Weights for Oplax Colimits

Jason Brown Topos Institute

Presenting work from my thesis, supervised by **Richard Garner** **Defn.** (Cat-weighted colimit): For a Cat-presheaf $W: \mathcal{A}^{op} \to Cat$ and 2-functor $F: \mathcal{A} \to \mathcal{B}$, the W-weighted (strict) colimit of F is a representation:

$$\mathcal{B}(W * F, -) \cong [\mathcal{A}^{op}, \mathsf{Cat}](W, \mathcal{B}(F, -))$$

Defn. (Oplax colimit): The **W**-weighted oplax colimit of **F** is a representation:

$$\mathcal{B}(W \otimes F, -) \cong \left[\mathcal{A}^{op}, \mathsf{Cat} \right]_{\mathsf{oplax}} (W, \mathcal{B}(F, -))$$

When $W = \Delta 1 : \mathcal{A}^{op} \to Cat$ we say the the (oplax or otherwise) colimit is *conical*.

Coinserter (strict colimit)

Cograph (conical oplax colimit)

$$\begin{bmatrix} O \\ \parallel & \stackrel{\triangle 1}{\longleftrightarrow} & \stackrel{F}{\longleftrightarrow} & \stackrel{X}{u} \downarrow & \stackrel{X}{\longleftrightarrow} & \stackrel{X}{u} \downarrow \downarrow \\ O \end{bmatrix} & \bullet & y & y & \stackrel{X}{\longleftrightarrow} & W \circledast F$$

Cographs (conical oplax colimit)

are also strict colimits

Two questions

For a given weight $W: \mathcal{A}^{op} \to Cat$, when are:

- (a) W-weighted oplax colimits also strict colimits?
- (b) W-weighted strict colimits also oplax colimits?

Two questions

For a given weight $W: \mathcal{A}^{op} \to Cat$, when are:

- (a) W-weighted oplax colimits also strict colimits?
- (b) W-weighted strict colimits also oplax colimits?

Answers

- (a) Always: $W \circledast F \cong W^{\sharp} * F$ where W^{\sharp} is the oplax-transformation classifier for W.
- (b) Sometimes: we will call such **W** "oplax weights".

Oplax weights are presheaves $W: \mathcal{A}^{op} \to \mathsf{Cat}$ such oplax-colimit-complete 2-categories have W-colimits and oplax-cocontinuous 2-functors preserve W-colimits.

Objectives:

- (a) Observe connections to PIE weights
- (b) Characterise oplax weights as coalgebras for the oplax-transformation classifier, #
- (c) Relate oplax weights to a comprehensive factorisation system on **2Cat**
- (d) Discuss saturation properties for related weights
- (e) See that \$\pm\$-coalgebras with oplax transformations form the free oplax colimit completion of a 2-category
- (f) Characterise oplax weights by their categories of elements

There is an adjunction:

$$[\mathcal{A}^{op}, Cat] \xrightarrow{\sharp} [\mathcal{A}^{op}, Cat]_{oplax}$$

We call # the **oplax-transformation classifier**.

There is an adjunction:

$$[\mathcal{A}^{op}, Cat] \xrightarrow{\sharp} [\mathcal{A}^{op}, Cat]_{oplax}$$

We call # the **oplax-transformation classifier**.

For a given $W: \mathcal{A}^{op} \to Cat$:

$$\mathcal{B}(W \circledast F, -) \cong \left[\mathcal{A}^{op}, \mathsf{Cat} \right]_{\mathsf{oplax}} (W, \mathcal{B}(F, -))$$
$$\cong \left[\mathcal{A}^{op}, \mathsf{Cat} \right] \left(W^{\sharp}, \mathcal{B}(F, -) \right) \cong \mathcal{B} \left(W^{\sharp} * F, - \right)$$

So $W \otimes F \cong W^{\sharp} * F$.

Any weight of the form W^{\sharp} is an oplax weight.

Note: there is also an adjunction:

$$[\mathcal{A}^{op}, Cat] \xrightarrow{\downarrow} [\mathcal{A}^{op}, Cat]_{pseudo}$$

We call \(\mathbf{t}\) the **pseudo-transformation classifier** (both as a left adjoint and a comonad.

Weights of the form W^{\natural} , i.e. free \natural -coalgebras are "pseudo-weights".

The class of all \natural -coalgebras is the class of PIE weights.

PIE weights $W: \mathcal{A}^{op} \to Cat$ are equivalently:

- (a) coalgebras for the comonad \sharp on $[\mathcal{A}^{op}, Cat]$
- (b) weights in the *saturation* of weights for coproducts coinserters and coequifiers
- (c) weights such that the category of elements of $W_o: \mathcal{R}_o^{op} \to \mathbf{Set}$ has terminal objects in each connected component.
 - $(b) \Leftrightarrow (c)$: (Power and Robinson 1991)
 - $(b,c) \Leftrightarrow (a)$: (Lack and Shulman 2012)

We will show that **oplax weights** $W: \mathcal{A}^{op} \to \mathbf{Cat}$ are equivalently:

- (a) coalgebras for the comonad \sharp on $[\mathcal{A}^{op}, Cat]$
- (b) weights in the *saturation* of weights for conical oplax colimits
- (c) weights such that the category of elements of $W_o: \mathcal{A}_o^{op} \to \mathbf{Set}$ has terminal objects in each connected component PLUS some other conditions...

Weights $A^{op} \rightarrow Set$ are equivalent to discrete fibrations on A.

Classes of weights can be characterised by the properties of their discrete fibrations (e.g. PIE weights).

We will use an equivalence between **Cat**-weights and *discrete 2-fibrations* to understand oplax weights.

Defn. (2-category of elements, el(W)): for $W: \mathcal{A}^{op} \to Cat$, the 2-category el(W) has:

o-cells: pairs $(a \in \mathcal{A}, x \in Wa)$

1-cells: $(a,x) \rightarrow (b,y)$ are pairs $(u: a \rightarrow b, f: x \rightarrow W_u y)$

2-cells: $(u,f) \Rightarrow (v,g) : (a,x) \rightarrow (b,y)$ are 2-cells $\sigma : u \Rightarrow v$ in \mathcal{A} such that $W_{\sigma}y f = g$:

A 2-functor |W|: $\mathbf{el}(W) \to \mathcal{A}$ is then given by projection onto the first component, e.g. |W|(a,x) = a.

A **discrete 2-fibration** is a split 2-fibration which is a discrete *opfibration* on hom-categories.

There is an equivalence (Lambert 2024):

$$\mathsf{el}: \left[\mathcal{A}^{\mathsf{op}}, \mathsf{Cat}\right] \xrightarrow{\simeq} \mathsf{D2Fib}(\mathcal{A})$$

Note: morphisms in $D2Fib(\mathcal{A})$ are *split-cartesian* functors.

A **discrete 2-fibration** is a split 2-fibration which is a discrete *opfibration* on hom-categories.

There is an equivalence (Lambert 2024):

$$\mathsf{el}: \left[\mathcal{A}^{\mathsf{op}}, \mathsf{Cat}\right] \xrightarrow{\simeq} \mathsf{D2Fib}(\mathcal{A})$$

Note: morphisms in $D2Fib(\mathcal{A})$ are split-cartesian functors.

There is also an equivalence:

$$el: \left[\mathcal{A}^{op}, Cat\right]_{oplax} \xrightarrow{\simeq} 2Cat/_{d2f}(\mathcal{A})$$

The morphism in $2Cat/d2f(\mathcal{A})$ are all maps in $2Cat/\mathcal{A}$.

So $el: [\mathcal{A}^{op}, Cat] \to 2Cat/_{d2f}(\mathcal{A})$ underlies a coKleisli adjunction for \sharp .

el : $[\mathcal{A}^{op}, Cat] \rightarrow 2Cat/\mathcal{A}$ underlies an adjunction for \sharp .

Aside: comparison with the 1-dimensional situation:

$$[A^{op}, Set] \xrightarrow{\bot} Cat/A \qquad [\mathcal{A}^{op}, Cat] \xrightarrow{\bot} 2Cat/\mathcal{A}$$
 trivial comonad
$$\qquad \qquad \text{the comonad } \sharp$$

$$\operatorname{im}(F) = \operatorname{colim}\left(B \xrightarrow{F} A \xrightarrow{\sharp} \left[A^{\operatorname{op}}, \operatorname{Set}\right]\right)$$

$$\operatorname{im}_{\operatorname{oplax}}(F) = \operatorname{colim}_{\operatorname{oplax}}\left(B \xrightarrow{F} \mathcal{A} \xrightarrow{\sharp} \left[\mathcal{A}^{\operatorname{op}}, \operatorname{Cat}\right]\right)$$

We now have **three** adjunctions for the comonad #:

Thm. $R: \sharp\text{-coalg} \to 2\text{Cat}/\mathcal{A}$ is equivalent to the reflective subcategory of 2-functors $\mathcal{B} \to \mathcal{A}$ which are discrete opfibrations on hom-categories (**local discrete opfibrations**).

Aside: orthogonal factorisation systems

Comprehensive FS: covering: discrete opfib.s connected: initial functors (Street and Walters 1973)

A **2Cat** OFS:

covering: *local* discrete opfib.s **connected:** b.o.o locally initial

Classifying #-coalgebras

Thm. A presheaf in $[\mathcal{A}^{op}, Cat]$ admits a \sharp -coalgebra structure precisely if:

- (a) it is the oplax image presheaf of a 2-functor $F:\mathcal{B}\to\mathcal{A}$
- (b) it is the oplax image presheaf of a local discrete opfibration $F:\mathcal{B}\to\mathcal{A}$

All #-coalgebras are oplax weights

All #-coalgebras are oplax weights

If W is a \sharp -coalgebra, $W \cong \operatorname{im}_{\operatorname{oplax}}(G)$ for some $G : \mathcal{B} \to \mathcal{A}$.

All #-coalgebras are oplax weights

If W is a \sharp -coalgebra, $W \cong \operatorname{im}_{\operatorname{oplax}}(G)$ for some $G : \mathcal{B} \to \mathcal{A}$. Then for any $F : \mathcal{B} \to C$:

$$W * F \cong \mathsf{im}_{\mathsf{oplax}}(G) * F$$

$$\cong (1 \circledast \mathcal{A}(-,G)) * F$$

$$\cong 1 \circledast (\mathcal{A}(-,G) * F) \cong 1 \circledast (FG)$$

All #-coalgebras are oplax weights

If W is a \sharp -coalgebra, $W\cong \operatorname{im}_{\operatorname{oplax}}(G)$ for some $G:\mathcal{B}\to\mathcal{A}$.

Then for any $F: \mathcal{B} \to \mathcal{C}$:

$$W * F \cong \mathsf{im}_{\mathsf{oplax}}(G) * F$$

$$\cong (1 \circledast \mathcal{A}(-,G)) * F$$

$$\cong 1 \circledast (\mathcal{A}(-,G) * F) \cong 1 \circledast (FG)$$

Note: this isn't true for \$\pm\$-coalgebras. Not all PIE weights are pseudo weights.

All #-coalgebras are oplax weights

If W is a \sharp -coalgebra, $W \cong \operatorname{im}_{\operatorname{oplax}}(G)$ for some $G : \mathcal{B} \to \mathcal{A}$.

Then for any $F: \mathcal{B} \to C$:

$$W * F \cong \mathsf{im}_{\mathsf{oplax}}(G) * F$$
$$\cong (1 \circledast \mathcal{A}(-,G)) * F$$
$$\cong 1 \circledast (\mathcal{A}(-,G) * F) \cong 1 \circledast (FG)$$

Note: this isn't true for \(\psi\)-coalgebras. Not all PIE weights are pseudo weights.

If we can show #-coalgebras are *saturated*, then *all* oplax weights are #-coalgebras.

Aside: all oplax colimits are conical

$$W * F \cong \operatorname{im}(|W|) * F$$

$$\cong (1 * A(-, |W|)) * F$$

$$\cong 1 * (A(-, |W|) * F)$$

$$\cong 1 * (F |W|)$$

Aside: all oplax colimits are conical

$$[A^{op}, Set] \xrightarrow{\bot} Cat/A \qquad [\mathcal{R}^{op}, Cat] \xrightarrow{\bot} 2Cat/\mathcal{R}$$

$$trivial \ comonad \qquad the \ comonad \ \sharp$$

$$W * F \cong im(|W|) * F$$

$$\cong (1 * A(-, |W|)) * F$$

$$\cong im_{oplax}(|W|) * F$$

$$\cong im_{oplax}(|W|) * F$$

 $\cong \mathbb{1} * (A(-,|W|) * F)$

 $\cong 1 * (F|W|)$

 $\cong (1 \circledast \mathcal{A}(-,|W|)) * F$

 $\cong \mathbb{1} \circledast (\mathcal{A}(-,|W|) * F)$

 $\cong 1 \otimes (F|W|)$

Defn. The saturation Φ^* of a class of weights Φ contains all (small) weights $W: \mathcal{A}^{op} \to \mathsf{Cat}$ such that Φ -complete/continuous $\Longrightarrow W$ -complete/continuous.

 Φ is saturated if $\Phi = \Phi^*$.

Defn. The saturation Φ^* of a class of weights Φ contains all (small) weights $W: \mathcal{A}^{op} \to \mathsf{Cat}$ such that Φ -complete/continuous $\Longrightarrow W$ -complete/continuous.

 Φ is saturated if $\Phi = \Phi^*$.

Examples:

Defn. The saturation Φ^* of a class of weights Φ contains all (small) weights $W: \mathcal{A}^{op} \to \mathsf{Cat}$ such that Φ -complete/continuous $\Longrightarrow W$ -complete/continuous.

 Φ is saturated if $\Phi = \Phi^*$.

Examples:

Consider the following classes of weights:

$$\delta = \left\{ \Delta \mathbb{1}^{\sharp} \mid \mathcal{A}^{\mathsf{op}} \xrightarrow{\Delta \mathbb{1}} \mathsf{Cat}, \, \mathcal{A} \in \mathsf{2Cat} \right\}$$

$$\theta = \left\{ W^{\sharp} \mid \mathcal{A}^{\mathsf{op}} \xrightarrow{W} \mathsf{Cat}, \, \mathcal{A} \in \mathsf{2Cat} \right\}$$

$$\Theta = \left\{ \sharp_{\mathcal{A}} \text{-coalgebras} \mid \mathcal{A} \in \mathsf{2Cat} \right\}$$

Consider the following classes of weights:

$$\delta = \left\{ \Delta \mathbb{1}^{\sharp} \mid \mathcal{A}^{\mathsf{op}} \xrightarrow{\Delta \mathbb{1}} \mathsf{Cat}, \, \mathcal{A} \in \mathsf{2Cat} \right\}$$

$$\theta = \left\{ W^{\sharp} \mid \mathcal{A}^{\mathsf{op}} \xrightarrow{W} \mathsf{Cat}, \, \mathcal{A} \in \mathsf{2Cat} \right\}$$

$$\Theta = \left\{ \sharp_{\mathcal{A}} \text{-coalgebras} \mid \mathcal{A} \in \mathsf{2Cat} \right\}$$

(a)
$$\delta \subset \theta \subset \Theta$$
, so $\delta^* \subset \theta^* \subset \Theta^*$

(b)
$$\Theta \subseteq \delta^*$$
, so $\Theta^* \subseteq (\delta^*)^* = \delta^*$

Consider the following classes of weights:

$$\delta = \left\{ \Delta \mathbb{1}^{\sharp} \mid \mathcal{A}^{\mathsf{op}} \xrightarrow{\Delta \mathbb{1}} \mathsf{Cat}, \, \mathcal{A} \in \mathsf{2Cat} \right\}$$

$$\theta = \left\{ W^{\sharp} \mid \mathcal{A}^{\mathsf{op}} \xrightarrow{W} \mathsf{Cat}, \, \mathcal{A} \in \mathsf{2Cat} \right\}$$

$$\Theta = \left\{ \sharp_{\mathcal{A}} \text{-coalgebras} \mid \mathcal{A} \in \mathsf{2Cat} \right\}$$

(a)
$$\delta \subset \theta \subset \Theta$$
, so $\delta^* \subset \theta^* \subset \Theta^*$

(b)
$$\Theta \subseteq \delta^*$$
, so $\Theta^* \subseteq (\delta^*)^* = \delta^*$

(c)
$$\delta^* = \theta^* = \Theta^* = \text{oplax weights}$$

Thm: The class Θ of \sharp -coalgebras is saturated. *Proof idea.*

- (a) $U: \sharp \text{-coalg}_{\text{oplax}} \to [\mathcal{A}^{\text{op}}, \text{Cat}] \text{ is f.f. } (\sharp \text{ is oplax idem.})$
- (b) **U** creates δ -colimits (Thm. 4.8, Lack 2005)
- (c) U is equivalent to $\Theta_{\mathcal{A}} \subseteq [\mathcal{A}^{op}, Cat]$
- (d) So $\Theta_{\mathcal{A}}$ is "closed under δ -colimits in $[\mathcal{A}^{op}, \mathsf{Cat}]$ "
- (e) So $\Theta = \delta^* = \Theta^*$

Thm: The class Θ of \sharp -coalgebras is saturated.

Corollary: $\delta^* = \theta^* = \Theta$.

Corollary: δ and θ are *pre-saturated* (i.e. weights in δ^*/θ^* are δ/θ^* -colimits of representables).

Corollary: $\mathcal{A} \hookrightarrow \Theta_{\mathcal{A}} \simeq \sharp\text{-coalg}_{\text{oplax}}$ is the free cocompletion of \mathcal{A} under oplax colimits.

Objectives:

- (a) Observe connections to PIE weights
- (b) Characterise oplax weights as coalgebras for the oplax-transformation classifier, #
- (c) Relate oplax weights to a comprehensive factorisation system on **2Cat**
- (d) Discuss saturation properties for related weights
- (e) See that #-coalgebras with oplax morphisms form the free oplax colimit completion of a 2-category
- (a) Characterise oplax weights by their categories of elements

When is a weight $W: \mathcal{A}^{op} \to Cat$ oplax?

Recall: A weight W is *PIE* precisely when $el(W_0)$ has component-terminal objects (i.e. W_0 is multi-representable). Call these objects **generic**.

When is a weight $W : \mathcal{A}^{op} \to Cat$ oplax?

Recall: A weight W is *PIE* precisely when $el(W_o)$ has component-terminal objects (i.e. W_o is multi-representable). Call these objects **generic**.

Thm. W is oplax if it is PIE and el(W) additionally satisfies:

For any $f: y \to x$ into a generic and a chosen-cartesian $g: y \to z$, the hom-category from g to f in the lax coslice $(y \Downarrow el(W))$ has a single connected component.

Coinserters

$$\begin{array}{ccc}
A & & [O \xrightarrow{u} 1] \\
a \downarrow & \downarrow^b & \mapsto & o \uparrow & \uparrow 1 \\
B & & [O]
\end{array}$$

"Span coinserters"

$$\begin{array}{ccc}
A & & [O \stackrel{u}{\leftarrow} 2 \stackrel{v}{\rightarrow} 1] \\
\stackrel{a}{\swarrow} \stackrel{b}{\searrow} & \mapsto & O \stackrel{v}{\nwarrow} \stackrel{v}{\nearrow} 1 \\
B & [O]
\end{array}$$

$$(A, O) \xleftarrow{(1_A, U)} (A, 2) \xrightarrow{(1_A, V)} (A, 1)$$

$$(a, 1_0) \xrightarrow{(B, O)} (b, 1_1)$$

Further results

Subclasses of oplax weights:

conical oplax colimits of *oplax* (or *normal oplax*) functors from 1-categories or groupoids: presaturated and admits a nice recognition result. Free cocompletions given by a 2-categorical "Fam" construction.

coKleisli weights (conical from $\mathbb{B}\Delta_+^{op}$): presaturated, cocompletion given in (Lack and Street 2002).

The class of conical oplax colimits of pseudo or strict functors from 1-categories is *not* presaturated.

Further questions

What are the oplax versions of (semi)-flexible weights?

Is there a finite class of weights which generates all oplax weights, as for PIE weights?

Is there a similar characterisation of weights for *pseudo-*colimits?

Thanks!

References

- Lack, Stephen (2005). "Limits for lax morphisms". In: Appl. Categ. Structures 13.3, pp. 189–203. ISSN: 0927-2852. DOI: 10.1007/s10485-005-2958-5. URL: https://doi.org/10.1007/s10485-005-2958-5.
- Lack, Stephen and Michael Shulman (2012). "Enhanced 2-categories and limits for lax morphisms". In: Adv. Math. 229.1, pp. 294–356. ISSN: 0001-8708. DOI: 10.1016/j.aim.2011.08.014. URL: https://doi.org/10.1016/j.aim.2011.08.014.
- Lack, Stephen and Ross Street (2002). "The formal theory of monads. II". In: vol. 175. 1-3. Special volume celebrating the 70th birthday of Professor Max Kelly, pp. 243–265. DOI: 10.1016/S0022-4049(02)00137-8. URL: https://doi.org/10.1016/S0022-4049(02)00137-8.
 - Lambert, Michael (2024). "Discrete 2-fibrations". In: High. Struct. 8.1, pp. 54–96.
- Power, John and Edmund Robinson (1991). "A characterization of pie limits". In: Math. Proc. Cambridge Philos. Soc. 110.1, pp. 33–47. ISSN: 0305-0041. DOI: 10.1017/S0305004100070092. URL:
 - https://doi.org/10.1017/S0305004100070092.
- Street, Ross (1976). "Limits indexed by category-valued 2-functors". In: J. Pure Appl. Algebra 8.2, pp. 149–181. ISSN: OO22-4049. DOI: 10.1016/0022-4049(76)90013-X. URL: https://doi.org/10.1016/0022-4049(76)90013-X.
- Street, Ross and R. F. C. Walters (1973). "The comprehensive factorization of a functor". In: Bull. Amer. Math. Soc. 79, pp. 936–941. ISSN: 0002-9904. DOI: 10.1090/S0002-9904-1973-13268-9. URL: https://doi.org/10.1090/S0002-9904-1973-13268-9.