Fundamental Properties of Monads in Double Categories

Vassilis Aravantinos-Sotiropoulos (joint with C. Vasilakopoulou)

National Technical University of Athens, Greece

CT 2025 Masaryk University, Brno

14 July 2025

Outline

- 1. Double categories and examples
- 2. Monads in double categories
- 3. Basic categorical properties

Double categories

 \star Introduced by Ehresmann in the '60s - strict version "category internal in the category of categories"

Double categories

- \star Introduced by Ehresmann in the '60s strict version "category internal in the category of categories"
- ightharpoonup A (pseudo-)double category $\mathbb D$ consists of
 - · 0-cells & vertical 1-cells which form a category \mathbb{D}_0
 - · horizontal 1-cells & 2-cells which form a category \mathbb{D}_1
 - · functor $1 \colon \mathbb{D}_0 \to \mathbb{D}_1$ providing units
 - functors $s,t:\mathbb{D}_1\to\mathbb{D}_0$ providing source and target $egin{array}{ccc} X&\longrightarrow&Y\\ f\downarrow&\Downarrow\alpha&\downarrow g\\ Z&\longrightarrow&W \end{array}$
 - · functor $\odot \colon \mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \to \mathbb{D}_1$ providing horizontal composition

Double categories

- \star Introduced by Ehresmann in the '60s strict version "category internal in the category of categories"
- ightharpoonup A (pseudo-)double category $\mathbb D$ consists of
 - · 0-cells & vertical 1-cells which form a category \mathbb{D}_0
 - · horizontal 1-cells & 2-cells which form a category \mathbb{D}_1
 - · functor $1 \colon \mathbb{D}_0 \to \mathbb{D}_1$ providing units
 - · functors $s,t\colon \mathbb{D}_1 \to \mathbb{D}_0$ providing source and target $f\downarrow \quad \downarrow \downarrow \alpha \quad \downarrow g$ $Z \xrightarrow{B} W$
- · functor $\odot \colon \mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \to \mathbb{D}_1$ providing horizontal composition together with natural $(A \odot B) \odot C \cong A \odot (B \odot C)$, $A \odot 1_X \cong A \cong 1_Y \odot A$ with identity vertical boundaries, satisfying coherence axioms.

E.g. the two kinds of compositions of 2-cells obey interchange law

0-cells, horizontal 1-cells, globular 2-cells make horizontal bicategory $\mathcal{H}(\mathbb{D})$.

E.g. the two kinds of compositions of 2-cells obey interchange law

0-cells, horizontal 1-cells, globular 2-cells make horizontal bicategory $\mathcal{H}(\mathbb{D})$.

 \star Alternative approach to 2-dimensional category theory, often more rich: for objects (0-cells) of interest, two different kinds of morphisms (with strict vs pseudo associative composition) encompassed in single structure.

Examples of double categories

• \mathbb{R} el with sets as 0-cells, functions as vertical 1-cells (\mathbb{R} el₀=Set), relations $A\subseteq X\times Y$ as horizontal 1-cells $A\colon X \to Y$, maps of relations ($xAy\Rightarrow f(x)Bg(y)$) as 2-cells.

Works in any regular category $\mathcal{C} \leadsto$ double category \mathbb{R} el(\mathcal{C}).

Examples of double categories

• \mathbb{R} el with sets as 0-cells, functions as vertical 1-cells (\mathbb{R} el₀=Set), relations $A\subseteq X\times Y$ as horizontal 1-cells $A\colon X \to Y$, maps of relations ($xAy\Rightarrow f(x)Bg(y)$) as 2-cells.

Works in any regular category $\mathcal{C} \leadsto$ double category $\mathbb{R}el(\mathcal{C})$.

• Span with $\operatorname{Span}_0=\operatorname{Set}$, horizontal 1-cells spans χ $\stackrel{A}{\searrow}$ γ and 2-cells

Horizontal composition given by taking pullbacks of spans.

Works in any C with pullbacks \rightsquigarrow double category Span(C).

• \mathbb{B} im with \mathbb{B} im₀ = Ring, the category of rings and ring homomorphisms, $R \stackrel{M}{\longrightarrow} S$

horizontall 1-cells
$$R \xrightarrow{M} S$$
 are (S, R) -bimodules and 2-cells $f \downarrow \psi \phi \downarrow g$

$$R' \xrightarrow{M} S'$$

homomorphisms $\phi: M \to M'$ s.t. $\phi(mr) = \phi(m)f(r), \phi(sm) = g(s)\phi(m)$. Horizontal composition $R \xrightarrow{M} S \xrightarrow{N} T$ is tensor product $N \otimes_S M$. • \mathbb{B} im with \mathbb{B} im₀ = Ring, the category of rings and ring homomorphisms, $R \stackrel{M}{\longrightarrow} S$

horizontall 1-cells $R \xrightarrow{M} S$ are (S, R)-bimodules and 2-cells $f \downarrow \psi \phi \downarrow g$ $R' \xrightarrow{M} S'$

homomorphisms $\phi \colon M \to M'$ s.t. $\phi(mr) = \phi(m)f(r), \phi(sm) = g(s)\phi(m)$.

Horizontal composition $R \xrightarrow{M} S \xrightarrow{N} T$ is tensor product $N \otimes_S M$.

 $m{\cdot}$ $\mathcal{V} ext{-}\mathbb{M}$ at for $(\mathcal{V},\otimes,\emph{I})$ monoidal category+assumptions. $\mathcal{V} ext{-}\mathbb{M}$ at $_0=\mathsf{Set}$,

 $X \stackrel{A}{\longrightarrow} Y$ are \mathcal{V} -matrices $Y \times X \stackrel{A}{\longrightarrow} \mathcal{V}$ i.e. $\{A(y,x)\}_{y,x}$ in \mathcal{V} , 2-cells are

$$Y \times X$$
 $\psi \alpha$
 V
 $A \times Z$
 A

Composition is 'matrix multiplication' $(B \odot A)(z, x) = \sum_{y} B(z, y) \otimes A(y, x)$.

▶ \mathbb{D} is *fibrant* (or a *framed bicategory*) when the functor (s,t): $\mathbb{D}_1 \to \mathbb{D}_0 \times \mathbb{D}_0$ is a fibration.

 $F: \mathcal{C} \to \mathcal{X}$ is a fibration when for every $f: X \to F(B)$ in \mathcal{X} there exists unique lifting $f^*(B) \to B$ of f in \mathcal{C} with factorization property.

▶ \mathbb{D} is *fibrant* (or a *framed bicategory*) when the functor (s,t): $\mathbb{D}_1 \to \mathbb{D}_0 \times \mathbb{D}_0$ is a fibration.

 $F: \mathcal{C} \to \mathcal{X}$ is a fibration when for every $f: X \to F(B)$ in \mathcal{X} there exists unique lifting $f^*(B) \to B$ of f in \mathcal{C} with factorization property.

Gives canonical way to turn vertical 1-cells $X \xrightarrow{f} Y$ to two horizontal ones, the *companion* $\hat{f}: X \longrightarrow Y$ & the *conjoint* $\check{f}: Y \longrightarrow X$.

▶ \mathbb{D} is *fibrant* (or a *framed bicategory*) when the functor (s,t): $\mathbb{D}_1 \to \mathbb{D}_0 \times \mathbb{D}_0$ is a fibration.

 $F: \mathcal{C} \to \mathcal{X}$ is a fibration when for every $f: X \to F(B)$ in \mathcal{X} there exists unique lifting $f^*(B) \to B$ of f in \mathcal{C} with factorization property.

Gives canonical way to turn vertical 1-cells $X \xrightarrow{f} Y$ to two horizontal ones, the *companion* $\hat{f}: X \longrightarrow Y$ & the *conjoint* $\check{f}: Y \longrightarrow X$.

• In Span, function $X \xrightarrow{f} Y$ gives spans $X \xrightarrow{1_X} X \xrightarrow{f} Y$ and $Y \xrightarrow{f} X \xrightarrow{1_X} X$

▶ \mathbb{D} is *fibrant* (or a *framed bicategory*) when the functor (s,t): $\mathbb{D}_1 \to \mathbb{D}_0 \times \mathbb{D}_0$ is a fibration.

 $F: \mathcal{C} \to \mathcal{X}$ is a fibration when for every $f: X \to F(B)$ in \mathcal{X} there exists unique lifting $f^*(B) \to B$ of f in \mathcal{C} with factorization property.

Gives canonical way to turn vertical 1-cells $X \xrightarrow{f} Y$ to two horizontal ones, the *companion* $\hat{f}: X \longrightarrow Y$ & the *conjoint* $\check{f}: Y \longrightarrow X$.

- In Span, function $X \xrightarrow{f} Y$ gives spans $X \xrightarrow{1_X} X \xrightarrow{f} Y$ and $Y \xrightarrow{f} X \xrightarrow{1_X} X$
- In \mathcal{V} -Mat, $X \xrightarrow{f} Y$ gives matrices $\hat{f}(x,y) = \check{f}(y,x) = \begin{cases} I & \text{if } fx = y \\ 0 & \text{if } fx \neq y \end{cases}$

▶ \mathbb{D} is *fibrant* (or a *framed bicategory*) when the functor (s,t): $\mathbb{D}_1 \to \mathbb{D}_0 \times \mathbb{D}_0$ is a fibration.

 $F: \mathcal{C} \to \mathcal{X}$ is a fibration when for every $f: X \to F(B)$ in \mathcal{X} there exists unique lifting $f^*(B) \to B$ of f in \mathcal{C} with factorization property.

Gives canonical way to turn vertical 1-cells $X \xrightarrow{f} Y$ to two horizontal ones, the *companion* $\hat{f}: X \longrightarrow Y$ & the *conjoint* $\check{f}: Y \longrightarrow X$.

- In Span, function $X \xrightarrow{f} Y$ gives spans $X \xrightarrow{1_X} X \xrightarrow{f} Y$ and $Y \xrightarrow{f} X \xrightarrow{1_X} X$
- In \mathcal{V} -Mat, $X \stackrel{f}{\to} Y$ gives matrices $\hat{f}(x,y) = \check{f}(y,x) = \begin{cases} I \text{ if } fx = y \\ 0 \text{ if } fx \neq y \end{cases}$
- In \mathbb{B} im, given $f: R \to S$, \hat{f} is the canonical bimodule ${}_SS_R$ (restriction of scalars on the right) and \check{f} is ${}_RS_S$.

Monads in double categories

▶ A monad in \mathbb{D} is a horizontal 1-cell $A: X \longrightarrow X$ with 'multiplication' and 'unit' 2-cells

satisfying usual associativity and unitality axioms. E.g.

Monads in double categories

▶ A monad in \mathbb{D} is a horizontal 1-cell $A: X \longrightarrow X$ with 'multiplication' and 'unit' 2-cells

satisfying usual associativity and unitality axioms. E.g.

 \star Since all 2-cells are globular, coincide with monads in *bicategories*. However, maps of monads are different!

▶ A monad map from $X \xrightarrow{A} X$ to $Y \xrightarrow{B} Y$ is a 2-cell $f \downarrow \psi \alpha \downarrow f$ s.t. $Y \xrightarrow{B} Y$

$$X \xrightarrow{1_{X}} X \qquad X \xrightarrow{1_{X}} X$$

$$\parallel \quad \downarrow \eta \quad \parallel \quad f \downarrow \quad \downarrow 1_{f} \quad \downarrow f$$

$$X \xrightarrow{A} X = \quad Y \xrightarrow{1_{Y}} \quad Y$$

$$f \downarrow \quad \downarrow \alpha \quad \downarrow f \quad \parallel \quad \downarrow \eta \quad \parallel$$

$$Y \xrightarrow{Y} \quad Y \xrightarrow{Y} \quad Y \xrightarrow{Y}$$

A monad map from $X \xrightarrow{A} X$ to $Y \xrightarrow{B} Y$ is a 2-cell $f \downarrow \ \psi \alpha \ \downarrow f \ \text{s.t.} \ Y \xrightarrow{B} Y$

 \blacksquare Monads and monad maps form a category Mnd(\mathbb{D}) for any double \mathbb{D} .

A monad map from $X \xrightarrow{A} X$ to $Y \xrightarrow{B} Y$ is a 2-cell $f \downarrow \ \ \psi \alpha \ \downarrow f \ \text{s.t.} \ Y \xrightarrow{R} Y$

- \blacksquare Monads and monad maps form a category $\mathsf{Mnd}(\mathbb{D})$ for any double $\mathbb{D}.$
- \star When $\mathbb D$ has single 0-cell and vertical 1-cell, becomes a monoidal category $\mathcal V$ ($\odot = \otimes$). Then $\mathsf{Mnd}(\mathbb D)$ is the category of monoids in $\mathcal V$!

A monad map from $X \stackrel{A}{\longrightarrow} X$ to $Y \stackrel{B}{\longrightarrow} Y$ is a 2-cell $f \downarrow \quad \psi \alpha \quad \downarrow f \quad \text{s.t.} \quad Y \stackrel{A}{\longrightarrow} Y$

- lacksquare Monads and monad maps form a category $\mathsf{Mnd}(\mathbb{D})$ for any double $\mathbb{D}.$
- \star When $\mathbb D$ has single 0-cell and vertical 1-cell, becomes a monoidal category $\mathcal V$ ($\odot = \otimes$). Then $\mathsf{Mnd}(\mathbb D)$ is the category of monoids in $\mathcal V$!
- lacksquare Mnd(\mathbb{D}) ightarrow \mathbb{D}_0 is a fibration.

For a vertical $X \xrightarrow{f} Y$ and monad $Y \xrightarrow{A} Y$, $f^*(A): X \xrightarrow{\hat{f}} Y \xrightarrow{A} Y \xrightarrow{\check{f}} X$.

Examples of categories of monads

• For $\mathbb{D}=\mathbb{S}\mathsf{pan}(\mathcal{C})$, a monad $\chi^{\overset{d}{\swarrow}^A} \chi$ is a category *internal* to \mathcal{C} : consists of object X of objects, object A of arrows, η picks identities and μ

A monad map is a functor internal in C, so Mnd(Span(C)) = Cat(C)!

Examples of categories of monads

• For $\mathbb{D}=\mathbb{S}\mathsf{pan}(\mathcal{C})$, a monad $\chi^{\overset{d}{\swarrow}^A} \chi$ is a category *internal* to \mathcal{C} : consists of object X of objects, object A of arrows, η picks identities and μ

A monad map is a functor internal in C, so Mnd(Span(C)) = Cat(C)!

• For \mathbb{R} el(\mathcal{C}), category of monads $\mathsf{Mnd}(\mathbb{R}$ el(\mathcal{C})) is $\mathsf{Preord}(\mathcal{C})$, category of internal preorders and order-preserving maps in \mathcal{C} .

• For $\mathbb B$ im, a monad $R \overset{A}{\to} R$ is an R-algebra and a monad map $f \downarrow \ \ \downarrow \alpha \ \ \downarrow f$ $S \overset{R}{\to} S$

is R-algebra map $\alpha \colon A \to B$ with B an R-algebra via restriction of scalars. So Mnd(\mathbb{B} im)=Alg, a 'global' category of algebras over arbitrary rings.

 $R \stackrel{A}{\longrightarrow} R$

• For \mathbb{B} im, a monad $R \xrightarrow{A} R$ is an R-algebra and a monad map $f \downarrow \psi \alpha \downarrow f$ $S \rightarrow S$

is R-algebra map $\alpha: A \to B$ with B an R-algebra via restriction of scalars. So $Mnd(\mathbb{B}im) = Alg$, a 'global' category of algebras over arbitrary rings.

• For \mathcal{V} -Mat, a monad $X \xrightarrow{A} X$ is $\{A(x,x')\}_{x,x'}$ in \mathcal{V} with

$$\left(\sum\right)A(x,x')\otimes A(x',x'')\to A(x,x''),\quad I\to A(x,x)$$

+ axioms , i.e. a \mathcal{V} -category! Moreover, a monad map is a \mathcal{V} -functor between \mathcal{V} -categories, thus $\mathsf{Mnd}(\mathcal{V}\text{-}\mathsf{Mat}) = \mathcal{V}\text{-}\mathsf{Cat}$.

 $R \stackrel{A}{\longrightarrow} R$

• For \mathbb{B} im, a monad $R \xrightarrow{A} R$ is an R-algebra and a monad map $f \downarrow \psi \alpha \downarrow f$ $S \rightarrow S$

is R-algebra map $\alpha: A \to B$ with B an R-algebra via restriction of scalars. So $Mnd(\mathbb{B}im) = Alg$, a 'global' category of algebras over arbitrary rings.

• For \mathcal{V} -Mat, a monad $X \xrightarrow{A} X$ is $\{A(x,x')\}_{x,x'}$ in \mathcal{V} with

$$\left(\sum\right)A(x,x')\otimes A(x',x'')\to A(x,x''),\quad I\to A(x,x)$$

+ axioms , i.e. a \mathcal{V} -category! Moreover, a monad map is a \mathcal{V} -functor between \mathcal{V} -categories, thus $\mathsf{Mnd}(\mathcal{V}\text{-}\mathsf{Mat}) = \mathcal{V}\text{-}\mathsf{Cat}$.

* Both internal and enriched categories can be studied in this context!

Parallel limits and colimits

 \star Double categorical (co)limits exist and have been studied (Paré et al). Here, a different notion seems more relevant.

Parallel limits and colimits

- \star Double categorical (co)limits exist and have been studied (Paré et al). Here, a different notion seems more relevant.
- ▶ \mathbb{D} has parallel \mathcal{I} -(co)limits if \mathbb{D}_0 , \mathbb{D}_1 have \mathcal{I} -(co)limits and s, t preserve them.

Parallel limits and colimits

- * Double categorical (co)limits exist and have been studied (Paré et al). Here, a different notion seems more relevant.
- ightharpoonup has parallel \mathcal{I} -(co)limits if \mathbb{D}_0 , \mathbb{D}_1 have \mathcal{I} -(co)limits and s, t preserve them.
- \mathbb{S} pan(\mathcal{C}) has all parallel limits that \mathcal{C} has.
- \bullet V-Mat has parallel coproducts, and is parallel cocomplete when $\mathcal V$ is and \otimes preserves colimits.
- Bim is parallel cocomplete.

Parallel limits and fibers

Proposition

Suppose $\mathbb D$ is a fibrant double category such that $\mathbb D_0$ is complete. The following are equivalent:

- 1. \mathbb{D} is parallel complete;
- 2. The fibrations $\mathfrak{s},\mathfrak{t}\colon \mathbb{D}_1\to\mathbb{D}_0$ have all fibred limits: ${}^X\mathbb{D}_1$ and \mathbb{D}_1^Z are complete categories for any $X,Z\in\mathbb{D}_0$, and $-\circ\hat{f}\colon {}^Y\mathbb{D}_1\to {}^X\mathbb{D}_1$ and $\check{g}\circ -\colon \mathbb{D}_1^W\to \mathbb{D}_1^Z$ are continuous functors for any $f\colon X\to Y$ and $g\colon Z\to W$;
- 3. $\mathcal{H}(\mathbb{D})(X,Z)$ is a complete category for any $X,Z\in\mathbb{D}_0$, and $-\odot\hat{f}:\mathcal{H}(\mathbb{D})(Y,Z)\to\mathcal{H}(\mathbb{D})(X,Z)$ and $\check{g}\odot-:\mathcal{H}(\mathbb{D})(X,W)\to\mathcal{H}(\mathbb{D})(X,Z)$ are continuous functors.

The endomorphism category

Given a double category \mathbb{D} , can form the category $\operatorname{End}(\mathbb{D})$ which has:

▶ Objects: $A: X \longrightarrow X$.

$$X \stackrel{A}{\longrightarrow} X$$

Morphisms: $f \downarrow \psi \alpha \downarrow f$ $Y \xrightarrow{B} Y$

$$ullet$$
 e.g. for $\mathbb{D}=\mathcal{V} ext{-}\mathbb{M}$ at, $\mathsf{End}(\mathbb{D})=\mathcal{V} ext{-}\mathsf{Grph}$

The endomorphism category

Given a double category \mathbb{D} , can form the category $\operatorname{End}(\mathbb{D})$ which has:

▶ Objects: $A: X \longrightarrow X$.

$$X \stackrel{A}{\rightarrow} X$$

Morphisms: $f \downarrow \psi \alpha \downarrow f$ $Y \xrightarrow{B} Y$

- ullet e.g. for $\mathbb{D}=\mathcal{V} ext{-}\mathbb{M}$ at, $\mathsf{End}(\mathbb{D})=\mathcal{V} ext{-}\mathsf{Grph}$
- If $\mathbb D$ has parallel $\mathcal I$ -(co)limits, then $\mathsf{End}(\mathbb D)$ has them and $\mathsf{End}(\mathbb D) \to \mathbb D_1$ creates them.
- ullet The forgetful $\mathsf{Mnd}(\mathbb{D}) o \mathsf{End}(\mathbb{D})$ creates all limits which exist in \mathbb{D} .

Free monads

Theorem

Suppose that $\mathbb D$ is a fibrant double category with parallel countable coproducts which are preserved by \odot in each variable. Then the forgetful functor $U\colon \mathsf{Mnd}(\mathbb D)\to \mathsf{End}(\mathbb D)$ has a left adjoint.

Free monads

Theorem

Suppose that $\mathbb D$ is a fibrant double category with parallel countable coproducts which are preserved by \odot in each variable. Then the forgetful functor $U\colon \mathsf{Mnd}(\mathbb D)\to \mathsf{End}(\mathbb D)$ has a left adjoint.

Proof.

The forgetful $U \colon \mathsf{Mnd}(\mathbb{D}) \to \mathsf{End}(\mathbb{D})$ constitutes a fibred 1-cell

$$\mathsf{Mnd}(\mathbb{D}) \xrightarrow{U} \mathsf{End}(\mathbb{D})$$

$$\mathbb{D}_0$$

For every $X \in \mathbb{D}_0$ the restriction $U_X \colon \mathsf{Mnd}(\mathbb{D})_X \to \mathsf{End}(\mathbb{D})_X$ has a left adjoint, because $\mathsf{End}(\mathbb{D})_X = \mathcal{H}(\mathbb{D})(X,X)$ is a monoidal category with $\otimes = \odot \dots$

On monadicity of $\mathsf{Mnd}(\mathbb{D})$

Adapt the arguments from the case of bicategories, as in the classic:

▶ Betti, Carboni, Street and Walters, *Variation through enrichment*, IPAA 1983.

On monadicity of $Mnd(\mathbb{D})$

Adapt the arguments from the case of bicategories, as in the classic:

▶ Betti, Carboni, Street and Walters, Variation through enrichment,

JPAA 1983.

The first step is

Proposition

Let $\mathbb D$ be a double category which has parallel colimits preserved by \odot in each variable. Then the category $\mathsf{Mnd}(\mathbb D)$ has all coequalizers.

Proof.

For a pair of monad morphisms in $\mathbb D$ as follows

We have the following commutative diagram in $Mnd(\mathbb{D})$.

We have the following commutative diagram in $Mnd(\mathbb{D})$.

E acquires a monad structure, finish off with 3×3 lemma.

Let $\mathbb D$ be a double category which has parallel colimits preserved by \odot in each variable. Then the forgetful functor $\mathsf{Mnd}(\mathbb D) \to \mathsf{End}(\mathbb D)$ is monadic.

Proof.

Same 3×3 diagram, but now assume in addition that ϕ, ψ are a U-split. pair. Can apply the 3×3 diagram lemma here to deduce that θ is the coequalizer of $U\phi$, $U\psi$ in $\operatorname{End}(\mathbb{D})$, i.e. U preserves coequalizers of U-split pairs.

Let $\mathbb D$ be a double category which has parallel colimits preserved by \odot in each variable. Then the forgetful functor $\mathsf{Mnd}(\mathbb D) \to \mathsf{End}(\mathbb D)$ is monadic.

Proof.

Same 3×3 diagram, but now assume in addition that ϕ, ψ are a U-split. pair. Can apply the 3×3 diagram lemma here to deduce that θ is the coequalizer of $U\phi$, $U\psi$ in $\operatorname{End}(\mathbb{D})$, i.e. U preserves coequalizers of U-split pairs.

So for example we recover,

- ullet ${\cal V}$ -Cat is monadic over ${\cal V}$ -Grph, for nice enough ${\cal V}$.
- Cat(C) is monadic over Grph(C), for nice enough C.

Let $\mathbb D$ be a double category which has parallel colimits preserved by \odot in each variable. Then the forgetful functor $\mathsf{Mnd}(\mathbb D) \to \mathsf{End}(\mathbb D)$ is monadic.

Proof.

Same 3×3 diagram, but now assume in addition that ϕ, ψ are a U-split. pair. Can apply the 3×3 diagram lemma here to deduce that θ is the coequalizer of $U\phi$, $U\psi$ in $\operatorname{End}(\mathbb{D})$, i.e. U preserves coequalizers of U-split pairs.

So for example we recover,

- ullet ${\cal V}$ -Cat is monadic over ${\cal V}$ -Grph, for nice enough ${\cal V}$.
- Cat(C) is monadic over Grph(C), for nice enough C.

Corollary

Let $\mathbb D$ be a double category which has parallel colimits preserved by \odot in each variable. Then the category of monads $\mathsf{Mnd}(\mathbb D)$ is cocomplete.

Towards local presentability

Can we find general conditions on $\mathbb D$ that would ensure Mnd($\mathbb D$) is locally presentable?

Towards local presentability

Can we find general conditions on $\mathbb D$ that would ensure $\mathsf{Mnd}(\mathbb D)$ is locally presentable?

In a different work (V. A-S, C. Vasilakopoulou, *Sweedler Theory for double categories*), we considered a notion of local presentability for a double category.

Towards local presentability

Can we find general conditions on $\mathbb D$ that would ensure $\mathsf{Mnd}(\mathbb D)$ is locally presentable?

In a different work (V. A-S, C. Vasilakopoulou, *Sweedler Theory for double categories*), we considered a notion of local presentability for a double category.

Roughly, $\mathbb D$ is locally λ -presentable if:

- \mathbb{D}_0 and \mathbb{D}_1 are locally λ -presentable.
- $\mathfrak{s},\mathfrak{t}\colon \mathbb{D}_1 \to \mathbb{D}_0$ have left and right adjoints.
- $-\odot -: \mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \to \mathbb{D}_1$ is accessible.

Let $\mathbb D$ be a locally presentable double category where \odot preserves colimits in each variable. Then the category of monads $\mathsf{Mnd}(\mathbb D)$ is locally presentable.

Let $\mathbb D$ be a locally presentable double category where \odot preserves colimits in each variable. Then the category of monads $\mathsf{Mnd}(\mathbb D)$ is locally presentable.

For $\mathbb{D} = \mathcal{V} ext{-}\mathbb{M}$ at this would yield:

Corollary

If $\mathcal V$ is a locally presentable monoidal category where \otimes preserves colimits in each variable, then $\mathcal V$ -Cat is locally presentable.

Thank you for your attention!

Categorical properties