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Double categories Monads Categorical properties

Double categories
⋆ Introduced by Ehresmann in the ’60s - strict version “category internal
in the category of categories”

▶ A (pseudo-)double category D consists of
· 0-cells & vertical 1-cells which form a category D0

· horizontal 1-cells & 2-cells which form a category D1

· functor 1 : D0 → D1 providing units

· functors s, t : D1 → D0 providing source and target
X Y

Z W

A

f ⇓α g

B

· functor ⊙ : D1×D0D1 → D1 providing horizontal composition
together with natural (A ⊙ B) ⊙ C ∼= A ⊙ (B ⊙ C), A ⊙ 1X ∼= A ∼= 1Y ⊙ A
with identity vertical boundaries, satisfying coherence axioms.
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E.g. the two kinds of compositions of 2-cells obey interchange law

⇓α ⇓β

⇓γ ⇓δ

(δ ⊙ γ) · (β ⊙ α) = (δ · β) ⊙ (γ · α)

�
�

�

0-cells, horizontal 1-cells, globular 2-cells

make horizontal bicategory H(D).

⋆ Alternative approach to 2-dimensional category theory, often more rich:
for objects (0-cells) of interest, two different kinds of morphisms (with
strict vs pseudo associative composition) encompassed in single structure.
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Double categories Monads Categorical properties

Examples of double categories
• Rel with sets as 0-cells, functions as vertical 1-cells (Rel0=Set),
relations A ⊆ X × Y as horizontal 1-cells A : X Y , maps of relations
(xAy ⇒ f (x)Bg(y)) as 2-cells.
Works in any regular category C double category Rel(C).

• Span with Span0=Set, horizontal 1-cells spans
A

X Y and 2-cells
A

X Y

Z W

B

kf g

Horizontal composition given by taking pullbacks of spans.
Works in any C with pullbacks double category Span(C).
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• Bim with Bim0 = Ring, the category of rings and ring homomorphisms,

horizontall 1-cells R M S are (S,R)-bimodules and 2-cells
R S

R ′ S ′

M

f ⇓ϕ g

M′

homomorphisms ϕ : M → M ′ s.t. ϕ(mr) = ϕ(m)f (r), ϕ(sm) = g(s)ϕ(m).
Horizontal composition R M S N T is tensor product N ⊗S M.

• V-Mat for (V,⊗, I) monoidal category+assumptions. V-Mat0 = Set ,

X A Y are V-matrices Y ×X A−→ V i.e. {A(y , x)}y ,x in V, 2-cells are

Y × X V

W × Z

A

g×f

⇓α

B

αx ,y : A(y , x) → B(gy , fx) ∈ V

Composition is ‘matrix multiplication’ (B⊙A)(z , x)=
∑

y
B(z , y)⊗A(y , x).
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Fibrant structure
▶ D is fibrant (or a framed bicategory) when the functor
(s, t) : D1 → D0 × D0 is a fibration.

F : C → X is a fibration when for every f : X → F (B) in X there exists
unique lifting f ∗(B) → B of f in C with factorization property.

Gives canonical way to turn vertical 1-cells X f−→ Y to two horizontal
ones, the companion f̂ : X Y & the conjoint f̌ : Y X .

• In Span, function X f−→ Y gives spans
X

X Y

1X f

and
X

Y X
f 1X

• In V-Mat, X f−→ Y gives matrices f̂ (x , y) = f̌ (y , x) =
{

I if fx = y
0 if fx ̸= y

• In Bim, given f : R → S, f̂ is the canonical bimodule SSR (restriction of

scalars on the right) and f̌ is RSS .
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Monads in double categories
▶ A monad in D is a horizontal 1-cell A : X X with ‘multiplication’
and ‘unit’ 2-cells

X X X

X X

A

⇓µ

A

A

X X

X X

1X

⇓η

A

satisfying usual associativity and unitality axioms. E.g.

X X X X

X X X

X X

A

⇓µ

A A

⇓idA

A
⇓µ

A

A

=

X X X X

X X X

X X

⇓idA

A A

⇓µ

A

A
⇓µ

A

A

⋆ Since all 2-cells are globular, coincide with monads in bicategories.
However, maps of monads are different!
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▶ A monad map from X A X to Y B Y is a 2-cell
X X

Y Y

A

f ⇓α f

B

s.t.

X X X

Y Y Y

Y Y

A

f ⇓α ⇓α

A

f f

B
⇓µ

B

B

=

X X X

X X

Y Y

A

⇓µ

A

A
⇓αf f

B

and

X X

X X

Y Y

1X

⇓η

A
f ⇓α f

B

=

X X

Y Y

Y Y

1X

f ⇓1f f

1Y
⇓η

B

■ Monads and monad maps form a category Mnd(D) for any double D.

⋆ When D has single 0-cell and vertical 1-cell, becomes a monoidal
category V (⊙ = ⊗). Then Mnd(D) is the category of monoids in V!

■ Mnd(D) → D0 is a fibration.

For a vertical X f−→ Y and monad Y A Y , f ∗(A) : X f̂ Y A Y f̌ X .
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Examples of categories of monads

• For D=Span(C), a monad
A

X X
d c

is a category internal to C:
consists of object X of objects, object A of arrows, η picks identities and
µ

A ×X A

A A

X X X

A

d c d c

d c

is composition rule.

A monad map is a functor internal in C, so Mnd(Span(C)) = Cat(C)!

• For Rel(C) , category of monads Mnd(Rel(C)) is Preord(C), category of
internal preorders and order-preserving maps in C.
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• For Bim, a monad R A R is an R-algebra and a monad map
R R

S S

A

f ⇓α f

B
is R-algebra map α : A → B with B an R-algebra via restriction of scalars.
So Mnd(Bim)=Alg, a ‘global’ category of algebras over arbitrary rings.

• For V-Mat, a monad X A X is {A(x , x ′)}x ,x ′ in V with(∑)
A(x , x ′) ⊗ A(x ′, x ′′) → A(x , x ′′), I → A(x , x)

+ axioms , i.e. a V-category! Moreover, a monad map is a V-functor
between V-categories, thus Mnd(V-Mat)=V-Cat.

⋆ Both internal and enriched categories can be studied in this context!

Vassilis Aravantinos-Sotiropoulos (NTUA) Properties of Monads in Double Categories 11 / 21



Double categories Monads Categorical properties

• For Bim, a monad R A R is an R-algebra and a monad map
R R

S S

A

f ⇓α f

B
is R-algebra map α : A → B with B an R-algebra via restriction of scalars.
So Mnd(Bim)=Alg, a ‘global’ category of algebras over arbitrary rings.

• For V-Mat, a monad X A X is {A(x , x ′)}x ,x ′ in V with(∑)
A(x , x ′) ⊗ A(x ′, x ′′) → A(x , x ′′), I → A(x , x)

+ axioms , i.e. a V-category! Moreover, a monad map is a V-functor
between V-categories, thus Mnd(V-Mat)=V-Cat.

⋆ Both internal and enriched categories can be studied in this context!

Vassilis Aravantinos-Sotiropoulos (NTUA) Properties of Monads in Double Categories 11 / 21



Double categories Monads Categorical properties

• For Bim, a monad R A R is an R-algebra and a monad map
R R

S S

A

f ⇓α f

B
is R-algebra map α : A → B with B an R-algebra via restriction of scalars.
So Mnd(Bim)=Alg, a ‘global’ category of algebras over arbitrary rings.

• For V-Mat, a monad X A X is {A(x , x ′)}x ,x ′ in V with(∑)
A(x , x ′) ⊗ A(x ′, x ′′) → A(x , x ′′), I → A(x , x)

+ axioms , i.e. a V-category! Moreover, a monad map is a V-functor
between V-categories, thus Mnd(V-Mat)=V-Cat.

⋆ Both internal and enriched categories can be studied in this context!

Vassilis Aravantinos-Sotiropoulos (NTUA) Properties of Monads in Double Categories 11 / 21



Double categories Monads Categorical properties

Parallel limits and colimits

⋆ Double categorical (co)limits exist and have been studied (Paré et al).
Here, a different notion seems more relevant.

▶ D has parallel I-(co)limits if D0, D1 have I-(co)limits and s, t preserve
them.

• Span(C) has all parallel limits that C has.

• V-Mat has parallel coproducts, and is parallel cocomplete when V is
and ⊗ preserves colimits.

• Bim is parallel cocomplete.
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Parallel limits and fibers

Proposition
Suppose D is a fibrant double category such that D0 is complete. The
following are equivalent:

1. D is parallel complete;
2. The fibrations s, t : D1 → D0 have all fibred limits:

XD1 and DZ
1 are complete categories for any X ,Z ∈ D0, and

- ⊙ f̂ : YD1 → XD1 and ǧ ⊙ - : DW
1 → DZ

1 are continuous functors for
any f : X → Y and g : Z → W ;

3. H(D)(X ,Z ) is a complete category for any X ,Z ∈ D0, and
- ⊙ f̂ : H(D)(Y ,Z ) → H(D)(X ,Z ) and
ǧ ⊙ - : H(D)(X ,W ) → H(D)(X ,Z ) are continuous functors.
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The endomorphism category

Given a double category D, can form the category End(D) which has:

▶ Objects: A : X X .

▶ Morphisms:
X X

Y Y

A

f ⇓α f

B

• e.g. for D = V-Mat, End(D) = V-Grph

• If D has parallel I-(co)limits, then End(D) has them and End(D) → D1
creates them.

• The forgetful Mnd(D) → End(D) creates all limits which exist in D.
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X X

Y Y

A

f ⇓α f

B

• e.g. for D = V-Mat, End(D) = V-Grph

• If D has parallel I-(co)limits, then End(D) has them and End(D) → D1
creates them.

• The forgetful Mnd(D) → End(D) creates all limits which exist in D.
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Free monads

Theorem
Suppose that D is a fibrant double category with parallel countable
coproducts which are preserved by ⊙ in each variable. Then the forgetful
functor U : Mnd(D) → End(D) has a left adjoint.

Proof.
The forgetful U : Mnd(D) → End(D) constitutes a fibred 1-cell

Mnd(D) End(D)

D0

U

For every X ∈ D0 the restriction UX : Mnd(D)X → End(D)X has a left
adjoint, because End(D)X = H(D)(X ,X ) is a monoidal category with
⊗ = ⊙...
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On monadicity of Mnd(D)
Adapt the arguments from the case of bicategories, as in the classic:
▶ Betti, Carboni, Street and Walters, Variation through enrichment,

JPAA 1983.

The first step is
Proposition
Let D be a double category which has parallel colimits preserved by ⊙ in
each variable. Then the category Mnd(D) has all coequalizers.

Proof.
For a pair of monad morphisms in D as follows

X X

Y Y

A

f ⇓ϕ f

B

X X

Y Y

A

g ⇓ψ g

B
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We have the following commutative diagram in Mnd(D).

FUFUA FUFUB FD

FUA FUB FC

A B E

FUFUϕ

FUFUψ

ϵFUAFUϵA ϵFUBFUϵB

Fδ

ξζ

FUϕ

FUψ

ϵA ϵB

Fγ

e

ϕ

ψ
θ

E acquires a monad structure, finish off with 3 × 3 lemma.
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Theorem
Let D be a double category which has parallel colimits preserved by ⊙ in
each variable. Then the forgetful functor Mnd(D) → End(D) is monadic.

Proof.
Same 3 × 3 diagram, but now assume in addition that ϕ, ψ are a U-split.
pair. Can apply the 3 × 3 diagram lemma here to deduce that θ is the
coequalizer of Uϕ,Uψ in End(D), i.e. U preserves coequalizers of U-split
pairs.

So for example we recover,

• V-Cat is monadic over V-Grph, for nice enough V.

• Cat(C) is monadic over Grph(C), for nice enough C.
Corollary
Let D be a double category which has parallel colimits preserved by ⊙ in
each variable. Then the category of monads Mnd(D) is cocomplete.
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Towards local presentability

Can we find general conditions on D that would ensure Mnd(D) is locally
presentable?

In a different work (V. A-S, C. Vasilakopoulou, Sweedler Theory for
double categories), we considered a notion of local presentability for a
double category.

Roughly, D is locally λ-presentable if:
• D0 and D1 are locally λ-presentable.
• s, t : D1 → D0 have left and right adjoints.
• − ⊙ − : D1 ×D0 D1 → D1 is accessible.
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Theorem
Let D be a locally presentable double category where ⊙ preserves colimits
in each variable. Then the category of monads Mnd(D) is locally
presentable.

For D = V-Mat this would yield:

Corollary
If V is a locally presentable monoidal category where ⊗ preserves colimits
in each variable, then V-Cat is locally presentable.
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Thank you for your attention!

Vassilis Aravantinos-Sotiropoulos (NTUA) Properties of Monads in Double Categories 21 / 21


	Double categories
	Monads
	Categorical properties

