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elementary topos = finite limits + power-objects

power-object of Y : PY s.t. Rel(X , Y ) ∼= Hom(X , PY )

R ∈X

X × Y PY × Y

y

χR ×Y

P1 is a subobject classifier: Sub(X) ∼= Hom(X , P1)
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elementary topos = finite limits + power-objects

EM(T) 3 7

…but, for a monad T on an elementary topos,
Theorem. If T has nearly cartesian endofunctor and join,
then EM(T) has open power-objects P− (classifying continuous rels)

and an open subobject classifier P1.

near pullback (n.p.):

•

• •

• •
y

nearly cartesian functor: preserve n.p.
——— nat. transform.: nat. squares are n.p.

open morphism:
TA TB

A B

Tf

a b

f

n.p.

continuous relation X  Y :

X • Yopen
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if T is EM(T) has an object classifying

ultrafilters KHaus clopen subsets

powerset cJSL down-closed subsets

distributions Conv walls (corners, borders, faces, etc.)

G × − G-Sets transitive subsets (i.e. all subobjects)

M × − M-Sets not all transitive subsets

… … …
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I use this to (dis)prove the existence of monotone weak distributive
laws.

I how do open power-objects translate in the internal logic?
I how do open power-objects translate in monoidal topology?

generalized Vietoris monads? [Hoffman 2014]
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