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Abstract.
Monadic reconstruction theory—relating additional structure of a monad to structure on its Eilen-
berg–Moore category—can be seen as a generalisation of classical Tannaka–Krein duality, in which
one reconstructs a compact group from its category of representations. Results of this kind were
obtained for oplax monoidal monads—also called bimonads—by Moerdijk [1] and McCrudden [2];
for Hopf monads by Bruguières, Lack, and Virelizier [4, 5]; and for ∗-autonomous and linearly
distributive monads by Pastro and Street [6, 7]. Crucial in all of these statements is the involve-
ment of a fibre functor, which generalises the, classically, forgetful strict monoidal functor to the
category of vector spaces or bimodules over a ring.

A different kind of reconstruction is possible if one foregoes such a fibre functor. For example,
given a monoidal category C, one could ask when a given C-module category M is equivalent to
the Eilenberg–Moore category of some monad on C. That is, we only recover the algebraic object
of interest up to Morita equivalence.

This talk generalises such a reconstruction result by Ostrik [3] about Hopf algebras on finite
tensor categories to the general case of right exact lax module monads on a nice module category
over a general abelian monoidal category with enough projectives. Crucially, the proof does not
need any rigidity assumptions on the underlying category, and in fact leads to a characterisation
of right exact lax module monads up to Morita equivalence.

As an application, we give conceptual proofs of the fundamental theorem of Hopf modules, and
the fact that a bimonad is Hopf if and only if it is strong as a module monad over its base category.
The talk is based on joint work with Mateusz Stroiński [8].
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