Fundamental Properties of Monads in Double Categories

V. Aravantinos-Sotiropoulos

Vassilis Aravantinos-Sotiropoulos (vassilarav@yahoo.gr) National Technical University of Athens

Christina Vasilakopoulou (christie.vasi@gmail.com) National Technical University of Athens

Abstract.

It is well established that monoidal categories provide an appropriate context in which internal monoids can be considered. On a higher level, the notion of (pseudo) double category, originally introduced by Ehresmann, can be viewed as a generalization of monoidal categories in which there is accordingly a natural notion of a monad [6, 3].

In this work, we establish various fundamental properties of the category $\mathsf{Mnd}(\mathbb{D})$ of monads and monad maps in a fibrant double category \mathbb{D} . For many particular choices of \mathbb{D} , the category of monads is a familiar category of interest. For example, if \mathbb{D} is the double category $\mathsf{Span}(\mathcal{C})$ of spans in a category \mathcal{C} , then $\mathsf{Mnd}(\mathbb{D}) = \mathsf{Cat}(\mathcal{C})$, the category of internal categories in \mathcal{C} . Similarly, if \mathbb{D} is the double category \mathcal{V} -Mat of matrices over a monoidal category \mathcal{V} , then $\mathsf{Mnd}(\mathbb{D}) = \mathcal{V}$ -Cat, the category of enriched categories in \mathcal{V} .

On one hand, we consider the existence of limits in $\mathsf{Mnd}(\mathbb{D})$ and their relationship to limits of the same type in categories related to \mathbb{D} , such as the category of objects, of arrows or the category of endomorphisms $\mathsf{End}(\mathbb{D})$. In this regard, we rely on a notion of *parallel (co)limits* in a double category, explicitly introduced in [1] – which is not a double-categorical (co)limit, but of a simpler flavor which is of practical use in the fibrant setting.

On the other hand, we investigate the existence of free monads and the monadicity of $\mathsf{Mnd}(\mathbb{D})$ over $\mathsf{End}(\mathbb{D})$. The results here can be seen as a generalization of those in [2], which deals with the case of \mathcal{W} -Cat where \mathcal{W} is a bicategory. In the end of this line of ideas, we also approach the question of local presentability of $\mathsf{Mnd}(\mathbb{D})$, in an attempt to generalize known results from the monoidal case [5] and to recover cases of interest like \mathcal{V} -Cat [4].

References

- V. Aravantinos-Sotiropoulos and C. Vasilakopoulou, Sweedler Theory for Double Categories, preprint arXiv:2408.03180, 2024.
- [2] R. Betti, A. Carboni, R. Street and R. Walters, Variation through enrichment, J. Pure Appl. Algebra, Vol. 29, No. 2 (1983) 109 – 127.
- [3] T. M. Fiore, N. Gambino and J. Kock, Monads in double categories, J. Pure Appl. Algebra, Vol. 215, No. 5 (2011), 1174 – 1197.
- [4] G. M. Kelly and S. Lack, V-Cat is locally presentable or locally bounded if V is so, Theory Appl. Categ., Vol. 8, No. 23 (2001), 555 – 575.
- [5] H.-E. Porst, On Categories of Monoids, Comonoids, and Bimonoids, Quaest. Math., Vol. 31, No. 2 (2008), 127 –139.
- [6] M. Shulman, Framed Bicategories and Monoidal Fibrations, Theory Appl. Categ., Vol. 20, No. 18 (2008), 650 -738.