Pretorsion Theories on $(\infty, 1)$ -Categories

Lucy Grossman

April 2025

1 Abstract

In the 1960s, Spencer Dickson, in [3], axiomatizing properties of the category of abelian groups, presented a notion of *torsion theory* on abelian categories, which was soon generalized beyond the abelian setting (see, among many others, [1], [2]), and even, recently, in [4] and particularly [5], to general (and not necessarily pointed) 1-categories. Classically, a *pretorsion theory* on a category \mathbf{C} is a pair of full replete subcategories (\mathbf{T}, \mathbf{F}) such that every morphism between them factors through their intersection, $\mathbf{Z} := \mathbf{T} \cap \mathbf{F}$, and that there is a notion of short exact sequence consisting of a \mathbf{Z} -kernel and a \mathbf{Z} -cokernel that one may associate to every object in \mathbf{C} . A *torsion theory* from this perspective is a pretorsion theory where $\mathbf{Z} = \emptyset$. Pretorsion theories satisfy multitudinous properties, including that \mathbf{T}, \mathbf{F} and \mathbf{Z} are closed under certain extensions, that \mathbf{Z} -kernels and -co-kernels are respectively monomorphisms and epimorphisms, and that \mathbf{T} and \mathbf{F} are respectively coreflective and reflective subcategories of \mathbf{C} .

Here we will propose a notion of pretorsion theory for $(\infty, 1)$ -categories, compatible with the aforementioned classical one under the taking of the homotopy category $h\mathscr{C}$ of the $(\infty, 1)$ -category \mathscr{C} upon which the pretorsion theory is situated. We shall then show that $(\infty, 1)$ -categorical pretorsion theories satisfy some, but not all, of the properties fulfilled by their classical counterparts.

There are a notion of normal torsion theory for stable $(\infty, 1)$ -categories [6], as well as a version of two-dimensional torsion theory [8] available in the literature, and we will discuss the the compatibility and relationship of our construction with these two by looking in particular at $(\infty, 1)$ -torsion theories in our framework as well as its behavior under truncation.

References

- [1] Michael Barr. Non-abelian torsion theories. Canadian J. Math., 25:1224–1237, 1973.
- [2] Dominique Bourn and Marino Gran. Torsion theories in homological categories. Journal of Algebra, 305(1):18–47, 2006.
- [3] Spencer E. Dickson. A torsion theory for abelian categories. Transactions of the American Mathematical Society, 121:223–235, 1966.
- [4] Alberto Facchini and Carmelo Finocchiaro. Pretorsion theories, stable category and preordered sets, 2019.
- [5] Alberto Facchini, Carmelo Finocchiaro, and Marino Gran. Pretorsion theories in general categories. Journal of Pure and Applied Algebra, 225(2):106503, 2021.
- [6] D. Fiorenza and F. Loregian. t-structures are normal torsion theories. Applied Categorical Structures, 24(2):181–208, Apr 2016.
- [7] Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009.
- [8] Mariano Messora. A 2-dimensional torsion theory on symmetric monoidal categories, 2025.