Open power-objects in categories of algebras

Quentin Aristote, IRIF, Université Paris-Cité, INRIA PiCube

July 18th, 2025

 ${\sf elementary\ topos} = {\sf finite\ limits} + {\sf power-objects}$

elementary topos = finite limits + power-objects

power-object of Y: PY s.t. $Rel(X, Y) \cong Hom(X, PY)$

$$\begin{array}{ccc}
R & \longrightarrow & \in_X \\
\downarrow & & \downarrow \\
X \times Y & \xrightarrow{\chi_R \times Y} \mathbf{P}Y \times Y
\end{array}$$

elementary topos = finite limits + power-objects

power-object of Y: PY s.t. $Rel(X, Y) \cong Hom(X, PY)$

$$\begin{array}{ccc}
R & \longrightarrow & \in_X \\
\downarrow & & \downarrow \\
X \times Y & \xrightarrow{\chi_R \times Y} PY \times Y
\end{array}$$

P1 is a *subobject classifier*. $\mathbf{Sub}(X) \cong \mathrm{Hom}(X,\mathbf{P}1)$

$$egin{array}{cccc} ullet & \longrightarrow & 1 \ & & \downarrow & \downarrow & \downarrow \ X & \longrightarrow & \mathbf{P}1 \end{array}$$

elementary topos = finite limits + power-objects

elementary topos = finite limits + power-objects $\mathbf{EM}(T)$

elementary topos
$$=$$
 finite limits $+$ power-objects $\mathbf{EM}(T)$

...but, for a monad T on an elementary topos, $\begin{tabular}{ll} \textbf{Theorem.} & \textbf{If} \ T \ has \ \textit{nearly cartesian} \ endofunctor \ and \ join, \end{tabular}$

elementary topos
$$=$$
 finite limits $+$ power-objects $\mathbf{EM}(T)$

...but, for a monad T on an elementary topos, $\textbf{Theorem.} \ \, \textbf{If} \,\, T \,\, \textbf{has} \,\, \textit{nearly cartesian} \,\, \textbf{endofunctor and join},$

near pullback (n.p.):

elementary topos
$$=$$
 finite limits $+$ power-objects $\mathbf{EM}(T)$

...but, for a monad T on an elementary topos, $\textbf{Theorem.} \ \, \textbf{If} \,\, T \,\, \textbf{has} \,\, \textit{nearly cartesian} \,\, \textbf{endofunctor and join},$

near pullback (n.p.): nearly cartesian functor: preserve n.p.

elementary topos
$$=$$
 finite limits $+$ power-objects $\mathbf{EM}(T)$

...but, for a monad T on an elementary topos, **Theorem.** If T has *nearly cartesian* endofunctor and join,

near pullback (n.p.): nearly cartesian functor: preserve n.p.

——— nat. transform.: nat. squares are n.p.

elementary topos
$$=$$
 finite limits $+$ power-objects $\mathbf{EM}(T)$

...but, for a monad T on an elementary topos, **Theorem.** If T has nearly cartesian endofunctor and join, then EM(T) has open power-objects $\overline{P}-$ (classifying continuous rels) and an open subobject classifier $\overline{P}1$.

near pullback (n.p.):

nearly cartesian functor: preserve n.p.

nat. transform.: nat. squares are n.p.

elementary topos
$$=$$
 finite limits $+$ power-objects $\mathbf{EM}(T)$

...but, for a monad T on an elementary topos, **Theorem.** If T has nearly cartesian endofunctor and join, then EM(T) has open power-objects $\overline{P}-$ (classifying continuous rels) and an open subobject classifier $\overline{P}1$.

elementary topos
$$=$$
 finite limits $+$ power-objects $\mathbf{EM}(T)$

...but, for a monad T on an elementary topos, **Theorem.** If T has nearly cartesian endofunctor and join, then EM(T) has open power-objects $\overline{P}-$ (classifying continuous rels) and an open subobject classifier $\overline{P}1$.

$if \; T \; is$	EM (T)	has an object classifying

$if \; T \; is$	EM (T)	has an object classifying
ultrafilters	KHaus	clopen subsets

$_{ m T}$ is	EM (T)	has an object classifying
ultrafilters	KHaus	clopen subsets
powerset	cJSL	down-closed subsets

$_{ m T}$ is	EM (T)	has an object classifying
ultrafilters	KHaus	clopen subsets
powerset	cJSL	down-closed subsets
distributions	Conv	walls (corners, borders, faces, etc.)

$if \; T \; is$	EM (T)	has an object classifying
ultrafilters	KHaus	clopen subsets
powerset	cJSL	down-closed subsets
distributions	Conv	walls (corners, borders, faces, etc.)
$G \times -$	G-Sets	transitive subsets (i.e. all subobjects)

$if\ T\ is$	EM (T)	has an object classifying
ultrafilters	KHaus	clopen subsets
powerset	cJSL	down-closed subsets
distributions	Conv	walls (corners, borders, faces, etc.)
$G \times -$	G-Sets	transitive subsets (i.e. all subobjects)
$M \times -$	M-Sets	not all transitive subsets

$if \; T \; is$	EM (T)	has an object classifying
ultrafilters	KHaus	clopen subsets
powerset	cJSL	down-closed subsets
distributions	Conv	walls (corners, borders, faces, etc.)
$G \times -$	G-Sets	transitive subsets (i.e. all subobjects)
$M \times -$	M-Sets	not all transitive subsets

I use this to (dis)prove the existence of monotone weak distributive laws.

I use this to (dis)prove the existence of monotone weak distributive laws.

▶ how do open power-objects translate in the internal logic?

I use this to (dis)prove the existence of monotone weak distributive laws.

- ▶ how do open power-objects translate in the internal logic?
- ▶ how do open power-objects translate in monoidal topology? generalized Vietoris monads? [Hoffman 2014]