
COGRAPHS, TWOFOLD SYMMETRIC
MONOIDAL STRUCTURES, &
FACTORIZATION ALGEBRAS

Clark Barwick, The University of Edinburgh

CT2025, Brno – 16 July 2025

Available at https://clarkbar.github.io/papers/facts.pdf

https://clarkbar.github.io/papers/facts.pdf


LOCALITY

Locality: measurements made in a region of spacetime should not depend
upon measurements performed in a distant region of spacetime. (Haag,
Haag–Kastler)

More refined: the cluster decomposition principle. (Weinberg)

Factorization algebras (Beilinson–Drinfeld, Francis–Gaitsgory,
Costello–Gwilliam, Raskin) allow us to combine observables in spacetime
regions that are sufficiently apart.



SAME & DIFFERENT

Homotopy theory studies sameness as a structure rather than a property.

Let X be a space and x, y ∈ X. The path space ⌜x ∼ y⌝ is the space of ways for
x and y to be the same. These path spaces are then assembled in
combinatorially useful ways.

Let’s try to study difference or apartness in the same way. We’ll call it
isolation theory. We’ll define spaces ⌜x ≁ y⌝ of ways for x and y to be
different. We’ll assemble these spaces in combinatorially useful ways.



EXAMPLE

Consider a manifoldM, and consider its homotopy type Π(M). Let x, y ∈ M.
The path space is the fiber of the diagonal

⌜x ∼ y⌝ Π(∆M)

{(x, y)} Π(M ×M)

Note: ifM = Rn, then ⌜x ∼ y⌝ is always contractible, even if x ≠ y.



EXAMPLE – CONTINUED

Let us define this dual thing as the fiber of the complement of the diagonal:

⌜x ≁ y⌝ Π(M ×M −∆M)

{(x, y)} Π(M ×M)

Note: ifM = Rn, then ⌜x ≁ y⌝ is always Sn−1, even if x = y.

Let’s now think about how to assemble these spaces combinatorially.



GRAPHS

Graph (V ,E): a pair consisting of

• a finite set V of vertices

• a set E ⊆ (V2) of edges

Morphism (V ,E) → (V ′,E′): a map f ∶V → V ′ such that

{a,b} ∈ E Ô⇒ {f(a), f(b)} ∈ E′



NOTATION

⟨n⟩ = the graph with n vertices and no edges

We disallow loops! So there is no morphism from K2 = to ⟨1⟩.



SUMS

If A and B are two graphs, we can add them in two ways:

• disconnected sum, or coproduct: A⊕ B

• connected sum, or join: A⊕ B

Example

⟨2⊕ 3⟩ = = ⟨5⟩ ⟨2⊕ 3⟩ = = K2,3



FUN

⟨1⊕ (1⊕ (1⊕ (1⊕ (1⊕ 1))))⟩ =



TWOFOLD SYMMETRIC MONOIDAL STRUCTURES

The sums⊕,⊕ are symmetric monoidal structures with the same unit,
⟨0⟩ = ∅.
There is also a natural intertwiner

(A⊕ B) ⊕ (C⊕ D) → (A⊕ C) ⊕ (B⊕ D)

which exhibits

• ⊕ as lax symmetric monoidal with respect to⊕ and

• ⊕ as colax symmetric monoidal with respect to⊕.

In other words, the category of graphs is a twofold symmetric monoidal
category. (Balteanu–Fiedorowicz–Schwänzl–Vogt)



COGRAPHS
A cograph is a graph in which the following implication holds for all vertices
a,b, c,d:

{{a,b},{b, c},{c,d}} ⊆ E Ô⇒ {{a, c},{a,d},{b,d}} ∩ E ≠ ∅

Fun fact: cographs = graphs that can be presented using

⟨1⟩, ⊕, ⊕

(co is an unfortunate shortening of complement reducible.)



UNIVERSAL PROPERTY

D = the twofold symmetric monoidal category of cographs
⟨1⟩ ∈ CMon(D,⊕)

Theorem
D is the free twofold symmetric monoidal category on a commutative monoid
for the left tensor product:

TwofoldSMF((D,⊕,⊕), (C,⊗,⊗)) = CMon(C,⊗)



EXAMPLE

Let’s return to our manifoldM.
For every cograph ⟨λ⟩, consider the space

Mλ
= {x ∈ MV⟨λ⟩ : {a,b} ∈ E⟨λ⟩ Ô⇒ xa ≠ xb}

The assignment ⟨λ⟩ ↦ Mλ is a functor Dop → Man.

Mn = M ×⋯ ×M

M1⊕1
= M ×M −∆M



ISOLABILITY STRUCTURES

Consider an inclusion ⟨λ⟩ ⊆ ⟨λ′⟩ of a full (‘induced’) subgraph, and let
⟨λ⟩ → ⟨µ⟩ be any morphism that is surjective on vertices. Then there’s a
pushout

⟨λ⟩ ⟨λ′⟩

⟨µ⟩ ⟨µ′⟩

in D.
An isolability object of a category X is a functor Dop → X such that all
pushout squares as above in D are carried to pullback squares in X.



ISOLABILITY SPACES FROM MANIFOLDS

LetM be a manifold.
The assignment ⟨λ⟩ → Mλ is an isolability manifold.
Passing to homotopy types gives us an isolability∞-groupoid.
Passing to stratified homotopy types gives us an isolability∞-category.

In the caseM = Rn, the corresponding isolability∞-category admits a
combinatorial description: it carries ⟨λ⟩ to the category of ‘n-structures’ on
⟨λ⟩.



ISOLABILITY STRUCTURES ON HILBERT SCHEMES

Let X be a variety over a field.
Let H be the moduli space of closed subvarieties of X (the ‘Hilbert algebraic
space’).
For every cograph ⟨λ⟩, we let Hλ be the moduli space of tuples (Za)a∈V⟨λ⟩ of
closed subvarieties such that if {a,b} ∈ E⟨λ⟩, then Za ∩ Zb = ∅.
Now ⟨λ⟩ ↦ H⟨λ⟩ is an isolability object in algebraic spaces.



GEOMETRY OF ISOLABILITY SPACES

Let’s now assume that we are working with a site or topos X.
We equip the objects of Xwith a notion of sheaf: a lax symmetric monoidal
sheaf

A∶Xop → PrL

Perhaps the simplest example is X = An, and A = Fun(−,An).
Other sheaf theories that can be represented this way include: stacks,
constructible sheaves, D-modules, etc.

We want to extend our sheaf theory to isolability objects.



GEOMETRY OF ISOLABILITY SPACES – CONTINUED

Applying A objectwise to an isolability object X●∶Dop → X, we get a lax
twofold symmetric monoidal functor

A(X●)∶D→ PrL

In concrete terms, we have two external tensor products

⊠∶A(Xλ) ⊗ A(Xµ) → A(Xλ⊕µ)

which is where the symmetric monoidal structure on each individual A(Xλ)
comes from, and

⊠∶A(Xλ) ⊗ A(Xµ) → A(Xλ⊕µ)

which is something new that comes from isolation theory.



FACTORIZATION ALGEBRAS – INFORMALLY
Recall that we have a category X and a sheaf theory A∶Xop → PrL.
Let X●∶Dop → X be an isolability object. We obtain a lax twofold symmetric
monoidal functor A(X●)∶D→ PrL.
Informally, a factorization algebras on X● with coefficients in A now
consists of the following:

• for every cograph ⟨λ⟩, a sheaf Fλ ∈ A(Xλ)

• for every surjective map of cographs ϕ∶ ⟨λ⟩ → ⟨µ⟩, an identification
ϕ∗∗Fλ = Fµ

• for every pair of cographs ⟨λ⟩ and ⟨µ⟩, an identification

Fλ⊕µ = Fλ ⊠ Fµ

• plus all coherence . . .



FACTORIZATION ALGEBRAS – FORMALLY

To define this precisely we remember A(X●) only as a nonunital lax
symmetric monoidal functor (Ds,⊕) → PrL. Now a factorization algebra is
a nonunital lax symmetric monoidal transformation from the constant
diagram An to A(X●).
This recovers existing versions of this notion, and it works in quite a lot of
generality.

Two questions.

• How should one deal with units as treated by Gaitsgory and Raskin?

• Factorization algebras make sense as a functor from the bicategory of
lax twofold symmetric monoidal functors D→ PrL to the bicategory of
categories. Is it representable?


