

INTERNATIONAL CATEGORY THEORY CONFERENCE CT2025

Coalgebraic models of a Lawvere theory

Speaker: Maria Bevilacqua, PhD student at Université catholique de Louvain

Advisor: Prof. Marino Gran

16 July 2025

Bialgebras

How can Lawvere theories help in studying them?

Hopf braces

Moufang bialgebras

Outline

Linearizing process

General properties

 ${f 3}$ $\Omega ext{-Hopf algebras}$

Outline

Linearizing process

2 General properties

 ${\ }^{\ }$ $\Omega ext{-Hopf algebras}$

$\mathcal{F}\text{-}coalgebras}$

$\mathcal{F}\text{-}\text{coalgebras}$

Definition

A coalgebra over a field K is a triple (C, Δ, ϵ) where

- \blacksquare *C* is a \mathcal{K} -vector space,
- Δ : $C \to C \otimes C$ is a coassociative comultiplication,
- \bullet : $C \to \mathcal{K}$ is a counit.

We denote by Coalg the category of cocommutative coalgebras with homomorphisms of coalgebras.

\mathcal{F} -coalgebras

Definition

A coalgebra over a field K is a triple (C, Δ, ϵ) where

- \blacksquare *C* is a \mathcal{K} -vector space,
- Δ : $C \to C \otimes C$ is a coassociative comultiplication,
- \bullet : $C \to \mathcal{K}$ is a counit.

We denote by Coalg the category of cocommutative coalgebras with homomorphisms of coalgebras.

Let \mathcal{F} be a type of algebras, namely a set of operation symbols with an arity.

Definition

An \mathcal{F} -coalgebra is a coalgebra (C, Δ, ϵ) in Coalg with a homomorphism of coalgebras $f^C \colon C^{\otimes n} \to C$ for any operation f of arity n in \mathcal{F} .

Linearized terms

Linearized terms

If C is an $\mathcal F$ -coalgebra and T(X) the term $\mathcal F$ -algebra on n variables, we can define a homomorphism

$$l_n : T(X) \longrightarrow \operatorname{Hom}(C^{\otimes n}, C)$$

 $x_i \longmapsto \epsilon \otimes \cdots \otimes \operatorname{id} \otimes \cdots \otimes \epsilon.$

If s and t are two terms in T(X), we call the maps $l_n(s)$ and $l_n(t)$ linearized terms and we say that an \mathcal{F} -coalgebra satisfies the equation $s \approx t$ if and only if $l_n(s) = l_n(t)$.

Linearized terms

If C is an \mathcal{F} -coalgebra and T(X) the term \mathcal{F} -algebra on n variables, we can define a homomorphism

$$l_n \colon T(X) \longrightarrow \operatorname{Hom}(C^{\otimes n}, C)$$

 $x_i \longmapsto \epsilon \otimes \cdots \otimes \operatorname{id} \otimes \cdots \otimes \epsilon.$

If s and t are two terms in T(X), we call the maps $l_n(s)$ and $l_n(t)$ linearized terms and we say that an \mathcal{F} -coalgebra satisfies the equation $s \approx t$ if and only if $l_n(s) = l_n(t)$.

Example

Let $\mathcal{F} = \{\cdot, 1, S\}$ be the type of groups and $(C, \Delta, \epsilon, \cdot^C, 1^C, S^C)$ an \mathcal{F} -coalgebra. Take the term $x \cdot S(x)$, the corresponding linearized term $l_n(x \cdot S(x))$ is

$$C \circ (\mathrm{id} \otimes S^C) \circ \Delta \colon C \longrightarrow C$$

$$a \longmapsto a_1 \otimes S(a_2).$$

Let Σ be a set of equations of type ${\mathcal F}$ and ${\mathcal T}$ the corresponding theory.

Let Σ be a set of equations of type $\mathcal F$ and $\mathcal T$ the corresponding theory.

Let Σ be a set of equations of type $\mathcal F$ and $\mathcal T$ the corresponding theory.

Theorem (Perez-Izquierdo, 2007)

Let Σ be a set of equations and $s \approx t$ a consequence of Σ . If an \mathcal{F} -coalgebra C satisfies all identities in Σ , then $l_n(s) = l_n(t)$, i.e. it satisfies $s \approx t$.

Let Σ be a set of equations of type \mathcal{F} and \mathcal{T} the corresponding theory.

Theorem (Perez-Izquierdo, 2007)

Let Σ be a set of equations and $s \approx t$ a consequence of Σ . If an \mathcal{F} -coalgebra C satisfies all identities in Σ , then $l_n(s) = l_n(t)$, i.e. it satisfies $s \approx t$.

Let Σ be a set of equations of type \mathcal{F} and \mathcal{T} the corresponding theory.

Theorem (Perez-Izquierdo, 2007)

Let Σ be a set of equations and $s \approx t$ a consequence of Σ . If an \mathcal{F} -coalgebra C satisfies all identities in Σ , then $l_n(s) = l_n(t)$, i.e. it satisfies $s \approx t$.

Let Σ be a set of equations of type \mathcal{F} and \mathcal{T} the corresponding theory.

Theorem (Perez-Izquierdo, 2007)

Let Σ be a set of equations and $s \approx t$ a consequence of Σ . If an \mathcal{F} -coalgebra C satisfies all identities in Σ , then $l_n(s) = l_n(t)$, i.e. it satisfies $s \approx t$.

We denote by $[\mathcal{T}, \mathsf{Coalg}]$ the category of coalgebraic models of \mathcal{T} .

Let $\mathcal{T}_{\mathsf{Grp}}$ be the Lawvere theory of groups.

Let $\mathcal{T}_{\mathsf{Grp}}$ be the Lawvere theory of groups.

A coalgebraic model for $\mathcal{T}_{\mathsf{Grp}}$ is a (cocommutative) coalgebra (H, Δ, ϵ) with coalgebra maps $m \colon H \otimes H \to H$, $u \colon K \to H$, $S \colon H \to H$ satisfying:

Let $\mathcal{T}_{\mathsf{Grp}}$ be the Lawvere theory of groups.

A coalgebraic model for $\mathcal{T}_{\mathsf{Grp}}$ is a (cocommutative) coalgebra (H, Δ, ϵ) with coalgebra maps $m \colon H \otimes H \to H, u \colon K \to H, S \colon H \to H$ satisfying:

Coalgebraic models of the theory of groups are cocommutative Hopf algebras:

$$[\mathcal{T}_{\mathsf{Grp}},\mathsf{Coalg}] \cong \mathsf{Hopf}_{\mathsf{coc}}.$$

Hopf braces

Hopf braces

A skew brace (Vendramin, 2016) is a triple $(A, +, \cdot)$ where (A, +) and (A, \cdot) are groups such that the following compatibility condition:

$$a \cdot (b+c) = a \cdot b - a + a \cdot c$$

holds for all a,b,c in A. We denote by SKB the category of skew braces by \mathcal{T}_{SKB} its corresponding Lawvere theory.

Hopf braces

A skew brace (Vendramin, 2016) is a triple $(A, +, \cdot)$ where (A, +) and (A, \cdot) are groups such that the following compatibility condition:

$$a \cdot (b+c) = a \cdot b - a + a \cdot c$$

holds for all a, b, c in A. We denote by SKB the category of skew braces by $\mathcal{T}_{\mathsf{SKB}}$ its corresponding Lawvere theory.

Coalgebraic models of the theory of skew braces are cocommutative Hopf braces:

$$[\mathcal{T}_{\mathsf{SKB}},\mathsf{Coalg}] \cong \mathsf{HBr}_{\mathsf{coc}}.$$

Outline

Linearizing process

General properties

 ${\ }^{\ }$ $\Omega ext{-Hopf algebras}$

Let $\mathcal T$ and $\mathcal S$ be two Lawvere theories and $G\colon \mathcal S\to \mathcal T$. G induces a functor

$$-\circ G\colon [\mathcal{T},\mathsf{Coalg}] \to [\mathcal{S},\mathsf{Coalg}]$$

which we call algebraic functor.

Let \mathcal{T} and \mathcal{S} be two Lawvere theories and $G \colon \mathcal{S} \to \mathcal{T}$. G induces a functor

$$-\circ G\colon [\mathcal{T},\mathsf{Coalg}] o [\mathcal{S},\mathsf{Coalg}]$$

which we call algebraic functor.

Theorem

Every algebraic functor $[\mathcal{T}, \mathsf{Coalg}] \to [\mathcal{S}, \mathsf{Coalg}]$ has a left adjoint.

Let \mathcal{T} and \mathcal{S} be two Lawvere theories and $G \colon \mathcal{S} \to \mathcal{T}$. G induces a functor

$$-\circ G\colon [\mathcal{T},\mathsf{Coalg}] o [\mathcal{S},\mathsf{Coalg}]$$

which we call algebraic functor.

Theorem

Every algebraic functor $[\mathcal{T}, \mathsf{Coalg}] \to [\mathcal{S}, \mathsf{Coalg}]$ has a left adjoint.

Examples

 $\mathcal{S} = \text{FinSet}, \mathcal{T} = \mathcal{T}_{Grp} \text{ (Takeuchi,1971)}$

$$\mathsf{Hopf}_\mathsf{coc} \xleftarrow{U} \mathsf{Coalg}$$

Let \mathcal{T} and \mathcal{S} be two Lawvere theories and $G \colon \mathcal{S} \to \mathcal{T}$. G induces a functor

$$-\circ G\colon [\mathcal{T},\mathsf{Coalg}] \to [\mathcal{S},\mathsf{Coalg}]$$

which we call algebraic functor.

Theorem

Every algebraic functor $[\mathcal{T}, \mathsf{Coalg}] \to [\mathcal{S}, \mathsf{Coalg}]$ has a left adjoint.

Examples

 $\mathcal{S} = \mathsf{FinSet}, \mathcal{T} = \mathcal{T}_{\mathsf{Grp}} (\mathsf{Takeuchi}, 1971)$

$$\mathsf{Hopf}_\mathsf{coc} \xleftarrow{U} \mathsf{Coalg}$$

 $\mathcal{S} = \mathcal{T}_{\mathsf{Grp}}, \mathcal{T} = \mathcal{T}_{\mathsf{SKB}}$ (Agore and Chirvasitu, 2025)

$$\mathsf{HBr}_\mathsf{coc} \xleftarrow{U} \mathsf{Hopf}_\mathsf{coc}$$

Limits

Finite limits are constructed as in Coalg.

Limits

Finite limits are constructed as in Coalg.

Colimits

A category of coalgebraic models of a Lawvere theory has finite colimits.

Limits

Finite limits are constructed as in Coalg.

Colimits

A category of coalgebraic models of a Lawvere theory has finite colimits.

A coideal of A is a linear subspace I s.t. $\Delta(I) \subset I \otimes A + A \otimes I$ and $\epsilon(I) = 0$.

I is a \mathcal{T} -ideal if it is an ideal with respect to the operations in \mathcal{T} .

The \mathcal{T} -ideal generated by I exists and we denote it by $\langle I \rangle_{\mathcal{T}}$.

Limits

Finite limits are constructed as in Coalg.

Colimits

A category of coalgebraic models of a Lawvere theory has finite colimits.

A coideal of A is a linear subspace I s.t. $\Delta(I) \subset I \otimes A + A \otimes I$ and $\epsilon(I) = 0$. I is a \mathcal{T} -ideal if it is an ideal with respect to the operations in \mathcal{T} . The \mathcal{T} -ideal generated by I exists and we denote it by $\langle I \rangle_{\mathcal{T}}$.

Coequalizers

Let $A \xrightarrow{g \atop f} B$ be two maps in $[\mathcal{T},\mathsf{Coalg}]$. The coequalizer of f and g is the linear quotient $q \colon B \to B/\langle I \rangle_{\mathcal{T}}$ where $I \coloneqq \{f(a) - g(a) \mid a \in A\}$.

Full functors

Let $R: \mathcal{S} \to \mathcal{T}$ be a full functor between Lawvere theories.

Full functors

Let $R: \mathcal{S} \to \mathcal{T}$ be a full functor between Lawvere theories.

Proposition

The free functor $[\mathcal{T},\mathsf{Coalg}] \to [\mathcal{S},\mathsf{Coalg}]$ can be described as a coequalizer in $[\mathcal{S},\mathsf{Coalg}]$ and realizes $[\mathcal{T},\mathsf{Coalg}]$ as a Birkhoff subcategory of $[\mathcal{S},\mathsf{Coalg}]$.

Full functors

Let $R: \mathcal{S} \to \mathcal{T}$ be a full functor between Lawvere theories.

Proposition

The free functor $[\mathcal{T},\mathsf{Coalg}] \to [\mathcal{S},\mathsf{Coalg}]$ can be described as a coequalizer in $[\mathcal{S},\mathsf{Coalg}]$ and realizes $[\mathcal{T},\mathsf{Coalg}]$ as a Birkhoff subcategory of $[\mathcal{S},\mathsf{Coalg}]$.

Achtung

The Birkhoff's variety theorem fails in the coalgebraic context.

What about regularity, exactness or semi-abelianess?

Definition

A pointed category is semi-abelian if it is Barr-exact, protomodular and it has binary coproducts.

Groups or Lie algebras are examples of semi-abelian categories.

Definition

A pointed category is semi-abelian if it is Barr-exact, protomodular and it has binary coproducts.

Groups or Lie algebras are examples of semi-abelian categories.

Theorem (Gran-Sterck-Vercruysse, 2019)

The category Hopf_{coc} *of cocommutative Hopf algebras is semi-abelian.*

Definition

A pointed category is semi-abelian if it is Barr-exact, protomodular and it has binary coproducts.

Groups or Lie algebras are examples of semi-abelian categories.

Theorem (Gran-Sterck-Vercruysse, 2019)

The category Hopf_{coc} of cocommutative Hopf algebras is semi-abelian.

Theorem (Gran-Sciandra, 2025)

The category HBrcoc of Hopf braces is semi-abelian.

Definition

A pointed category is semi-abelian if it is Barr-exact, protomodular and it has binary coproducts.

Groups or Lie algebras are examples of semi-abelian categories.

Theorem (Gran-Sterck-Vercruysse, 2019)

The category Hopf_{coc} of cocommutative Hopf algebras is semi-abelian.

Theorem (Gran-Sciandra, 2025)

The category HBrcoc of Hopf braces is semi-abelian.

There is an algebraic functor

 $\mathsf{HBr}_{\mathsf{coc}} \longrightarrow \mathsf{Hopf}_{\mathsf{coc}}$.

Outline

Linearizing process

2 General properties

 ${f 3}$ $\Omega ext{-Hopf algebras}$

Ω -Hopf algebras

We can study pointed categories of coalgebraic models, with an algebraic functor to $\mathsf{Hopf}_\mathsf{coc}$.

$$[\mathcal{T},\mathsf{Coalg}] \to \mathsf{Hopf}_\mathsf{coc}$$

Ω -Hopf algebras

We can study pointed categories of coalgebraic models, with an algebraic functor to Hopf_{coc}.

$$[\mathcal{T},\mathsf{Coalg}] \to \mathsf{Hopf}_\mathsf{coc}$$

How to characterize the corresponding theories?

Ω -Hopf algebras

We can study pointed categories of coalgebraic models, with an algebraic functor to Hopf_{coc}.

$$[\mathcal{T},\mathsf{Coalg}] \to \mathsf{Hopf}_\mathsf{coc}$$

How to characterize the corresponding theories?

Definition (Higgins, 1956)

An Ω -group is a group (G,\cdot,u) with a set of operations I (with positive arity) and any $f\in I$ satisfies the axiom $f(u,\ldots,u)=u$.

$\Omega ext{-Hopf}$ algebras

$\Omega ext{-Hopf}$ algebras

Coalgebraic models of a theory of Ω -groups

An Ω -Hopf algebra is a Hopf algebra $(H,\cdot,u,\Delta,\epsilon,S)$ endowed with a set of maps F satisfying the following properties:

- an element $t \in F$ is a map $t \colon H^{\otimes n} \to H$ with n positive integer,
- every map $t \colon H^{\otimes n} \to H$ in F is a homomorphism of coalgebras,
- for every n-ary operation $t \in F$ the axiom $t \circ \Delta^{(n)} \circ u = u$ holds.

We call variety of Ω -Hopf algebras, a category of coalgebraic models for a Lawvere theory of Ω -groups.

$\Omega ext{-Hopf}$ algebras

Coalgebraic models of a theory of Ω -groups

An Ω -Hopf algebra is a Hopf algebra $(H,\cdot,u,\Delta,\epsilon,S)$ endowed with a set of maps F satisfying the following properties:

- an element $t \in F$ is a map $t \colon H^{\otimes n} \to H$ with n positive integer,
- every map $t \colon H^{\otimes n} \to H$ in F is a homomorphism of coalgebras,
- for every n-ary operation $t \in F$ the axiom $t \circ \Delta^{(n)} \circ u = u$ holds.

We call variety of Ω -Hopf algebras, a category of coalgebraic models for a Lawvere theory of Ω -groups.

Proposition

A category of coalgebraic models of \mathcal{T} is a variety of Ω -Hopf algebras if and only if it is pointed and there exists an algebraic functor $[\mathcal{T}, \mathsf{Coalg}] \to \mathsf{Hopf}_\mathsf{coc}$.

Newman's correspondence

Let H \ker be the kernel in the category $\mathsf{Hopf}_\mathsf{coc}$ and \ker the usual kernel of vector spaces.

Newman's correspondence

Let Hker be the kernel in the category Hopf_{coc} and ker the usual kernel of vector spaces.

Factorization in Hopfcoc

The category $\mathsf{Hopf}_\mathsf{coc}$ has a regular epi-mono factorization and the image of $f \colon A \to B$ is given by

$$\frac{A}{A(\operatorname{Hker} f)^{+}} = \frac{A}{\ker f} \cong f[A].$$

The equality $A(\operatorname{Hker} f)^+ = \ker f$ is a consequence of the Newman's correspondence between sub-Hopf algebras and $\mathcal{T}_{\mathsf{Grp}}$ -ideals.

Factorization in Ω - Hopf algebras

Factorization in Ω - Hopf algebras

Proposition

Let $[\mathcal{T},\mathsf{Coalg}]$ be variety of Ω -Hopf algebras. Any morphism in $[\mathcal{T},\mathsf{Coalg}]$ factors through a regular epimorphism followed by a monomorphism.

Factorization in Ω - Hopf algebras

Proposition

Let $[\mathcal{T},\mathsf{Coalg}]$ be variety of Ω -Hopf algebras. Any morphism in $[\mathcal{T},\mathsf{Coalg}]$ factors through a regular epimorphism followed by a monomorphism.

Proof.

Take a map $f: A \to B$ in $[\mathcal{T}, \mathsf{Coalg}]$. As in $\mathsf{Hopf}_\mathsf{coc}$, we can factor f through the cokernel of its kernel:

Let us prove that $\langle \operatorname{Hker} f^+ \rangle_{\mathcal{T}} = \ker f$. Since $\ker f$ is a \mathcal{T} -ideal and $\ker f \supseteq \operatorname{Hker} f^+$, we get the inclusion $\langle \operatorname{Hker} f^+ \rangle_{\mathcal{T}} \subseteq \ker f$. On the other hand, it is clear that $\langle \operatorname{Hker} f^+ \rangle_{\mathcal{T}} \supseteq A \operatorname{Hker} f^+ = \ker f$. Hence, e is trivially a regular epi and the map m is a monomorphism.

Semi-abelianess of $\Omega ext{-Hopf}$ algebras

Semi-abelianess of Ω -Hopf algebras

Proposition

Any variety $[\mathcal{T}, \mathsf{Coalg}]$ of Ω -Hopf algebras is regular.

Proof.

We have already proved the existence of a regular epi-mono factorization. Regular epimorphisms are pullback-stable because the forgetful functor preserves limits and preserves and reflects regular epimorphisms.

Semi-abelianess of Ω -Hopf algebras

Proposition

Any variety $[\mathcal{T}, \mathsf{Coalg}]$ of Ω -Hopf algebras is regular.

Proof.

We have already proved the existence of a regular epi-mono factorization. Regular epimorphisms are pullback-stable because the forgetful functor preserves limits and preserves and reflects regular epimorphisms.

Theorem

Any variety $[\mathcal{T}, \mathsf{Coalg}]$ of Ω -Hopf algebras is semi-abelian.

New semi-abelian categories

DiGrp

A digroup is a triple $(A, +, \cdot)$ where (A, +) and (A, \cdot) are groups sharing the same neutral element.

RadRng

A radical ring is a skew brace $(A, +, \cdot)$ satisfying:

$$(a+b) \cdot c = a \cdot c - c + b \cdot c$$

 $a+b=b+a$.

 $RadRng \longrightarrow SKB \longrightarrow DiGrp$

New semi-abelian categories

DiGrp

A digroup is a triple $(A, +, \cdot)$ where (A, +) and (A, \cdot) are groups sharing the same neutral element.

RadRng

A radical ring is a skew brace $(A, +, \cdot)$ satisfying:

$$(a+b) \cdot c = a \cdot c - c + b \cdot c$$

 $a+b=b+a$.

 $RadRng \longrightarrow SKB \longrightarrow DiGrp$

HDiGrp

A Hopf digroup is $(H, \cdot, \bullet, 1, \Delta, \epsilon, S, T)$ where $(H, \cdot, 1, \Delta, \epsilon, S)$ and $(H, \bullet, 1, \Delta, \epsilon, T)$ are (cocommutative) Hopf algebras.

HRadRng

A Hopf radical ring is a Hopf brace $(H, \cdot, \bullet, 1, \Delta, \epsilon, S, T)$ satisfying:

$$(a \cdot b) \bullet c = (a \bullet c_1) \cdot S(c_2) \cdot (b \bullet c_3)$$

 $a \cdot b = b \cdot a$

$$\mathsf{HRadRng} \longrightarrow \mathsf{HBr}_\mathsf{coc} \longrightarrow \mathsf{HDiGrp}$$

New semi-abelian categories

DiGrp

A digroup is a triple $(A, +, \cdot)$ where (A, +) and (A, \cdot) are groups sharing the same neutral element.

RadRng

A radical ring is a skew brace $(A, +, \cdot)$ satisfying:

$$(a+b) \cdot c = a \cdot c - c + b \cdot c$$

 $a+b=b+a$.

$$RadRng \longrightarrow SKB \longrightarrow DiGrp$$

HDiGrp

A Hopf digroup is $(H,\cdot,\bullet,1,\Delta,\epsilon,S,T)$ where $(H,\cdot,1,\Delta,\epsilon,S)$ and $(H,\bullet,1,\Delta,\epsilon,T)$ are (cocommutative) Hopf algebras.

HRadRng

A Hopf radical ring is a Hopf brace $(H, \cdot, \bullet, 1, \Delta, \epsilon, S, T)$ satisfying:

$$(a \cdot b) \bullet c = (a \bullet c_1) \cdot S(c_2) \cdot (b \bullet c_3)$$

 $a \cdot b = b \cdot a$

$$\mathsf{HRadRng} \longrightarrow \mathsf{HBr}_\mathsf{coc} \longrightarrow \mathsf{HDiGrp}$$

All the involved categories are semi-abelian and all the involved arrows are inclusions of Birkhoff subcategories.

Bibliography

L. Guarnieri and L. Vendramin *Skew braces and the Yang–Baxter equation*, Mathematics of Computation (AMS) 86, (2016), 2519–2534.

M. Takeuchi, *Free Hopf algebras generated by coalgebras*, Journal of the Mathematical Society of Japan 23 (1971) 561 - 582.

A. Agore and A. Chirvasitu, On the category of Hopf braces, url=https://arxiv.org/abs/2503.06280, 2025

M. Gran, F. Sterck and J. Vercruysse, A semi-abelian extension of a theorem by Takeuchi, J. Pure Appl. Algebra 223 (2019) 4171-4190.

M. Gran and A. Sciandra, Hopf braces and semi-abelian categories, url=https://arxiv.org/abs/2411.19238, 2025.

P. J. Higgins, *Groups with Multiple Operators*, Proceedings of the London Mathematical Society s3-6 3 (1956) 366-416.

K. Newman, A correspondence between bi-ideals and sub-Hopf algebras in cocommutative Hopf algebras, Journal of Algebra 36 1 (1975) 1-15.