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Introduction: (oo, 1)-topoi

More formally

A presentable (oo, 1)-category X is said to be a topos if
* There exists a small category X, and a Bousfield localization

L: Fun(X,,8) — X,

L preserves finite limits.
e The functor
X°P — G’at(ooj), X — :X/X
preserves limits—; Descent axiom.
e X is locally cartesian closed and admits classifiers (for large k).
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Synthetic theory of fibrations

Definition
A morphism p: x — cin X, is a O-fibration if the morphism

X —— s Freed(p)

\ / — admits a left adjoint in X /..
c

Morphisms of fibrations

X ——— Y

l l — adjointable squares

FreeQ(p) —— Freed(q)
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e (O-fibration=cocartesian fibration.
e 1-fibration=cartesian fibration.

Towards fibrational descent

We have functors,

Fib?_: X% = Cat(nop), X Fib‘}x,

Fib}_: X©%P — Cat(q ), X Fib}x,

functoriality is given by pullback.

Fernando Abellan July 16, 2025 8/18



Fibrational descent

Fix a diagram F: I — X,

Fernando Abellan July 16, 2025 9/18



Fibrational descent

Fix a diagram F: I — X, F(i) = ¢,

Fernando Abellan July 16, 2025 9/18



Fibrational descent

Fix a diagram F: I — X, F(i) = ¢, Colim]IE' (op)lax £ _

Fernando Abellan July 16, 2025 9/18



Fibrational descent

Fix a diagram F: I — X, F(i) = ¢, Colim]IE' (op)lax £ _

Definition (ish):

Fernando Abellan July 16, 2025 9/18



Fibrational descent

Fix a diagram F: I — X, F(i) = ¢, colimf' (op)lax £ _

Definition (ish): Fibrational descent

Fernando Abellan July 16, 2025 9/18



Fibrational descent

Fix a diagram F: I — X, F(i) = ¢, colim]IE'(°P)'aX F—oc

Definition (ish): Fibrational descent
¢ The following pieces of data are equivalent

Fernando Abellan July 16, 2025 9/18



Fibrational descent

Fix a diagram F: I — X, F(i) = ¢, colim]IE'(°P)'aX F—oc

Definition (ish): Fibrational descent
¢ The following pieces of data are equivalent

E-(op)lax families of
e-fibrations, p: x — ¢ e-fibrations,

Pi: X XcCi— Cj, €T

N

taking (op)lax colimits
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Fibrational descent

Suppose X — 2-presentable+fibrational descent

Lawvere-Tierney axioms

Then Fibj_), preserves limits

(Fisd )™ = X(—. %), (Fib] )™ ~X(~.Q')
!

Internal Grothendieck construction < Universal fibrations

!

Fibrations are exponentiable

= - - =
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The main theorem

Theorem [A-Martini 24]
Let X be a presentable (oo, 2)-category. TFAE
* X satisfies fibrational descent.

e There exist classifiers for fibrations and fibrations are
exponentiable.

e There exists a small (o0, 2)-category X,; and a Bousfield
localization,

L: Fun(Xy, Cat(se 1)) — X

which preserves oriented pullbacks and the terminal
object.
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(00, 1)-localic (oo, 2)-topoi

Q: How this relate to (oo, 1)-topoi?
e Every (oo, 2)-topos X — Underlying (oo, 1)-topos

Grp(X) — internal groupoids.

e For every (oo, 1)-topos X— (o0, 2)-topos of sheaves

Sh(X) — F: X°" — Cat(, 1) limit preserving
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Theorem [A-Martini 24]: Localic reflection
There exists an adjunction of (oo, 2)-categories,

Sh(—): 1Top, 2Top, : Grp(—)

with Sh(—) fully-faithful.

v

Internal (higher) category theory following Martini-Wolf embedds J
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Directed Univalence

Theorem [A-Martini 24]: Directed Univalence
Let x, y € X, then we have a natural equivalence

X(me): i) HO_meO(X»Y)
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What can we do with this?

Synthetic category theory

e Yoneda’'s lemma
¢ (Lax) Kan extensions
e (Lax) (co)limits

Slightlty more exotic than the (oo, 1)-localic case

¢ Not enough groupoids
¢ In general no op’s J
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Future directions

e Categorified sheaves and lax descent J
¢ The enveloping (oo, 2)-topos of (oo, 1)-topoi J
e Stacky formulation for stratified (oo, 1)-topoi. J
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