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Defn. (Cat-weighted colimit): For a Cat-presheaf
W : Aop → Cat and 2-functor F : A → B, the W-weighted
(strict) colimit of F is a representation:

B(W ∗ F,−) �
[
Aop, Cat

]
(W,B(F,−))

Defn. (Oplax colimit): The W-weighted oplax colimit of F
is a representation:

B(W ⊛ F,−) �
[
Aop, Cat

]
oplax(W,B(F,−))

When W = Δ𝟙 : Aop → Cat we say the the (oplax or
otherwise) colimit is conical.
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Coinserter (strict colimit)

[0→1]

[0]
0 1

W ↦−→
•

•

F↦−→
x

y
uv ;

x

y W ∗ F
uv ⟳

Cograph (conical oplax colimit)

[0]

[0]

Δ𝟙 ↦−−→
•

•

F↦−→
x

y
u ;

x

y W ⊛ F
u
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Cographs (conical oplax colimit)

[0]

[0]
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•

•

F↦−→
x

y
u ;

x

y W ⊛ F
u

are also strict colimits

[0→1]

[0]
1

W ↦−→
•

•

F↦−→
x

y
u ;

x

y W ∗ F
u
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Two questions
For a given weight W : Aop → Cat, when are:
(a) W-weighted oplax colimits also strict colimits?
(b) W-weighted strict colimits also oplax colimits?

Answers
(a) Always: W ⊛ F � W♯ ∗ F where W♯ is the oplax-

transformation classifier for W.
(b) Sometimes: we will call such W "oplax weights".
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Oplax weights are presheaves W : Aop → Cat such
oplax-colimit-complete 2-categories have W-colimits and
oplax-cocontinuous 2-functors preserve W-colimits.

All presheaves
PIE weights

Pseudo

Oplax Lax
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Objectives:

(a) Observe connections to PIE weights

(b) Characterise oplax weights as coalgebras for the
oplax-transformation classifier, ♯

(c) Relate oplax weights to a comprehensive
factorisation system on 2Cat

(d) Discuss saturation properties for related weights

(e) See that ♯-coalgebras with oplax transformations
form the free oplax colimit completion of a
2-category

(f) Characterise oplax weights by their categories of
elements
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There is an adjunction:

[Aop, Cat] [Aop, Cat]oplax
forget

♯

⊣

We call ♯ the oplax-transformation classifier.

For a given W : Aop → Cat:

B(W ⊛ F,−) �
[
Aop, Cat

]
oplax(W,B(F,−))

�
[
Aop, Cat

] (
W♯,B(F,−)

)
� B

(
W♯ ∗ F,−

)
So W ⊛ F � W♯ ∗ F.

Any weight of the form W♯ is an oplax weight.
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Note: there is also an adjunction:

[Aop, Cat] [Aop, Cat]pseudo
forget

♮

⊣

We call ♮ the pseudo-transformation classifier (both as a
left adjoint and a comonad.

Weights of the form W♮, i.e. free ♮-coalgebras are
"pseudo-weights".

The class of all ♮-coalgebras is the class of PIE weights.
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PIE weights W : Aop → Cat are equivalently:

(a) coalgebras for the comonad ♮ on [Aop, Cat]

(b) weights in the saturation of weights for coproducts
coinserters and coequifiers

(c) weights such that the category of elements of
W0 : A0

op → Set has terminal objects in each
connected component.

(b) ⇔ (c): (Power and Robinson 1991)

(b, c) ⇔ (a): (Lack and Shulman 2012)
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We will show that oplax weights W : Aop → Cat are
equivalently:

(a) coalgebras for the comonad ♯ on [Aop, Cat]

(b) weights in the saturation of weights for conical oplax
colimits

(c) weights such that the category of elements of
W0 : A0

op → Set has terminal objects in each
connected component PLUS some other
conditions. . .
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Weights Aop → Set are equivalent to discrete fibrations
on A.

Classes of weights can be characterised by the properties
of their discrete fibrations (e.g. PIE weights).

We will use an equivalence between Cat-weights and
discrete 2-fibrations to understand oplax weights.
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Defn. (2-category of elements, el(W)): for W : Aop → Cat,
the 2-category el(W) has:

0-cells: pairs (a ∈ A, x ∈ Wa)

1-cells: (a, x) → (b, y) are pairs (u : a→ b, f : x→ Wuy)

2-cells: (u, f ) ⇒ (v, g) : (a, x) → (b, y) are 2-cells
𝜎 : u⇒ v in A such that W𝜎y f = g:

Wuy
x

Wvy

f

g
W𝜎y⟳

A 2-functor |W | : el(W) → A is then given by projection
onto the first component, e.g. |W | (a, x) = a.
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A discrete 2-fibration is a split 2-fibration which is a
discrete opfibration on hom-categories.

There is an equivalence (Lambert 2024):

el :
[
Aop, Cat

] ≃−→ D2Fib(A)

Note: morphisms in D2Fib(A) are split-cartesian functors.

There is also an equivalence:

el :
[
Aop, Cat

]
oplax

≃−→ 2Cat/d2f (A)

The morphism in 2Cat/d2f (A) are all maps in 2Cat/A.
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[Aop, Cat] [Aop, Cat]oplax

D2Fib(A) 2Cat/d2f (A)

forget
el

forget

el

♯

F

⊣
⊣

So el : [Aop, Cat] → 2Cat/d2f (A) underlies a coKleisli
adjunction for ♯.
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[Aop, Cat] [Aop, Cat]oplax

D2Fib(A) 2Cat/d2f (A)

2Cat/A

forget
el

forget

el

♯

F

⊣
⊣

f .f
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[Aop, Cat] [Aop, Cat]oplax

D2Fib(A) 2Cat/d2f (A)

2Cat/A

forget
el

forget

el

♯

F

⊣
⊣

f .f

imoplax

el : [Aop, Cat] → 2Cat/A underlies an adjunction for ♯.
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Aside: comparison with the 1-dimensional situation:

[Aop, Set] Cat/A

im

el

⊣

trivial comonad

[Aop, Cat] 2Cat/A

imoplax

el
⊣

the comonad ♯

im(F) = colim
(
B F−→ A

ょ
−→

[
Aop, Set

] )
imoplax(F) = colimoplax

(
B F−→ A

ょ
−→

[
Aop, Cat

] )
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We now have three adjunctions for the comonad ♯:

2Cat/d2f (A) 2Cat/A ♯-coalg

[Aop, Cat]

K

imoplax Uel
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2Cat/d2f (A) 2Cat/A ♯-coalg

[Aop, Cat]

K

imoplax Uel

R

⊣

Thm. R : ♯-coalg→ 2Cat/A is equivalent to the reflective
subcategory of 2-functors B → A which are discrete
opfibrations on hom-categories (local discrete
opfibrations).
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Aside: orthogonal factorisation systems

[Aop, Set] Cat/A

im

el

⊣

2Cat/A ♯-coalg

[Aop, Cat]

K

el
U

R

⊣

Comprehensive FS:
covering: discrete opfib.s
connected: initial functors
(Street and Walters 1973)

A 2Cat OFS:
covering: local discrete opfib.s
connected: b.o.o locally initial
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Classifying ♯-coalgebras

2Cat/A ♯-coalg

[Aop, Cat]

K

elimoplax U

R

⊣

⊣

Thm. A presheaf in [Aop, Cat] admits a ♯-coalgebra
structure precisely if:

(a) it is the oplax image presheaf of a 2-functor
F : B → A

(b) it is the oplax image presheaf of a local discrete
opfibration F : B → A
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Why do we care about ♯-coalgebras?

All ♯-coalgebras are oplax weights

If W is a ♯-coalgebra, W � imoplax(G) for some G : B → A.

Then for any F : B → C:

W ∗ F � imoplax(G) ∗ F
� (𝟙 ⊛ A(−,G)) ∗ F
� 𝟙 ⊛ (A(−,G) ∗ F) � 𝟙 ⊛ (F G)

Note: this isn’t true for ♮-coalgebras. Not all PIE weights
are pseudo weights.

If we can show ♯-coalgebras are saturated, then all oplax
weights are ♯-coalgebras.
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Aside: all oplax colimits are conical

[Aop, Set] Cat/A

im

el

⊣

trivial comonad

[Aop, Cat] 2Cat/A

imoplax

el

⊣
the comonad ♯

W ∗ F � im( |W |) ∗ F
� (𝟙 ∗ A(−, |W |)) ∗ F
� 𝟙 ∗ (A(−, |W |) ∗ F)
� 𝟙 ∗ (F |W |)

W ⊛ F � W♯ ∗ F
� imoplax( |W |) ∗ F
� (𝟙 ⊛ A(−, |W |)) ∗ F
� 𝟙 ⊛ (A(−, |W |) ∗ F)
� 𝟙 ⊛ (F |W |)

*noted in, for example, (Street 1976)
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Defn. The saturation Φ∗ of a class of weights Φ contains
all (small) weights W : Aop → Cat such that
Φ-complete/continuous =⇒ W-complete/continuous.

Φ is saturated if Φ = Φ∗.

Examples:
{non-empty finite coprods} ⊆ {binary coprods}∗
{representables} = ∅∗

{all small weights} =
{coproducts, coequalisers,

tensors by 𝟚

}∗
{PIE weights} =

{coproducts, coinserters,
coequifiers

}∗
{Oplax weights} :=

{
W♯’s

}∗
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Consider the following classes of weights:

𝛿 =

{
Δ𝟙♯ | Aop Δ𝟙−−→ Cat, A ∈ 2Cat

}
𝜃 =

{
W♯ | Aop W−→ Cat,A ∈ 2Cat

}
Θ = {♯A-coalgebras | A ∈ 2Cat}

(a) 𝛿 ⊂ 𝜃 ⊂ Θ, so 𝛿∗ ⊂ 𝜃∗ ⊂ Θ∗

(b) Θ ⊆ 𝛿∗, so Θ∗ ⊆ (𝛿∗)∗ = 𝛿∗

(c) 𝛿∗ = 𝜃∗ = Θ∗ = oplax weights
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Thm: The class Θ of ♯-coalgebras is saturated.

Proof idea.

(a) U : ♯-coalgoplax → [Aop, Cat] is f.f. (♯ is oplax idem.)

(b) U creates 𝛿-colimits (Thm. 4.8, Lack 2005)

(c) U is equivalent to ΘA ⊆ [Aop, Cat]

(d) So ΘA is "closed under 𝛿-colimits in [Aop, Cat]"

(e) So Θ = 𝛿∗ = Θ∗
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Thm: The class Θ of ♯-coalgebras is saturated.

Corollary: 𝛿∗ = 𝜃∗ = Θ.

Corollary: 𝛿 and 𝜃 are pre-saturated (i.e. weights in 𝛿∗/𝜃∗
are 𝛿/𝜃∗-colimits of representables).

Corollary: A ↩→ ΘA ≃ ♯-coalgoplax is the free
cocompletion of A under oplax colimits.
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Objectives:

(a) Observe connections to PIE weights

(b) Characterise oplax weights as coalgebras for the
oplax-transformation classifier, ♯

(c) Relate oplax weights to a comprehensive
factorisation system on 2Cat

(d) Discuss saturation properties for related weights

(e) See that ♯-coalgebras with oplax morphisms form
the free oplax colimit completion of a 2-category

(a) Characterise oplax weights by their categories of
elements
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When is a weight W : Aop → Cat oplax?

Recall: A weight W is PIE precisely when el(W0) has
component-terminal objects (i.e. W0 is
multi-representable). Call these objects generic.

Thm. W is oplax if it is PIE and el(W) additionally satisfies:

For any f : y→ x into a generic and a chosen-cartesian
g : y→ z, the hom-category from g to f in the lax coslice
(y ⇓ el(W)) has a single connected component.
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Coinserters

A

B

a b ↦→
[0 u−→ 1]

[0]
10

(A,0) (A, 1)

(B,0)

(1A,u)

(b,u)

(a,10)
(b,11)

⟳

"Span coinserters"

A

B

a b ↦→
[0 u←− 2 v−→ 1]

[0]
10

(A,0) (A, 2) (A, 1)

(B,0)
(a,10)

(1A,u) (1A,v)

(b,11)
⟳ ⟳
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Further results

Subclasses of oplax weights:

conical oplax colimits of oplax (or normal oplax)
functors from 1-categories or groupoids:
presaturated and admits a nice recognition result.
Free cocompletions given by a 2-categorical "Fam"
construction.

coKleisli weights (conical from BΔop+ ): presaturated,
cocompletion given in (Lack and Street 2002).

The class of conical oplax colimits of pseudo or strict
functors from 1-categories is not presaturated.
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Further questions

What are the oplax versions of (semi)-flexible
weights?

Is there a finite class of weights which generates all
oplax weights, as for PIE weights?

Is there a similar characterisation of weights for
pseudo-colimits?
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Thanks!
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