Lax-idempotent monads in homotopy theory

Joint with Fernando Abellán (work in progress)

Thomas Blom

Max Planck Institute for Mathematics, Bonn

- Let \mathcal{C} be a locally small $(\infty, 1)$ -category and $\mathcal{P}(\mathcal{C})$ its free cocompletion.
- Then \mathcal{C} is cocomplete if and only if $\mathcal{L}: \mathcal{C} \to \mathcal{P}(\mathcal{C})$ admits a left adjoint L.

- Let $\mathcal C$ be a locally small $(\infty,1)$ -category and $\mathcal P(\mathcal C)$ its free cocompletion.
- Then \mathcal{C} is cocomplete if and only if $\mathcal{L}: \mathcal{C} \to \mathcal{P}(\mathcal{C})$ admits a left adjoint L.
- A functor $F \colon \mathfrak{C} \to \mathfrak{D}$ preserves colimits if and only if for any $X \colon I \to \mathfrak{C}$, the assembly map

assem:
$$\operatorname{colim}_i F(X_i) \to F(\operatorname{colim}_i X_i)$$

is an equivalence.

- Let \mathcal{C} be a locally small $(\infty, 1)$ -category and $\mathcal{P}(\mathcal{C})$ its free cocompletion.
- Then \mathcal{C} is cocomplete if and only if $\mathcal{L}: \mathcal{C} \to \mathcal{P}(\mathcal{C})$ admits a left adjoint L.
- A functor $F \colon \mathfrak{C} \to \mathfrak{D}$ preserves colimits if and only if for any $X \colon I \to \mathfrak{C}$, the assembly map

$$\operatorname{assem}\colon\operatorname{colim}_iF(X_i)\to F(\operatorname{colim}_iX_i)$$

is an equivalence.

• This is a Beck-Chevalley condition:

This characterizes the sub-($\infty,2$)-category $\operatorname{Cat}^{\operatorname{cocomp}}_{(\infty,1)}\subseteq\operatorname{Cat}_{(\infty,1)}$:

• Its objects are the \mathcal{C} for which $\mathcal{L}:\mathcal{C}\to\mathcal{P}(\mathcal{C})$ admits a left adjoint.

This characterizes the sub- $(\infty, 2)$ -category $\operatorname{Cat}^{\operatorname{cocomp}}_{(\infty, 1)} \subseteq \operatorname{Cat}_{(\infty, 1)}$:

- Its objects are the \mathcal{C} for which $\mathcal{L}:\mathcal{C}\to\mathcal{P}(\mathcal{C})$ admits a left adjoint.
- \bullet Its morphisms are the maps $\mathfrak{C} \to \mathcal{D}$ for which the Beck–Chevalley transformation

is invertible.

• A functor $p \colon \mathcal{C} \to \mathcal{B}$ between $(\infty, 1)$ -categories is a cocartesian fibration if and only if the inclusion

• A functor $p \colon \mathfrak{C} \to \mathfrak{B}$ between $(\infty,1)$ -categories is a cocartesian fibration if and only if the inclusion

This left adjoint is the "cocartesian transport functor".

• A functor $p\colon \mathfrak{C}\to \mathfrak{B}$ between $(\infty,1)$ -categories is a cocartesian fibration if and only if the inclusion

- This left adjoint is the "cocartesian transport functor".
- A functor $\mathcal{C} \to \mathcal{D}$ over \mathcal{B} preserves cocartesian morphisms if and only if

$$\begin{array}{cccc} \mathcal{C} \times_{\mathcal{B}} \operatorname{Ar}(\mathcal{B}) & \longrightarrow & \mathcal{D} \times_{\mathcal{B}} \operatorname{Ar}(\mathcal{B}) \\ & & \downarrow^{\operatorname{tr}} & & \downarrow^{\operatorname{tr}} \\ \mathcal{C} & \longrightarrow & \mathcal{D} \end{array}$$

is invertible.

• A functor $p\colon \mathfrak{C}\to \mathfrak{B}$ between $(\infty,1)$ -categories is a cocartesian fibration if and only if the inclusion

- This left adjoint is the "cocartesian transport functor".
- \bullet A functor ${\mathfrak C} \to {\mathfrak D}$ over ${\mathfrak B}$ preserves cocartesian morphisms if and only if

$$\begin{array}{cccc} \mathcal{C} \times_{\mathcal{B}} \operatorname{Ar}(\mathcal{B}) & \longrightarrow & \mathcal{D} \times_{\mathcal{B}} \operatorname{Ar}(\mathcal{B}) \\ & & \downarrow^{\operatorname{tr}} & & \downarrow^{\operatorname{tr}} \\ & \mathcal{C} & \longrightarrow & \mathcal{D} \end{array}$$

is invertible.

• This completely characterizes $\operatorname{Cocart}(\mathfrak{B}) \subseteq \operatorname{Cat}_{(\infty,1)}/\mathfrak{B}$.

1. In both cases, we're given an endofunctor T and a coaugmentation $i : \mathrm{Id} \Rightarrow T$.

ı

- 1. In both cases, we're given an endofunctor T and a coaugmentation $i : \mathrm{Id} \Rightarrow T$.
- 2. The sub- $(\infty, 2)$ -categories $\operatorname{Cat}^{\operatorname{cocomp}}_{(\infty, 1)} \subseteq \operatorname{Cat}_{(\infty, 1)}$ and $\operatorname{Cocart}(\mathcal{B}) \subseteq \operatorname{Cat}_{(\infty, 1)}/\mathcal{B}$ are both characterized as follows:
 - Their objects are those c for which $i: c \to Tc$ admits a left adjoint.
 - \circ Their **1-morphisms** are those $c \to d$ satisfying the Beck–Chevalley condition.

- 1. In both cases, we're given an endofunctor T and a coaugmentation $i : \mathrm{Id} \Rightarrow T$.
- 2. The sub- $(\infty, 2)$ -categories $\operatorname{Cat}^{\operatorname{cocomp}}_{(\infty, 1)} \subseteq \operatorname{Cat}_{(\infty, 1)}$ and $\operatorname{Cocart}(\mathcal{B}) \subseteq \operatorname{Cat}_{(\infty, 1)}/\mathcal{B}$ are both characterized as follows:
 - Their objects are those c for which $i: c \to Tc$ admits a left adjoint.
 - \circ Their **1-morphisms** are those $c \to d$ satisfying the Beck–Chevalley condition.
- 3. Moreover, both inclusions can be shown to be monadic.

- 1. In both cases, we're given an endofunctor T and a coaugmentation $i : \mathrm{Id} \Rightarrow T$.
- 2. The sub- $(\infty, 2)$ -categories $\operatorname{Cat}^{\operatorname{cocomp}}_{(\infty, 1)} \subseteq \operatorname{Cat}_{(\infty, 1)}$ and $\operatorname{Cocart}(\mathcal{B}) \subseteq \operatorname{Cat}_{(\infty, 1)}/\mathcal{B}$ are both characterized as follows:
 - Their objects are those c for which $i: c \to Tc$ admits a left adjoint.
 - \circ Their **1-morphisms** are those $c \to d$ satisfying the Beck–Chevalley condition.
- 3. Moreover, both inclusions can be shown to be monadic.
- These are examples of $(\infty, 2)$ -categories of algebras over a lax-idempotent monad.

Lax-idempotent monads

Definition (after Kock¹ and Zöberlein²)

Let \mathfrak{X} be an $(\infty,2)$ -category and $T: \mathfrak{X} \to \mathfrak{X}$ a monad (i.e. an E_1 -algebra in End \mathfrak{X}).

¹A. Kock. "Monads for which structures are adjoint to units". Aarhus Universitet Math. Preprint Series 35. (1972/73).

²V. Zöberlein. **"Doctrines on 2-categories".** *Mathematische Zeitschrift* 148.3 (1976), pp. 267–279.

Lax-idempotent monads

Definition (after Kock¹ and Zöberlein²)

Let $\mathcal X$ be an $(\infty,2)$ -category and $T\colon \mathcal X\to \mathcal X$ a monad (i.e. an E_1 -algebra in $\operatorname{End}\mathcal X$). Then T is called lax-idempotent if for any x in $\mathcal X$, the unit $\eta_{Tx}\colon Tx\to TTx$ is right adjoint to the multiplication map $\mu_x\colon TTx\to Tx$.

¹A. Kock. "Monads for which structures are adjoint to units". Aarhus Universitet Math. Preprint Series 35. (1972/73).

²V. Zöberlein. **"Doctrines on 2-categories".** *Mathematische Zeitschrift* 148.3 (1976), pp. 267–279.

Lax-idempotent monads

Definition (after Kock¹ and Zöberlein²)

Let $\mathcal X$ be an $(\infty,2)$ -category and $T\colon \mathcal X\to \mathcal X$ a monad (i.e. an E_1 -algebra in $\operatorname{End}\mathcal X$). Then T is called lax-idempotent if for any x in $\mathcal X$, the unit $\eta_{Tx}\colon Tx\to TTx$ is right adjoint to the multiplication map $\mu_x\colon TTx\to Tx$.

Remark

Reversing the 1- or 2-morphisms gives three more variations:

- colax-idempotent monads: $\eta_{Tx} \dashv \mu_x$.
- lax-idempotent comonads: $\varepsilon_{Tx} \dashv \delta_x$.
- colax-idempotent comonads: $\delta_x \dashv \varepsilon_{Tx}$.

¹A. Kock. "Monads for which structures are adjoint to units". Aarhus Universitet Math. Preprint Series 35. (1972/73).

²V. Zöberlein. **"Doctrines on 2-categories".** *Mathematische Zeitschrift* 148.3 (1976), pp. 267–279.

Theorem

Let T be a lax-idempotent monad on an $(\infty,2)$ -category \mathcal{X} . Then $\mathrm{Alg}(T)$ is equivalent to the following locally full sub - $(\infty,2)$ -category of \mathcal{X} :

Theorem

Let T be a lax-idempotent monad on an $(\infty, 2)$ -category \mathfrak{X} . Then $\mathrm{Alg}(T)$ is equivalent to the following locally full sub - $(\infty, 2)$ -category of \mathfrak{X} :

• Its objects are those x for which $\eta_x \colon x \to Tx$ admits a left adjoint α_x .

Theorem

Let T be a lax-idempotent monad on an $(\infty,2)$ -category \mathcal{X} . Then $\mathrm{Alg}(T)$ is equivalent to the following locally full $\mathrm{sub-}(\infty,2)$ -category of \mathcal{X} :

- Its objects are those x for which $\eta_x \colon x \to Tx$ admits a left adjoint α_x .
- Its 1-morphisms are the morphisms $f\colon x\to y$ satisfying the Beck-Chevalley condition: $f\circ\alpha_x\simeq\alpha_y\circ T(f)$.

Theorem

Let T be a lax-idempotent monad on an $(\infty, 2)$ -category \mathfrak{X} . Then $\mathrm{Alg}(T)$ is equivalent to the following locally full $\mathrm{sub-}(\infty, 2)$ -category of \mathfrak{X} :

- Its objects are those x for which $\eta_x \colon x \to Tx$ admits a left adjoint α_x .
- Its 1-morphisms are the morphisms $f\colon x\to y$ satisfying the Beck-Chevalley condition: $f\circ\alpha_x\simeq\alpha_y\circ T(f)$.

Proof sketch.

Let $\mathcal{Y}\subseteq\mathcal{X}$ denote this sub- $(\infty,2)$ -category.

Theorem

Let T be a lax-idempotent monad on an $(\infty, 2)$ -category \mathfrak{X} . Then $\mathrm{Alg}(T)$ is equivalent to the following locally full sub - $(\infty, 2)$ -category of \mathfrak{X} :

- Its objects are those x for which $\eta_x \colon x \to Tx$ admits a left adjoint α_x .
- Its 1-morphisms are the morphisms $f\colon x\to y$ satisfying the Beck-Chevalley condition: $f\circ\alpha_x\simeq\alpha_y\circ T(f)$.

Proof sketch.

Let $\mathcal{Y} \subseteq \mathcal{X}$ denote this sub- $(\infty, 2)$ -category.

1. The inclusion $\mathcal{Y} \hookrightarrow \mathcal{X}$ admits a left adjoint F.

Theorem

Let T be a lax-idempotent monad on an $(\infty,2)$ -category $\mathfrak X.$ Then $\mathrm{Alg}(T)$ is equivalent to the following locally full $\mathrm{sub-}(\infty,2)$ -category of $\mathfrak X:$

- Its objects are those x for which $\eta_x \colon x \to Tx$ admits a left adjoint α_x .
- Its 1-morphisms are the morphisms $f\colon x\to y$ satisfying the Beck-Chevalley condition: $f\circ\alpha_x\simeq\alpha_y\circ T(f)$.

Proof sketch.

Let $\mathcal{Y} \subseteq \mathcal{X}$ denote this sub- $(\infty, 2)$ -category.

- 1. The inclusion $\mathcal{Y} \hookrightarrow \mathcal{X}$ admits a left adjoint F.
- 2. The forgetful functor $U: Alg(T) \to X$ lands in $\mathcal{Y} \subset X$.

Theorem

Let T be a lax-idempotent monad on an $(\infty,2)$ -category \mathcal{X} . Then $\mathrm{Alg}(T)$ is equivalent to the following locally full $\mathrm{sub-}(\infty,2)$ -category of \mathcal{X} :

- Its objects are those x for which $\eta_x \colon x \to Tx$ admits a left adjoint α_x .
- Its 1-morphisms are the morphisms $f\colon x\to y$ satisfying the Beck-Chevalley condition: $f\circ\alpha_x\simeq\alpha_y\circ T(f)$.

Proof sketch.

Let $\mathcal{Y} \subseteq \mathcal{X}$ denote this sub- $(\infty, 2)$ -category.

- 1. The inclusion $\mathcal{Y} \hookrightarrow \mathcal{X}$ admits a left adjoint F.
- 2. The forgetful functor $U: Alg(T) \to \mathfrak{X}$ lands in $\mathfrak{Y} \subset \mathfrak{X}$.
- 3. The induced map of monads $F \Rightarrow T$ is an equivalence.

Theorem

Let T be a lax-idempotent monad on an $(\infty, 2)$ -category \mathfrak{X} . Then $\mathrm{Alg}(T)$ is equivalent to the following locally full sub - $(\infty, 2)$ -category of \mathfrak{X} :

- Its objects are those x for which $\eta_x \colon x \to Tx$ admits a left adjoint α_x .
- Its 1-morphisms are the morphisms $f\colon x\to y$ satisfying the Beck-Chevalley condition: $f\circ\alpha_x\simeq\alpha_y\circ T(f)$.

Proof sketch.

Let $\mathcal{Y}\subseteq\mathcal{X}$ denote this sub- $(\infty,2)$ -category.

- 1. The inclusion $\mathcal{Y} \hookrightarrow \mathcal{X}$ admits a left adjoint F.
- 2. The forgetful functor $U: Alg(T) \to \mathfrak{X}$ lands in $\mathfrak{Y} \subset \mathfrak{X}$.
- 3. The induced map of monads $F \Rightarrow T$ is an equivalence.
- 4. The map $U: Alg(T) \to \mathcal{Y}$ is inverse to the canonical map $\mathcal{Y} \to Alg(T)$.

Why care? (Or: Why I care)

 \bullet Many natural examples of $(\infty,2)\text{-categories}$ arise as algebras over a lax-idempotent monad.

Why care? (Or: Why I care)

- \bullet Many natural examples of $(\infty,2)\text{-categories}$ arise as algebras over a lax-idempotent monad.
- ullet This gives us a way of showing that these $(\infty,2)$ -categories are locally presentable.

Why care? (Or: Why I care)

- Many natural examples of $(\infty,2)$ -categories arise as algebras over a lax-idempotent monad.
- ullet This gives us a way of showing that these $(\infty,2)$ -categories are locally presentable.
- More generally, it gives us methods for computing colimits.

Why care? (Or: Why I care)

- \bullet Many natural examples of $(\infty,2)\text{-categories}$ arise as algebras over a lax-idempotent monad.
- \bullet This gives us a way of showing that these $(\infty,2)\text{-categories}$ are locally presentable.
- More generally, it gives us methods for computing colimits.
 - \circ For example, it follows that colimits in $\mathfrak{C}ocart(\mathfrak{B})$ are computed in $\mathfrak{C}at_{(\infty,1)}/\mathfrak{B}.$

Why care? (Or: Why I care)

- Many natural examples of $(\infty,2)$ -categories arise as algebras over a lax-idempotent monad.
- ullet This gives us a way of showing that these $(\infty,2)$ -categories are locally presentable.
- More generally, it gives us methods for computing colimits.
 - For example, it follows that colimits in $\operatorname{Cocart}(\mathcal{B})$ are computed in $\operatorname{Cat}_{(\infty,1)}/\mathcal{B}.$
- One also obtains adjoint functor theorems for $\mathfrak X$ (cf. ADL³).

³N. Arkor, I. Di Liberti, and F. Loregian. **"Adjoint functor theorems for lax-idempotent pseudomonads".** *Theory and Applications of Categories* 41.20 (2024), pp. 667–685.

Example: Cocompletions revisited

• Since $\mathcal{P}(\mathcal{C})$ is cocomplete, the Yoneda embedding $\mathcal{L}: \mathcal{P}(\mathcal{C}) \to \mathcal{P}(\mathcal{P}(\mathcal{C}))$ always admits a left adjoint $L: \mathcal{P}(\mathcal{P}(\mathcal{C})) \to \mathcal{P}(\mathcal{C})$.

Example: Cocompletions revisited

- Since $\mathcal{P}(\mathcal{C})$ is cocomplete, the **Yoneda embedding** $\mathcal{L}: \mathcal{P}(\mathcal{C}) \to \mathcal{P}(\mathcal{P}(\mathcal{C}))$ always admits a left adjoint $L: \mathcal{P}(\mathcal{P}(\mathcal{C})) \to \mathcal{P}(\mathcal{C})$.
- This defines the multiplication map of a lax-idempotent monad structure on $\mathcal{P}\colon \mathfrak{C}\mathrm{at}_{(\infty,1)} \to \mathfrak{C}\mathrm{at}_{(\infty,1)}$, with $\mathrm{Alg}(\mathcal{P}) = \mathfrak{C}\mathrm{at}_{(\infty,1)}^{\mathrm{cocomp}}$.

Example: Cocompletions revisited

- Since $\mathcal{P}(\mathcal{C})$ is cocomplete, the **Yoneda embedding** $\mathcal{L}: \mathcal{P}(\mathcal{C}) \to \mathcal{P}(\mathcal{P}(\mathcal{C}))$ always admits a left adjoint $L: \mathcal{P}(\mathcal{P}(\mathcal{C})) \to \mathcal{P}(\mathcal{C})$.
- This defines the multiplication map of a lax-idempotent monad structure on $\mathcal{P} \colon \operatorname{Cat}_{(\infty,1)} \to \operatorname{Cat}_{(\infty,1)}$, with $\operatorname{Alg}(\mathcal{P}) = \operatorname{Cat}_{(\infty,1)}^{\operatorname{cocomp}}$.
- This generalizes easily to the following two ways:
 - Given a collection of small $(\infty, 1)$ -categories \mathcal{K} , one can consider the free cocompletion $\mathcal{P}_{\mathcal{K}}(\mathcal{C})$ of \mathcal{C} with respect to \mathcal{K} -indexed colimits.
 - One can consider enriched or internal cocompletions.

Example: Operads

• Given a symmetric monoidal $(\infty, 1)$ -category \mathcal{C} , its envelope $\mathrm{Env}(\mathcal{C})$ is defined by the universal property

$$\operatorname{Fun}^{\operatorname{strong-}\otimes}(\operatorname{Env}(\mathcal{C}),\mathcal{D}) \simeq \operatorname{Fun}^{\operatorname{lax-}\otimes}(\mathcal{C},\mathcal{D}).$$

Example: Operads

• Given a symmetric monoidal $(\infty,1)$ -category $\mathfrak C$, its envelope $\operatorname{Env}(\mathfrak C)$ is defined by the universal property

$$\operatorname{Fun}^{\operatorname{strong-}\otimes}(\operatorname{Env}(\mathcal{C}),\mathcal{D}) \simeq \operatorname{Fun}^{\operatorname{lax-}\otimes}(\mathcal{C},\mathcal{D}).$$

• The resulting comonad on $\operatorname{Sym} \operatorname{Mon}^{\operatorname{strong}}_{(\infty,1)}$ has the property that the comultiplication $\delta_{\mathcal{C}} \colon \operatorname{Env}(\mathcal{C}) \to \operatorname{Env}(\operatorname{Env}(\mathcal{C}))$ is **left adjoint** to the counit $\varepsilon_{\operatorname{Env}(\mathcal{C})} \colon \operatorname{Env}(\operatorname{Env}(\mathcal{C})) \to \operatorname{Env}(\mathcal{C})$.

Example: Operads

• Given a symmetric monoidal $(\infty,1)$ -category $\mathfrak C$, its envelope $\operatorname{Env}(\mathfrak C)$ is defined by the universal property

$$\operatorname{Fun}^{\operatorname{strong-}\otimes}(\operatorname{Env}(\mathcal{C}),\mathcal{D}) \simeq \operatorname{Fun}^{\operatorname{lax-}\otimes}(\mathcal{C},\mathcal{D}).$$

- The resulting comonad on $\operatorname{Sym} \operatorname{Mon}^{\operatorname{strong}}_{(\infty,1)}$ has the property that the comultiplication $\delta_{\mathcal{C}} \colon \operatorname{Env}(\mathcal{C}) \to \operatorname{Env}(\operatorname{Env}(\mathcal{C}))$ is **left adjoint** to the counit $\varepsilon_{\operatorname{Env}(\mathcal{C})} \colon \operatorname{Env}(\operatorname{Env}(\mathcal{C})) \to \operatorname{Env}(\mathcal{C})$.
- $\bullet \ \ \mathsf{Hence} \ \mathrm{Env} \colon \mathbb{S}\mathrm{ym} \mathcal{M}\mathrm{on}^{\mathrm{strong}}_{(\infty,1)} \to \mathbb{S}\mathrm{ym} \mathcal{M}\mathrm{on}^{\mathrm{strong}}_{(\infty,1)} \ \text{is a } \mathbf{colax\text{-}idempotent} \ \mathbf{comonad}.$

Example: Operads

• Given a symmetric monoidal $(\infty,1)$ -category $\mathfrak C$, its envelope $\operatorname{Env}(\mathfrak C)$ is defined by the universal property

$$\operatorname{Fun}^{\operatorname{strong-}\otimes}(\operatorname{Env}(\mathcal{C}),\mathcal{D})\simeq\operatorname{Fun}^{\operatorname{lax-}\otimes}(\mathcal{C},\mathcal{D}).$$

- The resulting comonad on $\operatorname{Sym} \operatorname{Mon}^{\operatorname{strong}}_{(\infty,1)}$ has the property that the comultiplication $\delta_{\mathfrak{C}} \colon \operatorname{Env}(\mathfrak{C}) \to \operatorname{Env}(\operatorname{Env}(\mathfrak{C}))$ is **left adjoint** to the counit $\varepsilon_{\operatorname{Env}(\mathfrak{C})} \colon \operatorname{Env}(\operatorname{Env}(\mathfrak{C})) \to \operatorname{Env}(\mathfrak{C}).$
- $\bullet \ \ \mathsf{Hence} \ \mathrm{Env} \colon \mathbb{S}\mathrm{ym} \mathcal{M}\mathrm{on}^{\mathrm{strong}}_{(\infty,1)} \to \mathbb{S}\mathrm{ym} \mathcal{M}\mathrm{on}^{\mathrm{strong}}_{(\infty,1)} \ \text{is a } \mathbf{colax-idempotent} \ \mathbf{comonad}.$
- Its coalgebras are $(\infty, 1)$ -operads:

$$\operatorname{coAlg}(\operatorname{Env}) \simeq \operatorname{Op}_{(\infty,1)}.$$

9

• The Ind-construction $Ind(\mathcal{C})$ freely adjoins filtered colimits to \mathcal{C} .

- The Ind-construction Ind(C) freely adjoins filtered colimits to C.
- It defines a lax-idempotent monad Ind on $\operatorname{Cat}_{(\infty,1)}$ with $\operatorname{Alg}(\operatorname{Ind}) = \operatorname{Cat}_{(\infty,1)}^{\operatorname{fil}}$.

- The Ind-construction Ind(C) freely adjoins filtered colimits to C.
- It defines a lax-idempotent monad Ind on $\operatorname{Cat}_{(\infty,1)}$ with $\operatorname{Alg}(\operatorname{Ind}) = \operatorname{Cat}_{(\infty,1)}^{\operatorname{fil}}$.
- ullet The corresponding comonad Ind on $\operatorname{\mathfrak{C}at}^{\operatorname{fil}}_{(\infty,1)}$ is colax-idempotent.

- The Ind-construction Ind(C) freely adjoins filtered colimits to C.
- It defines a lax-idempotent monad Ind on $\operatorname{Cat}_{(\infty,1)}$ with $\operatorname{Alg}(\operatorname{Ind}) = \operatorname{Cat}_{(\infty,1)}^{\operatorname{fil}}$.
- ullet The corresponding comonad Ind on $\mathfrak{C}\mathrm{at}^\mathrm{fil}_{(\infty,1)}$ is colax-idempotent.
- C is a coalgebra for this comonad if colim: Ind(C) → C admits a further left adjoint:

 C is a coalgebra for this comonad if colim: Ind(C) → C admits a further left adjoint:

 C is a coalgebra for this comonad if colim: Ind(C) → C admits a further left adjoint:

• If such a C is furthermore accessible, then it is called **compactly assembled**.

• $\mathfrak C$ is a coalgebra for this comonad if $\mathrm{colim}\colon \mathrm{Ind}(\mathfrak C)\to \mathfrak C$ admits a further left adjoint:

- If such a $\mathcal C$ is furthermore accessible, then it is called **compactly assembled**.
- Efimov⁴ showed that the usual K-theory functor extends uniquely to a localizing invariant $K^{\text{cts}} \colon \text{CompAss}_{\text{Stable}} \to \text{Sp.}$

11

⁴A. I. Efimov. K-theory and localizing invariants of large categories. 2025. arXiv: 2405.12169.

What determines a lax-idempotent monad?

ullet To any lax idempotent monad T on an $(\infty,2)$ -category \mathcal{X} , one can associate the collection of unit maps

$$\mathfrak{U} := \{\eta_x \colon x \to Tx\}.$$

What determines a lax-idempotent monad?

ullet To any lax idempotent monad T on an $(\infty,2)$ -category ${\mathfrak X}$, one can associate the collection of unit maps

$$\mathcal{U} := \{ \eta_x \colon x \to Tx \}.$$

- From this collection one can recover the (locally full) $(\infty, 2)$ -category $\mathrm{Alg}(T) \subset \mathfrak{X}$:
 - Its objects are those x for which η_x admits a left adjoint α_x .
 - $\circ \ \text{Its 1-morphisms are those} \ f \colon x \to y \ \text{for which} \ \alpha_y \circ \operatorname{Lan}_{\eta_x}(\eta_y f) \simeq f \circ \alpha_x.$

What determines a lax-idempotent monad?

ullet To any lax idempotent monad T on an $(\infty,2)$ -category ${\mathfrak X}$, one can associate the collection of unit maps

$$\mathcal{U} := \{ \eta_x \colon x \to Tx \}.$$

- From this collection one can recover the (locally full) $(\infty, 2)$ -category $\mathrm{Alg}(T) \subset \mathfrak{X}$:
 - Its objects are those x for which η_x admits a left adjoint α_x .
 - $\circ \ \text{Its 1-morphisms are those} \ f \colon x \to y \ \text{for which} \ \alpha_y \circ \operatorname{Lan}_{\eta_x}(\eta_y f) \simeq f \circ \alpha_x.$
- This suggests a 1-1 correspondence between certain collections of arrows in $\mathcal X$ and lax-idempotent monads on $\mathcal X$.

Theorem (after Marmolejo-Wood⁵)

Let $\mathcal{U} = \{x \longrightarrow y\} \subseteq \operatorname{Ar}(\mathfrak{X})^{\simeq}$ be a collection of arrows such that:

1. $\operatorname{ev}_0 \colon \mathcal{U} \to \mathcal{X}$ is essentially surjective.

⁵F. Marmolejo and R. J. Wood. **"Kan extensions and lax idempotent pseudomonads".** *Theory and*

Theorem (after Marmolejo-Wood⁵)

Let $\mathcal{U} = \{x \longrightarrow y\} \subseteq \operatorname{Ar}(\mathfrak{X})^{\simeq}$ be a collection of arrows such that:

- 1. $ev_0 : \mathcal{U} \to \mathcal{X}$ is essentially surjective.
- 2. $\bigvee_{\operatorname{Lan} f}^{\alpha} z$ always exists for $z \in \operatorname{ev}_1(\mathcal{U})$ and α is invertible.

⁵F. Marmolejo and R. J. Wood. **"Kan extensions and lax idempotent pseudomonads".** *Theory and*

Theorem (after Marmolejo-Wood⁵)

Let $\mathcal{U} = \{x \longrightarrow y\} \subseteq \operatorname{Ar}(\mathfrak{X})^{\simeq}$ be a collection of arrows such that:

- 1. $ev_0 : \mathcal{U} \to \mathcal{X}$ is essentially surjective.
- 2. $\biguplus_{u} \xrightarrow{\alpha} z$ always exists for $z \in \text{ev}_1(\mathcal{U})$ and α is invertible.
- 3. Lan f is invertible if f lies in \mathcal{U} .

⁵F. Marmolejo and R. J. Wood. **"Kan extensions and lax idempotent pseudomonads".** *Theory and*

Theorem (after Marmoleio-Wood⁵)

Let $\mathcal{U} = \{x \longrightarrow y\} \subseteq \operatorname{Ar}(\mathfrak{X})^{\simeq}$ be a collection of arrows such that:

- 1. $ev_0: \mathcal{U} \to \mathcal{X}$ is essentially surjective.
- 2. $\oint^{\alpha}_{\operatorname{Lan} f}$ always exists for $z \in \operatorname{ev}_1(\mathcal{U})$ and α is invertible.
- 3. Lan f is invertible if f lies in \mathcal{U} .

⁵F. Marmolejo and R. J. Wood. **"Kan extensions and lax idempotent pseudomonads".** Theory and

Theorem (after Marmolejo-Wood⁵)

Let $\mathcal{U} = \{x \longrightarrow y\} \subseteq \operatorname{Ar}(\mathfrak{X})^{\simeq}$ be a collection of arrows such that:

- 1. $ev_0 : \mathcal{U} \to \mathcal{X}$ is essentially surjective.
- 2. $\biguplus_{\operatorname{Lan} f}^{x} z$ always exists for $z \in \operatorname{ev}_1(\mathcal{U})$ and α is invertible.
- 3. Lan f is invertible if f lies in \mathcal{U} .

Then there exists a lax-idempotent monad on \mathcal{X} given by " $x \mapsto \operatorname{target}(x \multimap y)$ ", and any lax-idempotent monad arises on \mathcal{X} this way.

⁵F. Marmolejo and R. J. Wood. **"Kan extensions and lax idempotent pseudomonads".** Theory and

Proof sketch.

Let $j: x \longrightarrow y$ in \mathcal{U} and $z \in ev_1(\mathcal{U})$ be given.

Call $y \to z$ extended if it is left Kan extended along $j \colon x \longrightarrow y$. (This turns out to depend only on y and not on j.)

Proof sketch.

Let $j: x \longrightarrow y$ in \mathcal{U} and $z \in ev_1(\mathcal{U})$ be given.

Call $y \to z$ extended if it is left Kan extended along $j \colon x \to y$. (This turns out to depend only on y and not on j.)

We define $\mathcal{Y}\subseteq\mathcal{X}$ to be the locally full subcategory with

- Objects: $\{z \mid \text{there exists } x \longrightarrow y \text{ in } \mathcal{U} \text{ with } y \simeq z\}.$
- Morphisms: $\{f: z \to z' \mid f \text{ is extended}\}.$

Proof sketch.

Let $j: x \longrightarrow y$ in \mathcal{U} and $z \in ev_1(\mathcal{U})$ be given.

Call $y \to z$ extended if it is left Kan extended along $j: x \longrightarrow y$. (This turns out to depend only on y and not on j.)

We define $\mathcal{Y}\subseteq\mathcal{X}$ to be the locally full subcategory with

- Objects: $\{z \mid \text{there exists } x \longrightarrow y \text{ in } \mathcal{U} \text{ with } y \simeq z\}.$
- Morphisms: $\{f: z \to z' \mid f \text{ is extended}\}.$

Then $\mathcal{Y} \hookrightarrow \mathcal{X}$ admits a left adjoint given by " $x \mapsto \operatorname{target}(x \longrightarrow y)$ ".

Proof sketch.

Let $j: x \longrightarrow y$ in \mathcal{U} and $z \in ev_1(\mathcal{U})$ be given.

Call $y \to z$ extended if it is left Kan extended along $j: x \longrightarrow y$. (This turns out to depend only on y and not on j.)

We define $\mathcal{Y} \subseteq \mathcal{X}$ to be the locally full subcategory with

- Objects: $\{z \mid \text{there exists } x \longrightarrow y \text{ in } \mathcal{U} \text{ with } y \simeq z\}.$
- Morphisms: $\{f: z \to z' \mid f \text{ is extended}\}.$

Then $\mathcal{Y} \hookrightarrow \mathcal{X}$ admits a left adjoint given by " $x \mapsto \operatorname{target}(x \longrightarrow y)$ ".

The corresponding monad is lax-idempotent.

