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Abstract.
Partial groups were introduced in [1] and played a key role in Chermak’s proof of the existence

and uniqueness of centric linking systems for saturated fusion systems, a major recent result in
p-local finite group theory. A partial group consists of a (suitably compatible) collection of partially-
defined n-ary multiplications on a set; this structure can concisely be described as a symmetric
simplicial set for which the Segal maps are monomorphisms and which has a single vertex [5]. The
most important class of partial groups are the localities, each of which comes equipped with an
‘action’ by conjugation on a certain subcollection of its set of p-subgroups.

Heretofore, the notion of action of partial groups has proved elusive. We’ll propose a simple
general definition in the symmetric sets framework, inspired by the fibrational perspective in cat-
egory theory. This will be suitable for capturing a number of expected examples, including the
action of a locality on its special collection of subgroups, and more generally for partial groups
arising from a partial action of a group [3]. These are examples of characteristic actions, where
the action itself controls which multiplications are valid in the partial group.

Our main application of characteristic actions is to a connection between partial groups and the
d-Segal spaces of Dyckerhoff–Kapranov [2]. The higher Segal conditions are a series of exactness
conditions for simplicial spaces coming from certain triangulations of cyclic polytopes. These
generalize Segal spaces, and have applications (for d = 2, when they are also called decomposition
spaces [4]) in representation theory, K-theory, geometry, combinatorics, and elsewhere, and are
closely connected to ∞-operads and to categories with multivalued composition. For a given
partial group, one naturally might wonder if it is d-Segal for some d. The degree of a partial group
is defined to be the least integer k for which it is (2k−1)-Segal, so that the degree 1 partial groups
are precisely the groups. We’ll discuss why characteristic actions are a key ingredient in degree
computations.
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