Action representability of internal 2-groupoids

Nadja Egner

Nadja Egner (nadja.egner@uclouvain.be) Université catholique de Louvain

Marino Gran (marino.gran@uclouvain.be) Université catholique de Louvain

Abstract. Based on [1], we prove that, in any regular Mal'tsev category \mathscr{C} with coequalizers, the category 2-Grpd(\mathscr{C}) of internal 2-groupoids is a Birkhoff subcategory of the category $\operatorname{Grpd}^2(\mathscr{C})$ of internal double groupoids, i.e., it is a full reflective subcategory that is also closed under subobjects and quotients. It follows that 2-Grpd(\mathscr{C}) is a semi-abelian category if \mathscr{C} is so, and we identify sufficient conditions on \mathscr{C} for 2-Grpd(\mathscr{C}) to be action representable if \mathscr{C} is so. This result applies, for example, to the categories Grp of groups, Lie_R of Lie algebras over a commutative ring R, and Hopf_{coc K} of cocommutative Hopf algebras over a field K.

If \mathscr{C} is a Mal'tsev category, i.e., a finitely complete category in which any internal reflexive relation is an equivalence relation, then the inclusion functor from the category $\operatorname{Grpd}(\mathscr{C})$ of internal groupoids to the category $\operatorname{Cat}(\mathscr{C})$ of internal categories is an isomorphism of categories, and the inclusion functor from $\operatorname{Cat}(\mathscr{C})$ to the category $\operatorname{RG}(\mathscr{C})$ of internal reflexive graphs is full. Examples of Mal'tsev categories include any Mal'tsev variety, i.e., a variety of universal algebras whose theory admits a ternary term p that satisfies the identities p(x, x, y) = y = p(y, y, x), such as the varieties of groups, of rings, of Lie algebras, and of Heyting algebras.

It is known that, if \mathbb{V} is a Mal'tsev variety, then 2-Grpd(\mathbb{V}) is a subvariety of the Mal'tsev variety $\operatorname{Grpd}^2(\mathbb{V})$. Generalizing this result, we show that 2-Grpd(\mathscr{C}) is a Birkhoff subcategory of $\operatorname{Grpd}^2(\mathscr{C})$ whenever \mathscr{C} is a regular Mal'tsev category with coequalizers, relying on the result of [2] that $\operatorname{Grpd}(\mathscr{C})$ is a regular Mal'tsev category whenever \mathscr{C} is so. An explicit description of the reflector $\operatorname{Grpd}^2(\mathscr{C}) \to 2\operatorname{-Grpd}(\mathscr{C})$ is provided, which was not known in the varietal case, that reveals an interesting link with commutator theory of equivalence relations.

A category \mathscr{C} with finite limits and finite colimits is called action representable if the functors $\operatorname{Act}(-, X)$ that map an object B to the set of its actions on X are representable, i.e., there exists an object [X], called the actor of X, such that $\operatorname{Act}(B, X)$ and $\operatorname{Hom}(B, [X])$ are naturally isomorphic. Examples of action representable categories are given by Grp and Lie_R. The actor of a group G is given by its automorphism group $\operatorname{Aut}(G)$, while the actor of a Lie algebra L is given by its Lie algebra of derivations $\operatorname{Der}(L)$. If \mathscr{C} is a semi-abelian category, the functor $\operatorname{Act}(-, X)$ is isomorphic to the functor $\operatorname{SplExt}(-, X)$ that maps an object B to the set of isomorphism classes of split extensions of B by X. It is shown in [3] that $\operatorname{Grpd}(\mathscr{C})$ is semi-abelian, action representable, algebraically coherent and with normalizers if and only if \mathscr{C} is so. Using the fact that 2- $\operatorname{Grpd}(\mathscr{C})$ is coreflective and reflective in $\operatorname{Grpd}^2(\mathscr{C})$ if \mathscr{C} is a semi-abelian category, we apply this result to show that 2- $\operatorname{Grpd}(\mathscr{C})$ shares the same properties if \mathscr{C} does.

References

- N. Egner and M. Gran, Double groupoids and 2-groupoids in regular Mal'tsev categories, preprint arXiv:2411.06210, 2024.
- [2] M. Gran, Internal categories in Mal'cev categories, J. Pure Appl. Algebra 143 (1999), 221-229.
- [3] M. Gran and J.R.A. Gray, Action representability of the category of internal groupoids, Theory Appl. Categ. 37 (2021), no. 1, 1-13.