An adjunction between categories of monads

A. Doña Mateo

Adrián Doña Mateo (adrian.dona@ed.ac.uk) University of Edinburgh

Abstract

Given a monad T on \mathscr{A} and a functor $G: \mathscr{A} \to \mathscr{B}$, if the right Kan extension of GT along G exists, then it has a canonical monad structure; we call this monad the pushforward of T along G and denote it by $G_{\#}T$. If F is left adjoint to G, then $G_{\#}T$ is the familiar monad structure on GTF. If T is the identity monad, then $G_{\#}T$ is the codensity monad of T. Even though it was introduced by Street [2] in the 1970s, the pushforward constructions has not yet been studied in depth. This talk will report on work towards this goal, the details of which can be found in [1].

Under suitable smallness and completeness conditions, $G_{\#}$ becomes a functor $\mathsf{Mnd}(\mathscr{A}) \to \mathsf{Mnd}(\mathscr{B})$. In fact, when G is full and faithful, $G_{\#}$ has a partial left adjoint $G^{\#}$, defined on those monads on \mathscr{B} whose endofunctor restricts to \mathscr{A} , i.e. those monads S such that there is an endofunctor S' of \mathscr{A} and an isomorphism $SG \cong GS'$. We denote the corresponding subcategory of $\mathsf{Mnd}(\mathscr{B})$ by $\mathsf{Mnd}(\mathscr{B})^{\mathrm{res}\mathscr{A}}$, giving an adjunction

$$\mathsf{Mnd}(\mathscr{A}) \xrightarrow[G^{\#}]{} \mathsf{Mnd}(\mathscr{B})^{\mathrm{res}\mathscr{A}} \subseteq \mathsf{Mnd}(\mathscr{B}),$$

with $G_{\#}$ full and faithful and $G^{\#}$ given by restriction.

The conditions which result in this situation are not hard to satisfy. For example, one may take G to be the inclusion $\mathsf{FinSet} \hookrightarrow \mathsf{Set}$, the inclusion $\mathsf{Set}_{\neq \varnothing} \hookrightarrow \mathsf{Set}$ (where the domain is the category of nonempty sets), the discrete-topology functor $\mathsf{Set} \to \mathsf{Top}$, or the forgetful functor $\mathsf{Field} \to \mathsf{CRing}$. The first two will be the guiding examples for this talk.

In the case of $\mathsf{Set}_{\neq \emptyset} \hookrightarrow \mathsf{Set}$, the category on the right-hand side of the adjunction is just $\mathsf{Mnd}(\mathsf{Set})$, and the corresponding reflective subcategory on the left is spanned by those monads all of whose pseudoconstants are induced by actual constants.

In the case of FinSet \hookrightarrow Set, the right-hand side of the adjunction includes monads such as the identity, the (-) + E monad (for a finite set E), the $M \times (-)$ monad (for a finite monoid M), the powerset monad, the double-powerset monad, the ultrafilter monad, and the filter monad. I will explain what the pushforward of their restriction to FinSet is; for example, starting with the powerset monad, this process produces the theory of continuous lattices. I will also explain why, with two trivial exceptions, pushforwards along FinSet \hookrightarrow Set never have rank.

References

- [1] A. Doña Mateo, Pushforward monads, preprint arXiv:2406.15256, 2025
- [2] R. Street, The formal theory of monads, Journal of Pure and Applied Algebra 2.2 (1972)