,P). If this supports a parallel spacelike tractor I
then the curved orbit theorem (plus some interpretation) states
either M Einstein or M stratifies into disjoint union
M = M− ∪M0 ∪M+ and M0 is a separating
hypersurface. Moreover M \M∓ is a
compactification of the Einstein M±.
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Compactification Programme

Given some non-compact geometry of interest (e.g.
pseudo-Riemannian):

Part 1 (homogeneous): Identify a homogeneous model
Xi = H/K of the geometry as an open H < G orbit M in a
compact homogeneous space X = G/P. (E.g. G semi-simple and
P parabolic.) Then the topological closure X i ⊂ X is a
compactification of Xi .

Part 2 (curved I): Given a compact Cartan geometry (G, ω)→ M
modelled on G → G/P, with a Cartan holonomy reduction with
holonomy group H and an open curved orbit Mi (with same
Cartan geometry type as Xi ), then Mi is its compactification.

The Cartan/tractor machinery relates geometries of Mi & ∂Mi etc

Part 3 (curved II): Typically the geometry on Mi has restrictions
on e.g. Einstein or symmetries, . . . (as a normal solution of a
BGG equation holds on M). In some cases we can drop
restrictions yet still exploit the Cartan/tractor machinery.
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Curving Poincaré II: conformal compactification

Henceforth in these talks, conformal compactification of
pseudo-Riemannian manifold (Mn+1, g+) is a manifold M with
boundary ∂M s.t.:
• ∃ g on M, with
• g+ = r−2g , where r a defining function for ∂M.

⇒ canonical conformal structure on boundary: (∂M, [g |∂M ])
(where dr not null).

• Called a Poincaré-Einstein metric if also g+ negative Einstein.
This is the case rediscovered above by a parallel spacelike
tractor I on M = M+ ∪M0.
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Generalisations and applications

It is natural to seek generalising (even) less rigid notions than
holonomy reductions.
Above we saw the Poincare Ball compactification of Hn+1

generalises via curved orbit decomposition methods to a notion of
conformal compactifcation of complete Einstein spaces – this
recovers the usual notion of Poincaré-Einstein spaces, but in a new
and very useful way.

We want to drop the “Einstein” in this and similar cases.

But we want to do this in a way that retains the Cartan tractor
picture – as this encodes deep information.
Here in particular we will attempt to treat conformally compact
manifolds in general (almost).
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Part II: Conformal geometry and the geometry of scale

A conformal n + 1-manifold (n ≥ 2) is the structure (M, c) where

M is an d = n + 1-manifold,

c is a conformal equivalence class of signature (p, q) metrics,

i.e. g , ĝ ∈ c
def.⇐⇒ ĝ = Ω2g and C∞(M) 3 Ω > 0.

Because there is no distingushed metric on (M, c) an important
role is played by the density bundles. Note (Λn+1TM)2 is an
oriented real line bundle K. We write E [w ] for the roots

E [w ] = K
w

2n+2 , so K = E [2n + 2],

E [0] := E (the trivial bundle with fibre R), and E+[w ] for the
positive elements. With this notation there is tautologically a
conformal metric

g ∈ S2T ∗M[2], so that gσ := σ−2g ∈ c, σ ∈ Γ(E+[1]),

and
⊗n+1g :

(
Λn+1TM

)2 '−→ E [2n + 2].
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Scales

In view of the 1-1 relation between sections σ of E+[1] and metrics
gσ in c (via gσ := σ−2g ∈ c) be call

σ ∈ Γ(E+[1])

a strict scale. Such sections provide the “symmetry breaking”
which reduces us from conformal geometry to pseudo-Riemannian.
Since any Levi-Civita connection ∇g , for g ∈ c, acts on E [2n + 2]

via the isomorphism ⊗n+1g :
(
Λn+1TM

)2 '−→ E [2n + 2] it follows
easily that

∇gσ
σ = 0.

So σ is parallel for the Levi-Civita connection it determines.
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The tractor connection

On a conformal manifold (M, c) there is no distinguished
connection on TM. But we have the conformally invariant tractor
bundle T and connection ∇T . Given g ∈ c this is given by

T g
= E [1]⊕ T ∗M[1]⊕ E [−1], E [1] := (Λn+1TM)

2
2(n+1)

∇Ta (σ, µb, ρ) = (∇aσ − µa, ∇µb + Pabσ + g abρ, ∇aρ− Pabµ
b),

and ∇T preserves a conformally invariant tractor metric h

T 3 V = (σ, µb, ρ) 7→ 2σρ+ µbµ
b = h(V ,V ).

There is also a second order Thomas operator:

Γ(E [w ]) ∈ f 7→ DAf
g
=

 (n + 2w − 2)wf
(n + 2w − 2)∇af
−(∆f + wJf )


where J is traceg (Pab), so a number times Sc(g).
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Parallel standard tractors
Note that from the formula

∇Ta (σ, µb, ρ) = (∇aσ − µa, ∇µb + Pabσ + g abρ, ∇aρ− Pabµ
b),

if IA
g
= (σ, µa, ρ) is a parallel tractor then µa = ∇aσ, and

ρ = −(∆σ + wJσ). This gives the first statement of:

Proposition

I parallel implies IA = 1
dDAσ. So I 6= 0 ⇒ σ is nonvanishing on an

open dense set Mσ 6=0. On Mσ 6=0, go = σ−2g is Einstein.
Conversely if go = σ−2g is Einstein then I := 1

dDσ is parallel.

Proof.

On Mσ 6=0 we have locally ±σ ∈ Γ(E+[1]) so µa = ∇aσ = 0 for
∇ = ∇gσ

. Thus
Pab + ρg ab = 0.

The converse is easy.

So we say (M, c) with parallel I 6= 0 is almost Einstein.
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The Curved orbits.

Concerning M0 = Z(σ). (Here and throughout I 2 = IAIA.)

Theorem

The curved orbit decomposition of an almost Einstein manifold
(M, c, I ) is according to the strict sign of σ = IAX

A. The zero
locus satisfies:

If I 2 6= 0 (i.e. go Einstein and not Ricci flat) then Z(σ) is
either empty or is a smoothly embedded separating
hypersurface.

If I 2 = 0 (i.e. go Ricci flat) then Z(σ) is either empty or,
after excluding isolated points from Z(σ), is a smooth
embedded hypersurface.

Proof.

The local aspects follow from the general curved orbit theorem.
Using the above formulae they are also easily recovered directly
and one sees the separating statement.
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The picture so far

Thus if I 2 6= 0 we have the picture:

M+

M−

M0

σ > 0σ < 0

σ = 0

M \M± is evidently conformally compact and hence
Poincaré-Einstein. Conversely all Poincaré-Einstein manifolds
arise this way.
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Almost pseudo-Riemannian geometry

We want now to drop the Einstein condition and understand e.g.
general conformally compact manifolds.

For convenience we say that a structure
(Md , c, σ) where σ ∈ Γ(E [1])

is almost pseudo-Riemannian if the scale tractor

IA :=
1

d
DAσ is nowhere zero.

Note then that σ is non-zero on an open dense set, since DAσ
encodes part of the 2-jet of σ. So on an almost
pseudo-Riemannian manifold there is the pseudo-Riemannian
metric go = σ−2g on the same open dense set. In the following
the notation I will always refer to a scale tractor, so I = 1

dDσ, for
some σ ∈ Γ(E [1]). Then we often mention I instead of σ and refer
to (M, c, I ) as an almost pseudo-Riemannian manifold. Evidently:

Lemma

A conf. compact mfld is an almost Riemannian manifold (M, c, σ)
with boundary (M = M+ ∪ ∂M+) such that σ defines ∂M+
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Generalised scalar curvature

Now recall from the formula for I and the metric we have

IAIA =: I 2 g
= g ab(∇aσ)(∇bσ)− 2

d
σ(J + ∆)σ (1)

where g is any metric from c and ∇ its Levi-Civita connection.
This is well-defined everywhere on an almost pseudo-Riemannian
manifold, while where σ is non-zero, it computes

I 2 = − 2

d
Jg

o
= − Scg

o

d(d − 1)
where go = σ−2g .

Thus I 2 gives a generalisation of the scalar curvature (up to a
constant factor −1/d(d − 1)); it is canonical and smoothly
extends the scalar curvature to include the zero set of σ. We shall
use the term ASC manifold (where ASC means almost scalar
constant) to mean an almost pseudo-Riemannian manifold with
I 2 = constant. Since the tractor connection preserves h, then I
parallel implies I 2 = constant. So an almost Einstein manifold is
ASC, just as Einstein manifolds have constant scalar curvature.
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Non-zero generalised scalar curvature.

Much of the almost Einstein curved orbit picture remains in the
almost pseudo-Riemannian setting when I 2 is non-vanishing:

Theorem

Let (M, c, I ) be an almost pseudo-Riemannian manifold with I 2

nowhere zero. Then Z(σ), if not empty, is a smooth embedded
separating hypersurface. This has a spacelike (resp. timelike)
normal if go has negative scalar (resp. positive) scalar curvature.
If c has Riemannian signature and I 2 < 0 then Z(σ) is empty.

Key aspect of Proof.

From I 2 g
= g ab(∇aσ)(∇bσ)− 2

d σ(J + ∆)σ: Along Z(σ) we have

I 2 = g ab(∇aσ)(∇bσ).

in particular ∇σ is nowhere zero on Z(σ), and so σ is a defining
density. Thus Z(σ) is a smoothly embedded hypersurface by the
implicit function theorem.
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Conformally compact manifolds

Summary: A conformal manifold equipped with a scale tractor
I = 1

dDσ, with I 2 nowhere zero has I nowhere zero and so is
almost pseudo-Riemanian. Where σ = XAIA is nonzero (almost
everywhere) there is the pseudo-Riemannian metric go = σ−2g ,
and σ is a defining density for the separating hypersurface
M0 = Z (σ).

Thus we again have a stratification

M = M− ∪M0 ∪M+.

Moreover (M, c, I ) \M∓ is conformally compact, as any scale
τ ∈ Γ(E+[1]) gives g = τ−2g ∈ c, and r := τ−1σ is a defining
function for M0 in M± = M± ∪M0. It is clear all conformally
compact manifolds with scalar curvature bounded away from zero
arise arise this way.

We want to develop a boundary calculus for these conformally
compact manifolds. First we digress to understand hypersurfaces.
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Lecture 2

Part III: Hypersufaces in conformal manifolds

Part IV: Geometry of conformal infinity
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Part III: Hypersurfaces in conformal geometry - a digression

To treat boundary calculus we need to understand the
mathematics of hypersurfaces.
Defn: hypersurface Σ in a manifold M means a smoothly
embedded codimension 1 submanifold of (M, c).
• we restrict to Σ with the property that the any conormal field
along Σ is nowhere null (i.e. to nondegenerate hypersurfaces).
Then:
• restriction of any g ∈ c gives metric ḡ on Σ  c induces c̄ on Σ.
• It is natural to work with a weight 1 co-normal na along Σ
satisfying g abnanb = ±1.

Rod Gover. background: G-., Waldon, arXiv:1506.02723, and Boundary calculus for conformally compact manifolds. Indiana U.M.J. 63 (2014). Curry, G-. · · · Conformal Geometry · · · GR· · · , LMS Series, Cambridge, arXiv:1412.7559 Čap, G-. Hammerl: Holonomy reductions etc, Duke Math. J. 163 (2014) 1035–1070. G-. J. Geom. Phys., 60 (2010), 182–204.Compactification and boundary calc



Basic hypersurface invariants

For g ∈ c, the second fundamental form Lab is the restriction of
∇anb to TΣ× TΣ ⊂ (TM × TM)|Σ, where ∇ = ∇g ; i.e.

Lab := ∇anb ∓ nan
c∇cnb along Σ.

This is not conformally invariant. But under a conformal rescaling,
g 7→ ĝ = e2ωg , Lab transforms according to

Lĝab = Lgab + g abΥcn
c , where Υ = dω

Thus:

Proposition

The trace-free part of the second fundamental form

L̊ab = Lab − Hg ab, where, H :=
1

d − 1
g cdLcd

is conformally invariant.

Here d = n + 1 is the dimension of the ambient manifold M.
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The normal tractor

Evidently, under a conformal rescaling g 7→ ĝ = e2ωg , the mean
curvature Hg transforms to H ĝ = Hg + naΥa. Thus we obtain a
conformally invariant section N of T |Σ

NA
g
=

 0
na
−Hg

 ,

and h(N,N) = ±1 along Σ. This is the normal tractor of
Bailey-Eastwood-G. Differentiating N tangentially along Σ using
∇T , we obtain the following result.

Proposition (Conformal Shape operator)

LaB := ∇aNB
gcb=

 0

L̊ab
− 1

d−2∇
bL̊ab


where ∇ is the pullback to Σ of the ambient tractor connection.
Thus Σ is totatally umbilic iff N is parallel along Σ.
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Conformal hypersurface calculus

The classical Gauss formula

∇av
b = ∇av

b ∓ nbLacv
c v ∈ TΣ ⊂ TM,

is the basis of Riemannian hypersurface calculus.

We want the conformal analogue. First we need this:

Proposition (Branson-G., Grant)

There is a natural conformally invariant (isometric) isomorphism

T |Σ ⊃ N⊥
'−→ T = std tractor bdle of (Σ, c̄).

Proof.

Calculating in a scale g on M the tractor bundle T , and hence also
N⊥, decomposes into a triple. Then the mapping of the
isomorphism is

[N⊥]g 3

 σ
µb
ρ

 7→
 σ

µb ∓ Hnbσ
ρ± 1

2H
2σ

 ∈ [T ]g .
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The tractor Gauss equation

The above reveals two connections on T ∼= N⊥ that we can

compare. Namely the intrinsic tractor connection ∇T

determined by (Σ, c), and the projected ambient tractor
connection ∇̃. The latter is defined by

∇̃aU
B := ΠB

C (Πc
a∇cU

C ) U ∈ Γ(N⊥) extended arb. off Σ

where ΠB
C and Πc

a are the orthog. projections due to N and n.
Including the tractor derivative of ΠB

C gives:

Proposition (Tractor Gauss formula – Stafford,Vyatkin)

∇aV
B = ∇aV

B ∓ Sa
B
CV

C ∓NBLaCV
C ,

where SaBC = XBC
cFac , (XBC

c an invariant bundle injector), and

Fab = 1
n−2

(
Wacbdn

cnd + L̊2
ab −

|̊L|2
2(n−1)g ab

)
.

Recall LaC = ∇aNC . This shows that Fab is a conformal invariant
of hypersurfaces. It is the so-called Fialkow tensor.
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Applications

The above results and tools provide the first steps in an invariant
calculus for conformal hypersurfaces that is somewhat
analogous to the local invariant calculus for Riemannian
hypersurfaces. In particular combining these with usual tractor
calculus it is easy to proliferate hypersurface conformal
invariants and conformally invariant operators. E.g.:

Families of boundary operators along a conformal hypersurface.

Background: In Riemannian geometry the Neumann operator is
na∇a. Higher transverse order transverse boundary operators
similarly given: nanb∇a∇b etc.
Conformal Robin op: The tools above allow an immediate

analogue. Recall δ1
g

:= na∇a − wHg , is the conformal
Cherrier-Robin operator – it gives a conformal boundary Robin
operator for the conformal Laplacian. This is recovered by

(n + 2w − 2)δ1 = NADA along Σn−1 in Mn.
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Families of boundary/symmetry breaking operators

Higher order analogues are important for PDE boundary problems,
and the construction of higher order conformal Dirichlet-Neumann
operators. Juhl, Kobyashi et al have sought continuous families
of such, which in the flat case they describe as symmetry
breaking operators and interpret as intertwinors of the
spherical principal series representations of the conformal group.

Here is an immediate construction of such:

Lemma (G.-Peterson)

Given a conformal hypersurface embedding Σ ↪→ (M, c),

δj+1 := NA1NA2 · · ·NAj δ1DA1DA2 · · ·DAj

constructs a family of natural conformally invariant hypersurface
operators δK : T Φ[w ]→ T Φ[w − K ]|Σ along Σ.

This observation can be refined significantly (G.-Peterson). The
key is identify and treat the special weights w .
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Hidden problems, hidden treasures

It would appear from the formula

δK := NA1NA2 · · ·NAK−1δ1DA1DA2 · · ·DAK−1
along Σ

that the operator has “high” transverse order and is always at least
of transverse order 1. But e.g.: (where n̄ = dim(Σ) etc)

δ2f = −(∆̄− n̄ − 2

4(n̄ − 1)
S̄c)f +

n̄ − 2

4(n̄ − 1)
L̊abL̊abf , for f ∈ E

[
1− n̄

2

]
.

This is the intrinsic to Σ Yamabe operator of (Σ, cΣ) (plus the
conformal invariant L̊abL̊ab). So:

at this weight δ2 has transverse order 0.

At the interior Yamabe weight 1− n
2 we have instead

δ2 = −(∆− n − 2

4(n − 1)
Sc) along Σ.

– i.e. the interior Yamabe operator.
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Part IV: Geometry of conformal infinity

We return now to conformally compact geometries (M, c, I ).
Recall the scale tractor I is given I = (σ,∇σ,− 1

d (∆σ + Jσ)).
We will consider in particular (M, c, I ) which near the conformal
infinity are asymptotically of constant nonzero scalar
curvature. By imposing a constant dilation we may assume that
I 2 approaches ±1.
The σ, equivalently scale tractor I , strongly links the geometry of
Σ = Z(σ) to the ambient by a beautiful agreement of I and the
normal tractor:

Proposition

Let (Md , c, I ) be an almost pseudo-Riemannian structure with
scale singularity set Σ 6= ∅ and I 2 = ±1 + σ2f for some smooth
(weight −2) density f . Then Σ is a smoothly embedded
hypersurface and, with N denoting the normal tractor for Σ, we
have N = I |Σ.
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Proof.

For simplicity assume the case I 2 = ±1 (so f = 0 and the
structure is ASC). As usual let us write σ := h(X , I ). Along Z(σ)

IA =
1

d
DAσ

g
=

 0
∇aσ
− 1

d ∆σ

 ⇒ g ab(∇aσ)∇bσ = ±1

so na := ∇aσ is the unit conormal and a computation gives
1
d ∆σ = − 1

d−1g
abLgab = −Hg .

Corollary

Let (Md , c, I ) be an almost pseudo-Riemannian structure with
scale singularity set Σ 6= ∅, and that is asymptotically Einstein in
the sense that I 2|Σ = ±1, and ∇aIB = σfaB for some smooth
(weight −1) tractor valued 1-form faB . Then Σ is a totally
umbilic hypersurface.
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Agreement of tractor connections
If we assume the stronger asymptotics: I 2|Σ = ±1, and
∇aIB = σ2faB Then along Σ, IB is parallel to the given order, and
so the tractor curvature satisfies

κab
C
D I

D = κab
C
DN

D = 0 along Σ.
This implies

Wab
c
dn

d = 0 , along Σ = Z(σ)

∴ Fialkow Fab = 1
n−2 (Wacbdn

cnd + L̊2
ab −

|̊L|2
2(n−1)g ab) vanishes, &

Theorem

Let (Md≥4, c, I ) be an almost pseudo-Riemannian structure with
scale singularity set Σ 6= ∅, and that is asymptotically Einstein in
the sense that I 2|Σ = ±1, and ∇aIB = σ2faB . Then the tractor
connection of (M, c) preserves the intrinsic tractor bundle of Σ,
where the latter is viewed as a subbundle of the ambient tractors:
TΣ ⊂ T . Furthermore the restriction of the parallel transport of
∇T coincides with the intrinsic tractor parallel transport of ∇TΣ=T .
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Summary to this point

Any almost pseudo-Riemannian manifold with non-zero
generalised scalar curvature (i.e. I 2 nowhere zero) has zero
locus Σ = Z(σ) a smoothly embedded hypersurface.

If g± = σ−2g is (asymptotically) Einstein in that ∇I vanishes
(sufficiently quickly) along Σ then for Σ the conformal invariants
L̊ab and Fab both vanish everywhere along Σ. This:
• gives agreement of the ambient and intrinsic tractor connections;
• excludes interesting embeddings of Σ – i.e. such Σ are not
useful for studying general hypersurface geometry.

This is the classical Poincaré-Einstein setting. From the work of
Fefferman-Graham and others we know that if g± = σ−2g is
(asymptotically) Einstein (to sufficiently high order) then the
conformal geometry of (Σ, c̄) actually formally determines the full
geometry of (M, g±), at least up to order approximately d − 1.
Thus a powerful link intrinsic geometry of (Σ, c̄) to (M, g±) –
little freedom at all in the embedding of Σ.
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Lecture 3

Part V: Boundary calculus

Part VI: The Loewner-Nirenberg problem and higher Willmore
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Part V: Boundary calculus

Recall: By embedding a conformal manifold (Σ, c̄) as the boundary
at infinity of a Poincaré-Einstein manifold (M, g+), the
Fefferman-Graham programme led to powerful tools: New
approaches to the construction of conformal invariants (of (Σ, c̄)),
The GJMS operators and Q-curvature, scattering theory, · · · ,
Applications to AdS/CFT conjecture, · · ·

From the early discussion we will see that there is an analogous
program in for conformally embdedded hypersurfaces. In part the
generalises the FG program but in other ways it is a different
program.

We work on Md=n+1.
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Differential operators by prolonged coupling

On an almost pseudo-Riemannian manifold (M, c, I ) there is a
canonical differential operator by coupling IA to DA , namely

I ·D := IADA.

This acts on any weighted tractor bundle, preserving its tensor
type but lowering the weight:

I ·D : EΦ[w ]→ EΦ[w − 1].

It will be useful to define define the weight operator w: if
β ∈ Γ(B[w0]) we have

wβ = w0β.

Then on EΦ[w ] we have

I ·D g
=
(
− 1

d (∆σ + Jσ) ∇aσ σ
) w(d + 2w− 2)
∇a(d + 2w− 2)
−(∆ + Jw)

 .

= −σ∆ + (d + 2w − 2)[(∇aσ)∇a −
w

d
(∆σ)]− 2w

d
(d + w − 1)σJ
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The canonical degenerate Laplacian
Now on M \ Z(σ) in the metric g± = σ−2g , with densities
trivialised accordingly, we have

I ·D g±
= ∓

(
∆g± +

2w(d + w − 1)

d
Jg±
)
.

In particular if g± satisfies Jg± = ∓d
2 (i.e. Scg± = ∓d(d − 1) or

equivalently I 2 = ±1) then, relabeling d + w − 1 =: s and
d − 1 =: n, we have

I ·D g±
= ∓

(
∆g± ± s(n − s)

)
.

so solutions are eigenvectors of the Laplacian (and s is called
the spectral parameter) as in scattering theory.

But on Σ = Z(σ) 6= ∅, the conformal infinity, I ·D degenerates and
there the operator is first order. In particular if the structure is
asymptotically ASC in the sense that I 2 = ±1 + σf , for some
smooth f , then along Σ

I ·D = (d + 2w − 2)δn , δ1
g
= na∇g

a−wHg = conformal Robin

Thus I ·D is a degenerate Laplacian, natural to (M, c, I ).
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The sl(2)-algebra

(M, c) be a conformal structure of dimension d ≥ 3, σ ∈ Γ(E [1])
and IA = 1

dDAσ (as usual). Then a direct computation gives

Lemma

Acting on any section of a weighted tractor bundle we have

[I ·D, σ] = I 2(d + 2w),

where w is the weight operator.

Thus with only the restriction that generalised scalar
curvature is non-vanishing we have:

Proposition (G.-Waldron)

Suppose that (M, c, σ) is such that I 2 is nowhere vanishing.
Setting x := σ, y := − 1

I 2 I ·D, and h := d + 2w we obtain the
commutation relations

[h, x ] = 2x , [h, y ] = −2y , [x , y ] = h,

of standard sl(2)-algebra generators.
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Application: Conformal Laplacian powers

Theorem

Let EΦ be any tractor bundle and k ∈ Z≥1. Then, for each
k ∈ Z≥1, along Σ = Z(σ)

Pk : EΦ[
k − n

2
]→ EΦ[

−k − n

2
] given by Pk :=

(
− 1

I 2
I·D
)k

(2)

is a tangential differential operator, and so determines a canonical
differential operator Pk : EΦ[k−n2 ]|Σ → EΦ[−k−n2 ]|Σ. For k even
this takes the form

Pk = ∆
k

+ lower order terms. (3)

Proof.

From the sl(2)-identities we have [x , yk ] = yk−1k(h − k + 1).
Thus on EΦ[k−n2 ]

Pk(f + σh) = yk(f + xh) = Pk f + σP̃kh.

So Pk is tangential. Expanding the I ·Ds yields (3).
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Natural boundary problems

Suppose on a conformally compact manifold M+ (with
M+ ∪ ∂M+ = M) we wish to study solutions to

Pf :=
(

∆g+ +
2w(d + w − 1)

d
Jg+

)
f = 0.

E.g. this is what is studied in the usual Poincaré-Einstein
scattering program.

Then one needs to fix suitable boundary conditions. E.g. in the
case of Riemannian signature one wants some elliptic boundary
problem. Since the boundary ∂M+ is at infinity, with g+ singular
along ∂M+, this is non-trivial.

But if we view f as the trivialisation of a density of weight w then

Pf
g+
= I ·Df and I ·D is well defined on all of M (and its smooth

extension to M beyond ∂M+). Thus it is natural to study the I ·D
problem. We do this formally.

First we treat an obvious Dirichlet-like problem where we view f |Σ
as the initial data.
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Asymptotic solutions of the first kind

Problem

Given f |Σ, and an arbitrary extension f0 of this to EΦ[w0] over M,
find fi ∈ EΦ[w0 − i ] (over M), i = 1, 2, · · · , so that

f (`) := f0 + σf1 + σ2f2 + · · ·+ O(σ`+1)

solves I ·Df = O(σ`), off Σ, for ` ∈ N ∪∞ as high as possible.

I ·Df = 0 ⇔ − 1
I 2 I ·Df = 0 so we recast this via sl(2) = 〈x , y , h〉.

Set h0 = d + 2w0. By the identity [xk , y ] = xk−1k(h + k − 1):

yf (`+1) = yf (`) − x`(`+ 1)(h + `)f`+1 + O(x`+1).

Now hf`+1 =
(
h0 − 2(`+ 1)

)
f`+1, thus

yf (`+1) = yf (`) − x`(`+ 1)(h0 − `− 2)f`+1 + O(x`+1). (4)

By assumption yf (`) = O(x`), thus if ` 6= h0 − 2 we can solve

yf (`+1) = O(x`+1) and this uniquely determines f`+1|Σ.
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The obstruction on conformally compact manifolds

So we can solve to all orders provided we do not hit ` = h0 − 2 i.e.
provided w0 /∈ {k−n2 : k ∈ Z≥1}. Otherwise (4) shows that

` = h0−2 ⇒ yf (`) = y
(
f (`)+x`+1f`+1

)
, modulo O(x`+1),

regardless of f`+1. It follows that the map f0 7→ x−`yf (`) is
tangential and x−`yf (`)|Σ is the obstruction to solving
yf (`+1) = O(x`+1). Then by a simple induction this is seen to be a
non-zero multiple of y `+1f0|Σ:

Proposition

If ` = h0 − 2 then the smooth extension is (in general) obstructed
by P`+1f0|Σ, where P`+1 = (− 1

I 2 I·Df )`+1 is the tangential operator
on densities of weight w0 given by Theorem 27.

If ` = h0 − 2 then the extension can be continued with log terms.
If M is almost Einstein to sufficiently high order then:
• the odd order P`+1 vanish identically; and
• the even order P`+1 are the GJMS operators on (∂M+, c̄).
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(Formal) solutions of the second kind

Now we consider the more general type of solution:

Problem

Given f 0|Σ ∈ ΓEΦ[w0 − α]|Σ and an arbitrary extension f 0 of this
to ΓEΦ[w0 − α] over M, find f i ∈ EΦ[w0 − α− i ] (over M),
i = 1, 2, · · · , so that

f := σα
(
f 0 + σ f 1 + σ2 f 2 + · · ·+ O(σ`+1)

)
(5)

solves I · Df = O(σ`+α), off ∂M+, for ` ∈ N ∪∞ as high as
possible.

Now α, if not integral, this Problem takes us outside the realm of
the universal enveloping algebra U(g) and its modules. But it is
straightforward to show that for any α ∈ R:

[xα, y ] = xα−1α(h + α− 1). (6)
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It follows immediately from (6) that I · Df = 0 has:
• no solution if α /∈ {0, h0 − 1}, where hf = h0f ; and
• if α = h0 − 1 and f = σαf then

I ·Df = σαI ·Df So f is a solution iff f is!

So in this way second solutions arise from first and vv.

For w0 /∈ {k−n2 : k ∈ Z≥1}, and writing F = f , G = σ−αf we can
combine these to a general solution

F + σh0−1G = F + σn+2w0G

or, trivialising the densities on M+ using the generalised scale σ:

f = σn−sF + σsG = σ−w0(F + σh0−1G )

where s := w0 + n. Which is the form of solution used in the
scattering theory (of Graham-Zworski, Mazzeo-Melrose, · · · ). The
sl(2) approach above solves the asymptotics of F and G .
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Part VI: The Loewner-Nirenberg problem and higher
Willmore

The Poincaré-Einstein construction is a tool for studying a
conformal manifold (Σ, c̄) holographically. That is for obtaining
the invariants and invariant operators of (Σ, c̄) in terms
(pseudo-)Riemannian objects on the manifold M+ of 1 greater
dimension that has Σ = ∂M+.

Conversely the scattering theory of (M, g+) can be understood in
terms of non-local conformal operators on the boundary (Σ, c̄).

But requiring g+ to be Einstein (even asymp. near ∂M+) is highly
restrictive. It means that the conformal manifold with boundary
(M, c) has Σ = ∂M+ totally umbilic, Fialkow vanishes, etcetera.

Here we seek to set up the analogous program for (M, c) a
general manifold with boundary.

Thus, given (M = M+ ∪ ∂M+, c) we need a way to determine a
distinguished metric g+ ∈ c|M+ on M+ so that (M+, g+) is
conformally compact.
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Generalising Poincaré  A singular Yamabe problem

Recall a conformal compactification of a complete Riemannian
manifold (Mn+1, g+) is a manifold M with boundary ∂M s.t.:
• ∃ g on M, with g+ = r−2g , where
• r a defining function for ∂M: ∂M = Z(r) & drp 6= 0 ∀p ∈ ∂M.

⇒ canonically a conformal structure on boundary: (∂M, [g |∂M ]).

Question/variant: Given g (or really c = [g ]) can we find a
defining function r ∈ C∞(M) for Σ = ∂M s.t.

Sc(r−2g) = −n(n + 1)? NB: This satisfied for Poincaré-Einstein

cf. Loewner-Nirenberg, Aviles and McOwen – related interior problems.
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The obstruction density of ACF

Can we solve Sc(r−2g) = −n(n + 1)? formally (i.e. power series)
along the boundary? Answer: No - in general can get:

Theorem (Andersson, Chruściel, & Friedrich)

Sc(r−2g) = −n(n + 1) + rn+1Bn.

Furthermore (they show)

B2 = δ · δ · L̊ + lower order

is a conformal invariant of Σ2 = ∂M.

Theorem.[G. + Waldron] For n ≥ 2 Bn is a conformal invariant of
Σ = ∂M, and B2 = Willmore Invariant = ∆ + lower order!
•For n even the invariant Bn is higher order analogue of B2 = B.

NB. The existence of such a higher analogue was not previously
obvious as the weight and leading order of Bn means standard
tractor/ambient metric approaches fail.
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Recasting the problem and holography

Recall the constant scalar curvature condition in terms of scale. A
conformal manifold has a canonical conformal metric
g ∈ S2T ∗M[2]. A metric g+ ∈ c is equivalent to a scale:

g+ = σ−2g ⇔ σ ∈ Γ(E+[1]).

Via the Thomas-D operator D̄ = 1
n+1D the scale is equivalent to

the
scale tractor IA := D̄Aσ, and

Lemma

Sc(g+) = −n(n + 1)⇔ I 2 := h(I , I ) = 1

So we come to a “conformal Eikonal equation” (D̄Aσ)(D̄Aσ) = 1,
where σ a defining density for Σ. NB:

• If we could solve uniquely then Σ ↪→ (M, c) determines g ∈ c .

Then invariants of conf. compact (M, g+) would be invariants of Σ.
Rod Gover. background: G-., Waldon, arXiv:1506.02723, and Boundary calculus for conformally compact manifolds. Indiana U.M.J. 63 (2014). Curry, G-. · · · Conformal Geometry · · · GR· · · , LMS Series, Cambridge, arXiv:1412.7559 Čap, G-. Hammerl: Holonomy reductions etc, Duke Math. J. 163 (2014) 1035–1070. G-. J. Geom. Phys., 60 (2010), 182–204.Compactification and boundary calc



The conformal Eikonal equation

Thus to solve the singular Yamabe problem formally we come to
the following non-linear problem:
Problem: For a conformal manifold (M, c) and an embedding
ι : Σ→ M solve

IAI
A = (D̄Aσ)(D̄Aσ) = 1 + O(σ`)

for ` as high as possible, and σ a Σ defining density.

A key observation is that the linearisation of IAIA = 1 is
IADAσ̇ = 0 – the I ·D problem on E [1]. Thus ∃ hope that the sl(2)
generated by x := σ, y := − 1

I 2 I
ADA will again be useful.

Recall from the standard sl(2) identities we have

[I · D, σk+1] = I 2σk(k + 1)(n + k + 1 + 2w),

and this allows an inductive solution (using also other tractor
identities) that mimics the linear case!
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Lemma

Suppose that σ ∈ Γ(E [1]) defines Σ = ∂M+ in (M, c) and

I 2
σ = 1 + σkAk where Ak ∈ Γ(E [−k])

is smooth on M, and k ≥ 1, then
• if k 6= (n + 1) then ∃ fk ∈ Γ(E [−k]) s.t. σ′ := σ + σk+1fk
satisfies I 2

σ′ = 1 + σk+1Ak+1, where Ak+1 smooth;
• if k = (n + 1) then: I 2

σ′ = I 2
σ + O(σn+2).

Proof.

Squaring with the tractor metric, using the sl(2), etc

(D̄σ′)2 = (D̄σ + D̄(σk+1fk))2

= I 2
σ +

2

n + 1
Iσ · D(σk+1fk) + (D̄(σk+1fk))2

= 1 + σkAk +
2σk

n + 1
(k + 1)(n + 1− k)fk + O(σk+1).
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The distinguished defining density

This applies formally off any hypersurface in a Riemannian
conformal manifold (M, c) (and even more generally) so we have:

Theorem (G.-, Waldron arXiv:1506.02723)

For Σn embedded in (Mn+1, c) there is a distinguished defining
density σ̄, unique modulo +O(σn+2), s.t.

I 2
σ̄ = 1 + σ̄n+1Bσ̄.

Moreover:
B := Bσ̄|Σ ∈ Γ(EΣ[−n − 1])

is determined by (M, c,Σ) and is a natural conformal invariant.

For n even B = 0 generalises the Willmore equation in that:
B = ∆̄

n
2 H + lower order terms;

while for n odd B has no linear leading term.
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All submanifold invariants via holography?

The construction can be used to obtain other submanifold
invariants: Our Theorem above shows that:

(M, c,Σ) determines σ̄ modulo + O(σn+2).

Suppose that I is any coupled conformal invariant of (M, c, σ̄)
involving only the jet jn+1σ̄. Then along Σ

I
∣∣
Σ

is a conformal invariant of (M, c,Σ).

This holographic approach fails at order n + 2 precisely because of
the existence of the obstruction invariant B. This is precisely an
analogue of the use Fefferman-Graham’s Poincaré and ambient
metric constructions to find conformal invariants – that fails at
order n + 1 because of Bach Bab in dimension 4 and the
Fefferman-Graham obstruction tensor in higher even
dimensions.
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Extrinsically coupled GJMS operators

Recall on any almost Riemannian manifold (M, c, I ) we had:

Theorem

Let EΦ be any tractor bundle and k ∈ Z≥1. Then, for each
k ∈ Z≥1, along Σ = Z(σ)

Pσk : EΦ[
k − n

2
]→ EΦ[

−k − n

2
] given by Pσk :=

(
− 1

I 2
I ·D
)k

is a tangential differential operator, and so determines a canonical
differential operator Pσk : EΦ[k−n2 ]|Σ → EΦ[−k−n2 ]|Σ. For k even
this takes the form

Pk = ∆
k

+ lower order terms.

Because (M, c,Σ) determines σ̄ modulo + O(σn+2), we have:

Theorem

For k ≤ n = d − 1 the operators Pk are determined canonically by
the data (M, c,Σ).
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Higher Willmore energies

For suitable regularisations Mε of conformally compact manifolds
M:

Volε =

∫
Mε

√
g+ =

vn
εn

+ · · ·+ v1

ε
+A log ε+ Vren + O(ε).

Theorem (Graham 2016: arXiv:1606.00069)

If g+ = σ̄−2g , i.e. it is the approximate solution of the sing.
Yamabe problem then A a conformal invariant of Σ ↪→ M and

δA
δΣ

=
d(d − 2)

2
Bn

So the anomaly term in the renormalised volume expansion
provides an energy with functional gradient the obstruction
density, in other words an energy generalising the Willmore energy.
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Extrinsic Q-curvature and the anomaly

In fact – also in analogy with the treatment of Poincaré-Einstein
manifolds – there is nice local quantity giving the anomaly:

Theorem (G.- Waldron arXiv:1603.07367)

A =
1

(d − 1)!(d − 2)!

∫
Σ
Q

where, with τ ∈ ΓE+[1] a scale giving the boundary metric,
Q := (−I · D)n log τ .

• Q here is an extrinically coupled Q-curvature meaning e.g.

Q ĝΣ = e−nf (Qg + Pnf ) where ĝΣ = e2f gΣ

and for n even

Pn = ∆
n
2
Σ + lower order terms; Pn FSA, and Pn1 = 0,

is an extrinically coupled GJMS type operator. Q and Pn are
from G.-, Waldron arXiv:1104.2991 = Indiana U.M.J. 2014.
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Idea of proof

Use a Heaviside function θ to “cut off” an integral over all M

Volε =

∫
M

dV gτ

σd
θ(
σ

τ
− ε).

Then the divergent terms and anomaly are given by

vk ∼
dd−1−k

dεd−1−k

(
εd

d

dε
Volε

) ∣∣
ε=0

,

So

vk ∼
∫
M

δd−1−k(σ)

τk
and A ∼

∫
M
δd−2(σ)I · D log τ

Then via identities, and the sl(2) again

vk ∼
∫

Σ

1

τk
and A ∼

∫
Σ

(I · D)d−1 log τ
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