$(\infty, 2)$ -Topoi and descent.

Fernando Abellán

Norwegian University of Science and Technology fernando.a.garcia@ntnu.no

CT 2025

<ロト < 回 > < 巨 > < 巨 > く 巨 > 一 豆 ・ り へ 〇

1/18

Theory of $(\infty, 1)$ -topoi

2/18

Theory of $(\infty, 1)$ -topoi \longrightarrow

2/18

Theory of $(\infty, 1)$ -topoi \longrightarrow Synthetic homotopy theory.

2/18

Theory of $(\infty, 1)$ -topoi \longrightarrow Synthetic homotopy theory.

Foundations for derived geometries.

Fernando Abellán

Theory of $(\infty, 1)$ -topoi \longrightarrow Synthetic homotopy theory.

Foundations for derived geometries.

Theory of $(\infty, 1)$ -topoi \longrightarrow Synthetic homotopy theory.

Foundations for derived **geometries**.

 \downarrow

Models for homotopy type theory.

Theory of $(\infty, 1)$ -topoi \longrightarrow Synthetic homotopy theory.

Foundations for derived geometries.

 \downarrow

Models for homotopy type theory.

Theory of $(\infty, 1)$ -topoi \longrightarrow Synthetic homotopy theory.

Foundations for derived geometries.

 \downarrow

Models for **homotopy type theory**.

 \downarrow

Language for dealing with **local-to-global phenomena**.

ロト 4回 ト 4 重 ト 4 重 ・ 夕 (で

More formally

A presentable $(\infty, 1)$ -category $\mathcal X$ is said to be a topos if

3/18

More formally

A presentable $(\infty, 1)$ -category $\mathfrak X$ is said to be a topos if

• There exists a small category \mathfrak{X}_{κ} , and a Bousfield localization

3/18

More formally

A presentable $(\infty, 1)$ -category $\mathfrak X$ is said to be a topos if

• There exists a small category \mathfrak{X}_{κ} , and a Bousfield localization

$$L \colon \operatorname{\mathsf{Fun}}(\mathfrak{X}_\kappa, \mathfrak{S}) \to \mathfrak{X},$$

3/18

More formally

A presentable $(\infty, 1)$ -category $\mathfrak X$ is said to be a topos if

• There exists a small category \mathfrak{X}_{κ} , and a Bousfield localization

$$L \colon \operatorname{\mathsf{Fun}}(\mathfrak{X}_\kappa, \mathfrak{S}) \to \mathfrak{X},$$

L preserves **finite limits**.

More formally

A presentable $(\infty, 1)$ -category $\mathfrak X$ is said to be a topos if

• There exists a small category \mathfrak{X}_{κ} , and a Bousfield localization

$$L \colon \operatorname{\mathsf{Fun}}(\mathfrak{X}_{\kappa}, \mathfrak{S}) \to \mathfrak{X},$$

L preserves **finite limits**.

• The functor

More formally

A presentable $(\infty, 1)$ -category $\mathfrak X$ is said to be a topos if

• There exists a small category \mathfrak{X}_{κ} , and a Bousfield localization

$$L \colon \operatorname{\mathsf{Fun}}(\mathfrak{X}_{\kappa}, \mathfrak{S}) \to \mathfrak{X},$$

L preserves **finite limits**.

The functor

$$\mathfrak{X}^{\mathsf{op}} o \mathfrak{C}\mathsf{at}_{(\infty,1)}, \ \, \mathit{X} \mapsto \mathfrak{X}_{/\mathit{X}}$$

More formally

A presentable $(\infty, 1)$ -category $\mathfrak X$ is said to be a topos if

• There exists a small category \mathfrak{X}_{κ} , and a Bousfield localization

$$L \colon \operatorname{\mathsf{Fun}}(\mathfrak{X}_\kappa, \mathfrak{S}) \to \mathfrak{X},$$

L preserves **finite limits**.

The functor

$$\mathfrak{X}^{\mathsf{op}} \to \mathtt{Cat}_{(\infty,1)}, \ \, \textit{\textbf{X}} \mapsto \mathfrak{X}_{/\textit{\textbf{X}}}$$

preserves limits

More formally

A presentable $(\infty, 1)$ -category $\mathfrak X$ is said to be a topos if

• There exists a small category \mathfrak{X}_{κ} , and a Bousfield localization

$$L \colon \operatorname{\mathsf{Fun}}(\mathfrak{X}_{\kappa}, \mathfrak{S}) \to \mathfrak{X},$$

L preserves **finite limits**.

The functor

$$\mathfrak{X}^{\mathsf{op}} o \mathtt{Cat}_{(\infty,1)}, \ \ \mathit{X} \mapsto \mathfrak{X}_{/\mathit{X}}$$

preserves limits \longrightarrow **Descent axiom.**

More formally

A presentable $(\infty, 1)$ -category $\mathfrak X$ is said to be a topos if

• There exists a small category \mathfrak{X}_{κ} , and a Bousfield localization

$$L \colon \operatorname{\mathsf{Fun}}(\mathfrak{X}_{\kappa}, \mathfrak{S}) \to \mathfrak{X},$$

L preserves **finite limits**.

The functor

$$\mathfrak{X}^{\mathsf{op}} o \mathtt{Cat}_{(\infty,1)}, \ \ \mathit{X} \mapsto \mathfrak{X}_{/\mathit{X}}$$

preserves limits \longrightarrow **Descent axiom.**

• \mathfrak{X} is locally cartesian closed

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

More formally

A presentable $(\infty, 1)$ -category $\mathfrak X$ is said to be a topos if

• There exists a small category \mathfrak{X}_{κ} , and a Bousfield localization

$$L \colon \operatorname{\mathsf{Fun}}(\mathfrak{X}_{\kappa}, \mathbb{S}) \to \mathfrak{X},$$

L preserves **finite limits**.

The functor

$$\mathfrak{X}^{\mathsf{op}} o \mathtt{Cat}_{(\infty,1)}, \ \ \mathit{X} \mapsto \mathfrak{X}_{/\mathit{X}}$$

preserves limits \longrightarrow **Descent axiom.**

• $\mathfrak X$ is locally cartesian closed and admits classifiers (for large κ).

(□ ▷ 〈리〉〈콘〉〈콘〉〈콘〉 (콘 ›) (♡

Q: How can we categorify this? . . .

4/18

Q: How can we categorify this? . . .

 \downarrow

What is an $(\infty, 2)$ -topos?

Fernando Abellán

Theory of $(\infty, 2)$ -topoi

5/18

Theory of $(\infty, 2)$ -topoi \longrightarrow

5/18

Theory of $(\infty, 2)$ -topoi \longrightarrow Synthetic category theory

5/18

Theory of $(\infty, 2)$ -topoi \longrightarrow Synthetic category theory $\checkmark \checkmark \checkmark$

5/18

Theory of $(\infty, 2)$ -topoi \longrightarrow Synthetic category theory $\checkmark \checkmark \checkmark$

Foundations for categorified **geometries**.

Fernando Abellán

Theory of $(\infty, 2)$ -topoi \longrightarrow Synthetic category theory $\checkmark \checkmark \checkmark$

Foundations for categorified geometries. ???????

Fernando Abellán

Theory of $(\infty, 2)$ -topoi \longrightarrow Synthetic category theory $\checkmark \checkmark \checkmark$

Foundations for categorified geometries. ???????

Theory of $(\infty, 2)$ -topoi \longrightarrow Synthetic category theory $\checkmark \checkmark \checkmark$

Foundations for categorified geometries. ???????

 \downarrow

Models for directed type theory.

Theory of $(\infty, 2)$ -topoi \longrightarrow Synthetic category theory $\checkmark \checkmark \checkmark$

Foundations for categorified geometries. ???????

 \downarrow

Models for directed type theory. \checkmark \checkmark

Theory of $(\infty, 2)$ -topoi \longrightarrow Synthetic category theory $\checkmark \checkmark \checkmark$

Foundations for categorified geometries. ???????

 \downarrow

Models for directed type theory. ✓ ✓ ✓

Theory of $(\infty, 2)$ -topoi \longrightarrow Synthetic category theory $\checkmark \checkmark \checkmark$

Foundations for categorified geometries. ???????

 \downarrow

Models for directed type theory. $\checkmark \checkmark \checkmark$

 \downarrow

Language for dealing with local-to-global phenomena.

ロトオ部トオミトオミト ミ めのぐ

Theory of $(\infty, 2)$ -topoi \longrightarrow Synthetic category theory $\checkmark \checkmark \checkmark$

Foundations for categorified geometries. ???????

 \downarrow

Models for directed type theory. ✓ ✓ ✓

 \downarrow

Language for dealing with **local-to-global phenomena**. \checkmark \checkmark

Synthetic theory of fibrations

Let $\mathbb X$ be an $(\infty,2)$ -category and consider morphisms $a \xrightarrow{f} c \xleftarrow{g} b$.

6/18

Synthetic theory of fibrations

Let $\mathbb X$ be an $(\infty, 2)$ -category and consider morphisms $a \stackrel{f}{\to} c \stackrel{g}{\leftarrow} b$.

Oriented pullback \longrightarrow

6/18

Synthetic theory of fibrations

Let \mathbb{X} be an $(\infty, 2)$ -category and consider morphisms $a \stackrel{f}{\to} c \stackrel{g}{\leftarrow} b$.

Oriented pullback
$$\longrightarrow$$
 $\begin{bmatrix} a \times b & \longrightarrow b \\ \downarrow & \downarrow & \downarrow \\ a & \xrightarrow{f} c \end{bmatrix}$

6/18

Let \mathbb{X} be an $(\infty, 2)$ -category and consider morphisms $a \stackrel{f}{\to} c \stackrel{g}{\leftarrow} b$.

Oriented pullback
$$\longrightarrow$$
 $\begin{bmatrix} a \overset{\rightharpoonup}{\underset{c}{\times}} b & \longrightarrow & b \\ \downarrow & & \downarrow & \downarrow \\ a & \xrightarrow{f} & c \end{bmatrix}$

• If $g = \operatorname{id}$ then $a \underset{c}{\overset{\rightarrow}{\times}} c = \operatorname{Free}_c^0(f)$.

6/18

Let \mathbb{X} be an $(\infty, 2)$ -category and consider morphisms $a \stackrel{f}{\to} c \stackrel{g}{\leftarrow} b$.

Oriented pullback
$$\longrightarrow$$
 $\begin{array}{c} a \overset{\rightarrow}{\underset{c}{\times}} b \overset{\longrightarrow}{\longrightarrow} b \\ \downarrow & \downarrow g \\ a \overset{f}{\longrightarrow} c \end{array}$

- If $g = \operatorname{id}$ then $a \underset{c}{\overset{\rightarrow}{\times}} c = \operatorname{Free}_{c}^{0}(f)$. If $f = \operatorname{id}$ then $c \underset{c}{\overset{\rightarrow}{\times}} b = \operatorname{Free}_{c}^{1}(g)$.

Definition

A morphism $p: x \to c$ in X,

7/18

Definition

A morphism $p: x \to c$ in X, is a 0-fibration

7/18

Definition

A morphism $p: x \to c$ in \mathbb{X} , is a 0-fibration if the morphism

7/18

Definition

A morphism $p: x \to c$ in \mathbb{X} , is a 0-fibration if the morphism

7/18

Definition

A morphism $p: x \to c$ in \mathbb{X} , is a 0-fibration if the morphism

Morphisms of fibrations

◆□▶◆□▶◆壹▶◆壹▶ 壹 かなぐ

7/18

Definition

A morphism $p: x \to c$ in X, is a 0-fibration if the morphism

Morphisms of fibrations

$$egin{array}{cccc} x & \longrightarrow & y & & \downarrow & & \downarrow & & & \downarrow &$$

4 □ ▷ ← 경 ▷ ← 결 ▷ ← 결 ▷ 수 결 ▷ 수 집 ▷

Definition

A morphism $p: x \to c$ in X, is a 0-fibration if the morphism

Morphisms of fibrations

orpando Abellán

Notation

• 0-fibration=cocartesian fibration.

8/18

Notation

- 0-fibration=cocartesian fibration.
- 1-fibration=cartesian fibration.

8/18

Notation

- 0-fibration=cocartesian fibration.
- 1-fibration=cartesian fibration.

Towards fibrational descent

We have functors,

8/18

Notation

- 0-fibration=cocartesian fibration.
- 1-fibration=cartesian fibration.

Towards fibrational descent

We have functors,

$$\mathsf{Fib}^0_{/-} \colon \mathbb{X}^\mathsf{op} \to \mathfrak{C}\mathsf{at}_{(\infty,2)},$$

8/18

Notation

- 0-fibration=cocartesian fibration.
- 1-fibration=cartesian fibration.

Towards fibrational descent

We have functors,

$$\mathsf{Fib}^0_{/-} \colon \mathbb{X}^\mathsf{op} o \mathbb{C}\mathsf{at}_{(\infty,2)}, \ \ x \mapsto \mathsf{Fib}^0_{/x},$$

8/18

Notation

- 0-fibration=cocartesian fibration.
- 1-fibration=cartesian fibration.

Towards fibrational descent

We have functors,

$$\mathsf{Fib}^0_{/-} \colon \mathbb{X}^\mathsf{op} \to \mathfrak{C}\mathsf{at}_{(\infty,2)}, \ \ x \mapsto \mathsf{Fib}^0_{/x},$$

$$\mathsf{Fib}^1_{/-} \colon \mathbb{X}^{\mathsf{coop}} \to \mathfrak{C}\mathsf{at}_{(\infty,2)},$$

Notation

- 0-fibration=cocartesian fibration.
- 1-fibration=cartesian fibration.

Towards fibrational descent

We have functors,

$$\mathsf{Fib}^0_{/-} \colon \mathbb{X}^\mathsf{op} \to \mathfrak{C}\mathsf{at}_{(\infty,2)}, \ \ \textit{X} \mapsto \mathsf{Fib}^0_{/\textit{X}},$$

$$\mathsf{Fib}^1_{/-} \colon \mathbb{X}^{\mathsf{coop}} \to \mathfrak{C}\mathsf{at}_{(\infty,2)}, \ \, \mathit{X} \mapsto \mathsf{Fib}^1_{/\mathit{X}},$$

Notation

- 0-fibration=cocartesian fibration.
- 1-fibration=cartesian fibration.

Towards fibrational descent

We have functors,

$$\mathsf{Fib}^0_{/-} \colon \mathbb{X}^\mathsf{op} \to \mathfrak{C}\mathsf{at}_{(\infty,2)}, \ \ x \mapsto \mathsf{Fib}^0_{/x},$$

$$\mathsf{Fib}^1_{/-} \colon \mathbb{X}^{\mathsf{coop}} \to \mathbb{C}\mathsf{at}_{(\infty,2)}, \ \, x \mapsto \mathsf{Fib}^1_{/x},$$

functoriality is given by

4 □ ト 4 □ ト 4 亘 ト 4 亘 り 4 ○ ○

Notation

- 0-fibration=cocartesian fibration.
- 1-fibration=cartesian fibration.

Towards fibrational descent

We have functors,

$$\mathsf{Fib}^0_{/-} \colon \mathbb{X}^\mathsf{op} \to \mathfrak{C}\mathsf{at}_{(\infty,2)}, \ \ \mathit{X} \mapsto \mathsf{Fib}^0_{/\mathit{X}},$$

$$\mathsf{Fib}^1_{/-} \colon \mathbb{X}^{\mathsf{coop}} \to \mathfrak{C}\mathsf{at}_{(\infty,2)}, \;\; X \mapsto \mathsf{Fib}^1_{/X},$$

functoriality is given by pullback.

Fix a diagram $F: \mathbb{I} \to \mathbb{X}$,

9/18

Fernando Abellán

Fix a diagram $F: \mathbb{I} \to \mathbb{X}$, $F(i) = c_i$,

9/18

Fix a diagram
$$F\colon \mathbb{I} o \mathbb{X}$$
, $F(i) = c_i$, $\operatorname{colim}_{\mathbb{I}}^{E\text{-}(\operatorname{op})\mathsf{lax}} F = c$

Definition

9/18

Fix a diagram $F\colon \mathbb{I} o \mathbb{X}$, $F(i) = c_i$, $\operatorname{colim}_{\mathbb{I}}^{E\text{-}(\operatorname{op})\mathsf{lax}} F = c$

Definition (ish):

9/18

Fix a diagram $F\colon \mathbb{I} o \mathbb{X}$, $F(i) = c_i$, $\operatorname{colim}_{\mathbb{I}}^{E\text{-}(\operatorname{op})\mathsf{lax}} F = c$

Definition (ish): Fibrational descent

9/18

Fix a diagram $F \colon \mathbb{I} o \mathbb{X}$, $F(i) = c_i$, $\operatorname{colim}_{\mathbb{I}}^{E\text{-}(\operatorname{op})\mathsf{lax}} F = c$

Definition (ish): Fibrational descent

The following pieces of data are equivalent

9/18

Fix a diagram $F \colon \mathbb{I} \to \mathbb{X}$, $F(i) = c_i$, $\operatorname{colim}_{\mathbb{I}}^{E\text{-}(\operatorname{op})\mathsf{lax}} F = c$

Definition (ish): Fibrational descent

The following pieces of data are equivalent

9/18

Suppose \mathbb{X}

10/18

Suppose $\mathbb{X} \longrightarrow$

10/18

Suppose $\mathbb{X} \longrightarrow \text{2-presentable+fibrational descent}$

10/18

 $\textbf{Suppose} \ \mathbb{X} \longrightarrow \textbf{2-presentable+fibrational descent}$

Lawvere-Tierney axioms

Then
$$\operatorname{Fib}_{/(-)}^{\epsilon}$$
,

Fernando Abellán July 16, 2025

 $\textbf{Suppose} \ \mathbb{X} \longrightarrow \textbf{2-presentable+fibrational descent}$

Lawvere-Tierney axioms

Then $\operatorname{Fib}_{/(-)}^{\epsilon}$, preserves **limits**

Fernando Abellán July 16, 2025

Suppose $\mathbb{X} \longrightarrow \text{2-presentable+fibrational descent}$

Lawvere-Tierney axioms

Then $\operatorname{Fib}_{/(-)}^{\epsilon}$, preserves **limits**

 \downarrow

Fernando Abellán July 16, 2025

 $\textbf{Suppose} \ \mathbb{X} \longrightarrow \textbf{2-presentable+fibrational descent}$

Lawvere-Tierney axioms

Then $\operatorname{Fib}_{/(-)}^{\epsilon}$, preserves **limits**

 \downarrow

$$\left(\mathsf{Fib}^0_{/(-)}\right)^{\leq 1} \simeq \mathbb{X}(-,\Omega^0), \ \left(\mathsf{Fib}^1_{/(-)}\right)^{\leq 1} \simeq \mathbb{X}(-,\Omega^1)^{\mathsf{op}}$$

Fernando Abellán July 16, 2025

Suppose $\mathbb{X} \longrightarrow \mathbf{2}$ -presentable+fibrational descent

Lawvere-Tierney axioms

Then $\operatorname{Fib}_{/(-)}^{\epsilon}$, preserves **limits**

 \downarrow

$$\left(\mathsf{Fib}^0_{/(-)}\right)^{\leq 1} \simeq \mathbb{X}(-,\Omega^0), \ \left(\mathsf{Fib}^1_{/(-)}\right)^{\leq 1} \simeq \mathbb{X}(-,\Omega^1)^{\mathsf{op}}$$

Internal Grothendieck construction \iff Universal fibrations

1

Fernando Abellán July 16, 2025

Suppose $X \longrightarrow 2$ -presentable+fibrational descent

Lawvere-Tierney axioms

Then $\operatorname{Fib}_{/(-)}^{\epsilon}$, preserves **limits**

$$\downarrow$$

$$\left(\mathsf{Fib}^0_{/(-)}\right)^{\leq 1} \simeq \mathbb{X}(-,\Omega^0), \ \left(\mathsf{Fib}^1_{/(-)}\right)^{\leq 1} \simeq \mathbb{X}(-,\Omega^1)^{\mathsf{op}}$$

Internal Grothendieck construction \iff Universal fibrations

Fibrations are exponentiable

Fernando Abellán July 16, 2025

The main theorem

Theorem [A-Martini 24]

Let \mathbb{X} be a presentable $(\infty, 2)$ -category.

11/18

The main theorem

Theorem [A-Martini 24]

Let $\mathbb X$ be a presentable $(\infty,2)$ -category. TFAE

11/18

Theorem [A-Martini 24]

Let $\mathbb X$ be a presentable $(\infty,2)$ -category. TFAE

• X satisfies **fibrational descent**.

11/18

Theorem [A-Martini 24]

Let \mathbb{X} be a presentable $(\infty, 2)$ -category. TFAE

- X satisfies fibrational descent.
- There exist classifiers for fibrations and fibrations are exponentiable.

Theorem [A-Martini 24]

Let $\mathbb X$ be a presentable $(\infty,2)$ -category. TFAE

- X satisfies **fibrational descent**.
- There exist classifiers for fibrations and fibrations are exponentiable.
- There exists a small $(\infty, 2)$ -category \mathbb{X}_{κ} and a Bousfield localization,

Theorem [A-Martini 24]

Let $\mathbb X$ be a presentable $(\infty, 2)$ -category. TFAE

- X satisfies fibrational descent.
- There exist classifiers for fibrations and fibrations are exponentiable.
- There exists a small $(\infty, 2)$ -category \mathbb{X}_{κ} and a Bousfield localization,

$$L \colon \operatorname{\mathsf{Fun}}(\mathbb{X}_\kappa,\operatorname{\mathsf{Cat}}_{(\infty,1)}) o \mathbb{X}$$

Theorem [A-Martini 24]

Let \mathbb{X} be a presentable $(\infty, 2)$ -category. TFAE

- X satisfies fibrational descent.
- There exist classifiers for fibrations and fibrations are exponentiable.
- There exists a small $(\infty, 2)$ -category \mathbb{X}_{κ} and a Bousfield localization,

$$L \colon \operatorname{\mathsf{Fun}}(\mathbb{X}_\kappa,\operatorname{\mathsf{Cat}}_{(\infty,1)}) o \mathbb{X}$$

which preserves oriented pullbacks and the terminal object.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ②

Q: How this relate to $(\infty, 1)$ -topoi?

12/18

Q: How this relate to $(\infty, 1)$ -topoi?

• Every $(\infty, 2)$ -topos $\mathbb X$

12/18

Q: How this relate to $(\infty, 1)$ -topoi?

• Every $(\infty, 2)$ -topos $\mathbb{X} \longrightarrow \mathsf{Underlying}\ (\infty, 1)$ -topos

12/18

Q: How this relate to $(\infty, 1)$ -topoi?

• Every $(\infty,2)$ -topos $\mathbb{X} \longrightarrow \mathsf{Underlying}\ (\infty,1)$ -topos $\mathsf{Grp}(\mathbb{X})$

12/18

Q: How this relate to $(\infty, 1)$ -topoi?

• Every $(\infty, 2)$ -topos $\mathbb{X} \longrightarrow \mathsf{Underlying}\ (\infty, 1)$ -topos

 $\mathsf{Grp}(\mathbb{X}) \longrightarrow \text{ internal groupoids}.$

12/18

Q: How this relate to $(\infty, 1)$ -topoi?

• Every $(\infty, 2)$ -topos $\mathbb{X} \longrightarrow \text{Underlying } (\infty, 1)$ -topos

 $\mathsf{Grp}(\mathbb{X}) \longrightarrow \text{ internal groupoids}.$

• For every $(\infty, 1)$ -topos \mathfrak{X}

12/18

Q: How this relate to $(\infty, 1)$ -topoi?

• Every $(\infty, 2)$ -topos $\mathbb{X} \longrightarrow \mathsf{Underlying}\ (\infty, 1)$ -topos

 $\mathsf{Grp}(\mathbb{X}) \longrightarrow \text{ internal groupoids}.$

• For every $(\infty, 1)$ -topos $\mathfrak{X} \longrightarrow (\infty, 2)$ -topos of sheaves

| □ ▶ ◀ 🗗 ▶ ◀ 볼 ▶ | 볼 | 쒼 및 ♡

12/18

Q: How this relate to $(\infty, 1)$ -topoi?

 $\bullet \ \, \text{Every } (\infty,2)\text{-topos } \mathbb{X} \longrightarrow \text{Underlying } (\infty,1)\text{-topos}$

 $\mathsf{Grp}(\mathbb{X}) \longrightarrow \text{ internal groupoids}.$

• For every $(\infty,1)$ -topos $\mathfrak{X} \longrightarrow (\infty,2)$ -topos of sheaves $\mathsf{Sh}(\mathfrak{X})$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

12/18

Q: How this relate to $(\infty, 1)$ -topoi?

• Every $(\infty, 2)$ -topos $\mathbb{X} \longrightarrow \mathsf{Underlying}\ (\infty, 1)$ -topos

 $\mathsf{Grp}(\mathbb{X}) \longrightarrow \text{ internal groupoids}.$

• For every $(\infty, 1)$ -topos $\mathfrak{X} \longrightarrow (\infty, 2)$ -topos of sheaves

 $\mathsf{Sh}(\mathfrak{X}) \longrightarrow F \colon \mathfrak{X}^\mathsf{op} \to \mathfrak{C}\mathsf{at}_{(\infty,1)} \ \text{limit preserving}$

12/18

Theorem [A-Martini 24]: Localic reflection

There exists an adjunction of $(\infty, 2)$ -categories,

13/18

$$(\infty, 1)$$
-localic $(\infty, 2)$ -topoi

Theorem [A-Martini 24]: Localic reflection

There exists an adjunction of $(\infty, 2)$ -categories,

$$Sh(-): 1Top_L \xrightarrow{\longleftarrow} 2Top_L: Grp(-)$$

with Sh(-) fully-faithful.

13/18

$$(\infty, 1)$$
-localic $(\infty, 2)$ -topoi

Theorem [A-Martini 24]: Localic reflection

There exists an adjunction of $(\infty, 2)$ -categories,

$$Sh(-): 1Top_L \xrightarrow{\longleftarrow} 2Top_L: Grp(-)$$

with Sh(-) fully-faithful.

Internal (higher) category theory

13/18

$$(\infty, 1)$$
-localic $(\infty, 2)$ -topoi

Theorem [A-Martini 24]: Localic reflection

There exists an adjunction of $(\infty, 2)$ -categories,

$$Sh(-): 1Top_L \xrightarrow{\longleftarrow} 2Top_L: Grp(-)$$

with Sh(-) fully-faithful.

Internal (higher) category theory following Martini-Wolf embedds

13/18

• $(\infty, 2)$ -topoi are

Fernando Abellán

• $(\infty, 2)$ -topoi are cartesian closed,

14/18

• $(\infty, 2)$ -topoi are cartesian closed,

$$X^{op} \times X \to X$$
, $(x, y) \mapsto X(x, y)$

14/18

• $(\infty, 2)$ -topoi are cartesian closed,

$$X^{op} \times X \to X$$
, $(x, y) \mapsto X(x, y)$

• Given $x \in \mathbb{X}$,

14/18

• $(\infty, 2)$ -topoi are cartesian closed,

$$X^{op} \times X \to X$$
, $(x, y) \mapsto X(x, y)$

• Given $x \in \mathbb{X}$, $a, b: * \rightarrow x$,

14/18

• $(\infty, 2)$ -topoi are cartesian closed,

$$X^{op} \times X \to X$$
, $(x, y) \mapsto X(x, y)$

• Given $x \in \mathbb{X}$, $a, b : * \rightarrow x$,

14/18

• $(\infty, 2)$ -topoi are cartesian closed,

$$X^{op} \times X \to X$$
, $(x, y) \mapsto X(x, y)$

• Given $x \in \mathbb{X}$, $a, b : * \rightarrow x$,

14/18

Theorem [A-Martini 24]: Directed Univalence

15/18

Theorem [A-Martini 24]: Directed Univalence

Let $x, y \in \mathbb{X}$,

15/18

Theorem [A-Martini 24]: Directed Univalence

Let $x, y \in \mathbb{X}$, then we have a **natural equivalence**

15/18

Theorem [A-Martini 24]: Directed Univalence

Let $x, y \in \mathbb{X}$, then we have a **natural equivalence**

$$\mathbb{X}(x,y)^{\simeq} \xrightarrow{\simeq} \underline{\mathsf{Hom}}_{\mathsf{O}^0}(x,y)$$

15/18

16/18

Synthetic category theory

16/18

Synthetic category theory

Yoneda's lemma

16/18

Synthetic category theory

- Yoneda's lemma
- (Lax) Kan extensions

16/18

Synthetic category theory

- Yoneda's lemma
- (Lax) Kan extensions
- (Lax) (co)limits

16/18

Synthetic category theory

- Yoneda's lemma
- (Lax) Kan extensions
- (Lax) (co)limits

Slightlty more exotic than the $(\infty, 1)$ -localic case

16/18

Synthetic category theory

- Yoneda's lemma
- (Lax) Kan extensions
- (Lax) (co)limits

Slightlty more exotic than the $(\infty, 1)$ -localic case

Not enough groupoids

Fernando Abellán

Synthetic category theory

- Yoneda's lemma
- (Lax) Kan extensions
- (Lax) (co)limits

Slightlty more exotic than the $(\infty, 1)$ -localic case

- Not enough groupoids
- In general

16/18

Synthetic category theory

- Yoneda's lemma
- (Lax) Kan extensions
- (Lax) (co)limits

Slightlty more exotic than the $(\infty, 1)$ -localic case

- Not enough groupoids
- In general no op's

16/18

Future directions

Categorified sheaves and lax descent

17/18

Future directions

- Categorified sheaves and lax descent
- The enveloping $(\infty, 2)$ -topos of $(\infty, 1)$ -topoi

Future directions

- Categorified sheaves and lax descent
- The enveloping $(\infty, 2)$ -topos of $(\infty, 1)$ -topoi
- **Stacky formulation** for stratified $(\infty, 1)$ -topoi.

Thank you for listening!

Fernando Abellán July 16, 2025 18/18