Lax Monoidal Structures from Monoidal Structures

Alvaro Belmonte

Johns Hopkins University

July 14, 2025

Main Result

Theorem

Given a monoidal category $(\mathcal{D}, \otimes, I)$, and any full subcategory \mathcal{C} , then the presheaf category $\hat{\mathcal{C}} := Set^{\mathcal{C}^{op}}$ inherits a lax monoidal structure.

Lax Definition

Lax Monoidal Structure

Given a category C, an (unbiased) lax monoidal structure consists of the data:

- lacktriangle Arrows $\otimes_m: \mathcal{C}^{\times_m} \to \mathcal{C}$ for all $m \in \mathbb{N}$
- ② Natural transfromations $\mu_{\xi}: \otimes_n \circ (\otimes_{m_1} \times ... \times \otimes_{m_n}) \Rightarrow \otimes_m$ for all partitions $\xi: m_1 + ... + m_n = m$
- **3** A natural transformation $\eta: 1_{\mathcal{C}} \Rightarrow \otimes_1$ subject to coherence conditions.

If $\eta=id_{1c}$ then we call the lax monoidal structure **Strictly Normal**.

Main Theorem

Theorem

Given a Monoidal Category $(\mathcal{D}, \otimes, I)$ then any full subcategory \mathcal{C} inherits a lax promonoidal structure.

Corollary (Day-Street [DS03])

The presheaf category $\hat{\mathcal{C}} := Set^{\mathcal{C}^{op}}$ inherets a lax monoidal structure.

Pro Definition

Profunctor

A profunctor $F: \mathcal{A} \to \mathcal{C}$ between categories is a functor of the form $F: \mathcal{C}^{op} \times \mathcal{A} \to Set$.

Composition of profunctors is given by using a coend, as in: Given $F: \mathcal{A} \to \mathcal{B}$ and $G: \mathcal{B} \to \mathcal{C}$, then $G \circ F: \mathcal{A} \to \mathcal{C}$ is given by

$$G \circ F(c, a) = \int_{-\infty}^{\infty} F(a, b) \times G(b, c).$$

(Lax) Promonoidal Structure

Same definition as a (lax) monoidal structure, but replace every instance of a functor for a profunctor.

Constructing the Lax Promonoidal Structure

Given a monoidal category $(\mathcal{D}, \otimes, I)$, we define the lax promonoidal structure on any full subcategory \mathcal{C} as:

• Given a $n \in \mathbb{N}$, we define the profunctor $\otimes_n^{\mathcal{C}} : \mathcal{C}^{\times n} \to \mathcal{C}$ as

$$\mathcal{C}^{op} \times \mathcal{C}^{\times n} \xrightarrow[i^{op} \times i^n]{} \mathcal{D}^{op} \times \mathcal{D}^{\times n} \xrightarrow[id_{\mathcal{D}}^{op} \times \otimes_{\text{n-fold}}]{} \mathcal{D}^{op} \times \mathcal{D} \xrightarrow[\mathcal{D}(-,-)]{} Set.$$

- ullet The natural transformation μ is given by composition.
- We use Cruttwell-Shulman [CS10] to show that the coherence conditions are satisfied.

Examples

Theorem

Given a monoidal category $(\mathcal{D}, \otimes, I)$, and any full subcategory \mathcal{C} , then the presheaf category $\hat{\mathcal{C}} := Set^{\mathcal{C}^{op}}$ inherits a lax monoidal structure.

Preliminary Examples:

- $lackbox{0} (\mathcal{D}, \otimes, I) = (Op, \otimes_{BV}, *), \mathcal{C} = \Omega$, and $\hat{\mathcal{C}} = \mathsf{Dendroidal}$ Sets (Moerdijk-Weiss [MW07]).
- $oldsymbol{0} (\mathcal{D}, \otimes, I) = (2 \text{-} Cat, \boxtimes_{gray}, *), \mathcal{C} = \Theta_2, \text{ and } \hat{\mathcal{C}} = \theta_2 \text{Sets (Maehara [Mae21])}.$

Future work

- Assuming that the monoidal category \mathcal{D} have a model structure. Give a model structure on $\hat{\mathcal{C}}$ such that the lax monoidal structure is homotopical in the sense of Heuts-Hinich-Moerdijk [HHM16].
- Explore extensions to the enriched setting.

- G.S.H. Cruttwell and M. Shulman, *A unified framework for generalized multicategories*, Theory Appl. Cated. 24 (2010).
- B. Day and R. Street, *Lax monoids, pseudo-operads, and convolution.*, Contemporary Mathematics 318 (2003).
- S. Eilenberg and J. A. Zilber, *Semi-simplicial complexes and singular homology*, Annals of Mathematics 51:3 (1950).
- G. Heuts, V. Hinich, and I. Moerdijk, *On the equivalence between lurie's model and the dendroidal model for infinity-operads.*, Adv. Math., 302 (2016).
- J. Lurie, *Higher algebra*, Preprint (2017), https://www.math.ias.edu/∼lurie.
- Y. Maehara, *The gray tensor product for 2-quasi-categories*, Advances in Mathematics 377 (2021).
- I. Moerdijk and I. Weiss, *Dendroidal sets*, Algebr. Geom. Topol. 7 (2007).