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Example: Cocompletions of categories

• Let C be a locally small (∞, 1)-category and P(C) its free cocompletion.

• Then C is cocomplete if and only ifよ ∶ C → P(C) admits a left adjoint 𝐿.

• A functor 𝐹∶ C → D preserves colimits if and only if for any 𝑋∶ 𝐼 → C, the

assembly map

assem ∶ colim
𝑖

𝐹(𝑋𝑖) → 𝐹(colim
𝑖

𝑋𝑖)

is an equivalence.

• This is a Beck–Chevalley condition:

P(C) P(D) P(C) P(D)

C D C D

𝐹! 𝐹!

𝐿 assem 𝐿よ �

𝐹

よ

𝐹
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Example: Cocompletions of categories

This characterizes the sub-(∞, 2)-category Catcocomp
(∞,1) ⊆ Cat(∞,1):

• Its objects are the C for whichよ ∶ C → P(C) admits a left adjoint.

• Its morphisms are the maps C → D for which the Beck–Chevalley

transformation

P(C) P(D)

C D

𝐹!

𝐿 𝐿

𝐹

is invertible.
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Example: Cocartesian fibrations

• A functor 𝑝∶ C → B between (∞, 1)-categories is a cocartesian fibration if

and only if the inclusion

𝑖 ∶ C C ×B Ar(B)

B

𝑝 ev1

admits a left adjoint tr ∶ C ×B Ar(B) C

(𝑐, 𝑓) 𝑓!𝑐
over B.

• This left adjoint is the “cocartesian transport functor”.

• A functor C → D over B preserves cocartesian morphisms if and only if

C ×B Ar(B) D ×B Ar(B)

C D

tr tr

is invertible.

• This completely characterizes Cocart(B) ⊆ Cat(∞,1)/B.
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Similarities

1. In both cases, we’re given an endofunctor 𝑇 and a coaugmentation 𝑖 ∶ Id ⇒ 𝑇.

2. The sub-(∞, 2)-categories Catcocomp
(∞,1) ⊆ Cat(∞,1) and Cocart(B) ⊆ Cat(∞,1)/B

are both characterized as follows:

∘ Their objects are those 𝑐 for which 𝑖 ∶ 𝑐 → 𝑇 𝑐 admits a left adjoint.

∘ Their 1-morphisms are those 𝑐 → 𝑑 satisfying the Beck–Chevalley

condition.

3. Moreover, both inclusions can be shown to be monadic.

🙌 These are examples of (∞, 2)-categories of algebras over a lax-idempotent

monad.
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Lax-idempotent monads

Definition (after Kock1 and Zöberlein2)

Let X be an (∞, 2)-category and 𝑇∶ X → X a monad (i.e. an 𝐸1-algebra in EndX).

Then 𝑇 is called lax-idempotent if for any 𝑥 in X, the unit 𝜂𝑇 𝑥 ∶ 𝑇 𝑥 → 𝑇 𝑇 𝑥 is right

adjoint to the multiplication map 𝜇𝑥 ∶ 𝑇 𝑇 𝑥 → 𝑇 𝑥.

Remark

Reversing the 1- or 2-morphisms gives three more variations:

• colax-idempotent monads: 𝜂𝑇 𝑥 ⊣ 𝜇𝑥.

• lax-idempotent comonads: 𝜀𝑇 𝑥 ⊣ 𝛿𝑥.

• colax-idempotent comonads: 𝛿𝑥 ⊣ 𝜀𝑇 𝑥.

1A. Kock. “Monads for which structures are adjoint to units”. Aarhus Universitet Math. Preprint

Series 35. (1972/73).
2V. Zöberlein. “Doctrines on 2-categories”. Mathematische Zeitschrift 148.3 (1976), pp. 267–279.
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Algebras over lax-idempotent monads

Theorem

Let 𝑇 be a lax-idempotent monad on an (∞, 2)-category X. Then Alg(𝑇 ) is
equivalent to the following locally full sub-(∞, 2)-category of X:

• Its objects are those 𝑥 for which 𝜂𝑥 ∶ 𝑥 → 𝑇 𝑥 admits a left adjoint 𝛼𝑥.

• Its 1-morphisms are the morphisms 𝑓∶ 𝑥 → 𝑦 satisfying the Beck-Chevalley

condition: 𝑓 ∘ 𝛼𝑥 ≃ 𝛼𝑦 ∘ 𝑇 (𝑓).

Proof sketch.

Let Y ⊆ X denote this sub-(∞, 2)-category.
1. The inclusion Y ↪ X admits a left adjoint 𝐹.
2. The forgetful functor 𝑈∶ Alg(𝑇 ) → X lands in Y ⊂ X.

3. The induced map of monads 𝐹 ⇒ 𝑇 is an equivalence.

4. The map 𝑈∶ Alg(𝑇 ) → Y is inverse to the canonical map Y → Alg(𝑇 ).
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Algebras over lax-idempotent monads

Why care? (Or: Why I care)

• Many natural examples of (∞, 2)-categories arise as algebras over a

lax-idempotent monad.

• This gives us a way of showing that these (∞, 2)-categories are locally

presentable.

• More generally, it gives us methods for computing colimits.

∘ For example, it follows that colimits in Cocart(B) are computed in

Cat(∞,1)/B.

• One also obtains adjoint functor theorems for X (cf. ADL).
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∘ For example, it follows that colimits in Cocart(B) are computed in

Cat(∞,1)/B.

• One also obtains adjoint functor theorems for X (cf. ADL3).

3N. Arkor, I. Di Liberti, and F. Loregian. “Adjoint functor theorems for lax-idempotent

pseudomonads”. Theory and Applications of Categories 41.20 (2024), pp. 667–685.
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Example: Cocompletions revisited

• Since P(C) is cocomplete, the Yoneda embeddingよ ∶ P(C) → P(P(C)) always
admits a left adjoint 𝐿∶ P(P(C)) → P(C).

• This defines the multiplication map of a lax-idempotent monad structure on

P ∶ Cat(∞,1) → Cat(∞,1), with Alg(P) = Catcocomp
(∞,1) .

• This generalizes easily to the following two ways:

∘ Given a collection of small (∞, 1)-categories K, one can consider the

free cocompletion PK(C) of C with respect to K-indexed colimits.

∘ One can consider enriched or internal cocompletions.
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Example: Operads

• Given a symmetric monoidal (∞, 1)-category C, its envelope Env(C) is
defined by the universal property

Funstrong-⊗(Env(C),D) ≃ Funlax-⊗(C,D).

• The resulting comonad on SymMonstrong
(∞,1) has the property that the

comultiplication 𝛿C ∶ Env(C) → Env(Env(C)) is left adjoint to the counit

𝜀Env(C) ∶ Env(Env(C)) → Env(C).
• Hence Env ∶ SymMonstrong

(∞,1) → SymMonstrong
(∞,1) is a colax-idempotent comonad.

• Its coalgebras are (∞, 1)-operads:

coAlg(Env) ≃ Op(∞,1).
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Example: Compactly assembled categories

• The Ind-construction Ind(C) freely adjoins filtered colimits to C.

• It defines a lax-idempotent monad Ind on Cat(∞,1) with Alg(Ind) = Catfil
(∞,1).

• The corresponding comonad Ind on Catfil
(∞,1) is colax-idempotent.

• C is a coalgebra for this comonad if colim ∶ Ind(C) → C admits a further left

adjoint:

C Ind(C)

よ

よ̂

colim

⊣
⊣
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Example: Compactly assembled categories

• C is a coalgebra for this comonad if colim ∶ Ind(C) → C admits a further left

adjoint:

C Ind(C)

よ

よ̂

colim

⊣
⊣

• If such a C is furthermore accessible, then it is called compactly assembled.

• Efimov showed that the usual 𝐾-theory functor extends uniquely to a

localizing invariant 𝐾cts ∶ CompAssStable → Sp.
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adjoint:

C Ind(C)

よ

よ̂

colim

⊣
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• If such a C is furthermore accessible, then it is called compactly assembled.

• Efimov4 showed that the usual 𝐾-theory functor extends uniquely to a

localizing invariant 𝐾cts ∶ CompAssStable → Sp.

4A. I. Efimov. K-theory and localizing invariants of large categories. 2025. arXiv: 2405.12169.
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What determines a lax-idempotent monad?

• To any lax idempotent monad 𝑇 on an (∞, 2)-category X, one can associate

the collection of unit maps

U ≔ {𝜂𝑥 ∶ 𝑥 → 𝑇 𝑥}.

• From this collection one can recover the (locally full) (∞, 2)-category
Alg(𝑇 ) ⊂ X:

∘ Its objects are those 𝑥 for which 𝜂𝑥 admits a left adjoint 𝛼𝑥.

∘ Its 1-morphisms are those 𝑓∶ 𝑥 → 𝑦 for which 𝛼𝑦 ∘ Lan𝜂𝑥
(𝜂𝑦𝑓) ≃ 𝑓 ∘ 𝛼𝑥.

• This suggests a 1-1 correspondence between certain collections of arrows in

X and lax-idempotent monads on X.
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A non-coherent characterization of lax-idempotent monads

Theorem (after Marmolejo–Wood5)

Let U = {𝑥 ∘⟶ 𝑦} ⊆ Ar(X)≃ be a collection of arrows such that:

1. ev0 ∶ U → X is essentially surjective.

2.

𝑥 𝑧

𝑦

𝑓

Lan 𝑓

𝛼
always exists for 𝑧 ∈ ev1(U) and 𝛼 is invertible.

3. Lan 𝑓 is invertible if 𝑓 lies in U.

4.

𝑥 𝑥′ 𝑧

𝑦 𝑦′

𝑓

𝑔

Lan 𝑓

Lan 𝑔

exhibits (Lan 𝑔) ∘ (Lan 𝑓) as a left Kan extension

of (Lan 𝑔) ∘ 𝑓.

Then there exists a lax-idempotent monad on X given by “𝑥 ↦ target(𝑥 ∘⟶ 𝑦)”, and
any lax-idempotent monad arises on X this way.

5F. Marmolejo and R. J. Wood. “Kan extensions and lax idempotent pseudomonads”. Theory and

Applications of Categories 26.1 (2012), pp. 1–29.
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A non-coherent characterization of lax-idempotent monads

Proof sketch.

Let 𝑗 ∶ 𝑥 ∘⟶ 𝑦 in U and 𝑧 ∈ ev1(U) be given.

Call 𝑦 → 𝑧 extended if it is left Kan extended along 𝑗 ∶ 𝑥 ∘⟶ 𝑦. (This turns out to
depend only on 𝑦 and not on 𝑗.)

We define Y ⊆ X to be the locally full subcategory with

• Objects: {𝑧 ∣ there exists 𝑥 ∘⟶ 𝑦 in U with 𝑦 ≃ 𝑧}.
• Morphisms: {𝑓∶ 𝑧 → 𝑧′ ∣ 𝑓 is extended}.

Then Y ↪ X admits a left adjoint given by “𝑥 ↦ target(𝑥 ∘⟶ 𝑦)”.

The corresponding monad is lax-idempotent.
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🎂 Thank you for listening! 🎂
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