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Example: Cocompletions of categories

Let € be a locally small (oo, 1)-category and P(C) its free cocompletion.
Then € is cocomplete if and only if &: € — P(€) admits a left adjoint L.

A functor F: €@ — D preserves colimits if and only if forany X: I — @, the
assembly map

assem: colim F'(X;) — F(colim X,)

is an equivalence.
This is a Beck-Chevalley condition:
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This characterizes the sub-(oo, 2)-category Cat5>"))” C Cat(s 1):

e Its objects are the € for which &: € — P(€) admits a left adjoint.

e Its morphisms are the maps € — D for which the Beck-Chevalley

transformation
F,

P(C)

.

— P(D)
/ L
— D

is invertible.
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Example: Cocartesian fibrations

e Afunctor p: € — B between (oo, 1)-categories is a cocartesian fibration if
and only if the inclusion

i: C — Cxg Ar(B)

\ / admits a left adjoint 7 € Xz Ar(B) — € querp
» Vi (¢, f) — fic
B

e This left adjoint is the “cocartesian transport functor”.
e Afunctor € — D over B preserves cocartesian morphisms if and only if
Cxgp Ar(B) —— D x4 Ar(B)

gf —

D

is invertible.
e This completely characterizes Cocart(B) C Cat ., ;)/B.
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1. In both cases, we're given an endofunctor T'and a coaugmentation : Id = T.

2. The sub-(co, 2)—ca§egories Gatfgzj’ir)‘p C Caty, 1) and Cocart(B) C Cat (o, 1)/B
are both characterized as follows:

o Their objects are those ¢ for which i: ¢ — T'c admits a left adjoint.
o Their 1-morphisms are those ¢ — d satisfying the Beck-Chevalley
condition.

3. Moreover, both inclusions can be shown to be monadic.

These are examples of (oo, 2)-categories of algebras over a lax-idempotent
monad.
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Lax-idempotent monads

Definition (after Kock' and Zdberlein?)

Let X be an (oo, 2)-category and T: X — X a monad (i.e. an E;-algebra in End X).
Then T'is called lax-idempotent if for any = in X, the unit 9y, : T — TTz is right
adjoint to the multiplication map p,: TTx — T'z.

Remark

Reversing the 1- or 2-morphisms gives three more variations:
e colax-idempotent monads: 0y, - g,
e lax-idempotent comonads: ep, 4 4,.
e colax-idempotent comonads: 6, 4 ep,.

'A. Kock. “Monads for which structures are adjoint to units”. Aarhus Universitet Math. Preprint
Series 35. (1972/73).
’V. Zéberlein. “Doctrines on 2-categories”. Mathematische Zeitschrift 1483 (1976), pp. 267-279.
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Let T'be a lax-idempotent monad on an (oo, 2)-category X. Then Alg(T) is
equivalent to the following locally full sub-(co, 2)-category of X:

Its are those z for which 7, :  — T admits a left adjoint «,.

Its are the morphisms f: x — y satisfying the Beck-Chevalley
condition: foa, =~ a, o T(f).

Proof sketch.
Let Y C X denote this sub-(oo, 2)-category.
1. The inclusion Y < X admits a left adjoint F.
2. The forgetful functor U: Alg(T') — X lands in Y C X.
3. The induced map of monads F = T'is an equivalence.
4. The map U: Alg(T) — Y is inverse to the canonical map Y — Alg(T). O
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Algebras over lax-idempotent monads

Why care? (Or: Why | care)

e Many natural examples of (0o, 2)-categories arise as algebras over a
lax-idempotent monad.

e This gives us a way of showing that these (oo, 2)-categories are locally
presentable.

e More generally, it gives us methods for computing colimits.
o For example, it follows that colimits in Cocart(B) are computed in
Gat(oovl)/'B.

e One also obtains adjoint functor theorems for X (cf. ADL?).

°N. Arkor, I. Di Liberti, and F. Loregian. “Adjoint functor theorems for lax-idempotent
pseudomonads”. Theory and Applications of Categories 41.20 (2024), pp. 667-685.
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Example: Cocompletions revisited

e Since P(€) is cocomplete, the Yoneda embedding X: P(€) — P(P(C)) always
admits a left adjoint L: P(P(C)) — P(C).
e This defines the multiplication map of a lax-idempotent monad structure on
P Gat(ooJ) =7 Gat(ooJ), W|th Alg(?) = C’at?gzi)ln)lp
e This generalizes easily to the following two ways:
o Given a collection of small (0o, 1)-categories K, one can consider the

free cocompletion P4 (€) of € with respect to K-indexed colimits.
o One can consider enriched or internal cocompletions.
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Example: Operads

e Given a symmetric monoidal (oo, 1)-category €, its envelope Env(C) is
defined by the universal property

Funstrong-@ (Env<€)’ ‘D) ~ Funlax-® (G’ D)

e The resulting comonad on SymMonfgo"‘f has the property that the

comultiplication de: Env(€) — Env(Env(C)) is left adjoint to the counit
€Env(e): Env(Env(€)) — Env(C).

e Hence Env: SymMon?i’f‘ﬁ — SymMon?goori? is a colax-idempotent comonad.
e |ts coalgebras are (o0, 1)-operads:

coAlg(Env) = Op(, 1)
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Example: Compactly assembled categories

The Ind-construction Ind(€) freely adjoins filtered colimits to €.
It defines a lax-idempotent monad Ind on Cat ;) with Alg(Ind) = Cat{}_ ).

e The corresponding comonad Ind on Gat?oo’l) is colax-idempotent.
e Cis a coalgebra for this comonad if colim: Ind(€C) — € admits a further left
adjoint:
X
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Example: Compactly assembled categories

e Cis a coalgebra for this comonad if colim: Ind(€C) — € admits a further left
adjoint:

K
L
€ < colim — Ind(@)
N
K

e If such a @ is furthermore accessible, then it is called compactly assembled.

e Efimov* showed that the usual K-theory functor extends uniquely to a
localizing invariant K°*: CompAssg;,je — SP-

“A. 1. Efimov. K-theory and localizing invariants of large categories. 2025. arXiv: 2405.12169.


https://arxiv.org/abs/2405.12169
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What determines a lax-idempotent monad?

e To any lax idempotent monad T'on an (oo, 2)-category X, one can associate
the collection of unit maps

U:={n,: z - Tz}

e From this collection one can recover the (locally full) (oo, 2)-category
Alg(T) C X:
o Its objects are those « for which n, admits a left adjoint «,.
o Its 1-morphisms are those f: x — y for which o, o Lan, (n,f) =~ foa,.

e This suggests a 1-1 correspondence between certain collections of arrows in
X and lax-idempotent monads on X.
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A non-coherent characterization of lax-idempotent monads

Let U = { —» y} C Ar(X)™ be a collection of arrows such that:
evy: U — X is essentially surjective.
N

T
% % ; always exists for z € ev, (U) and « is invertible.

<

Lan fis invertib e iff lies in U.

- exhibits (Lang) o (Lan f) as a left Kan extension
% \ % A'ng of (Lan g) o f

Lan f

Then there exists a lax-idempotent monad on X given by “x  target(z —— y)", and
any lax-idempotent monad arises on X this way.

°F. Marmolejo and R. J. Wood. “Kan extensions and lax idempotent pseudomonads”. Theory and 3
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A non-coherent characterization of lax-idempotent monads

Proof sketch.
Let j: 2 > yin U and z € ev, (U) be given.

Call y — z extended if it is left Kan extended along j: & —+ 5. (This turns out to
depend only on y and not on j.)

We define Y C X to be the locally full subcategory with
e Objects: {z | there exists z —» y in U with y ~ z}.
e Morphisms: {f: z — 2’ | fis extended}.
Then Y — X admits a left adjoint given by “z - target(z —» y)".

The corresponding monad is lax-idempotent. O



& Thank you for listening! &



