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Torsion theories in abelian categories [Dickson]

Definition: Let C be an abelian category.
A pair (T,F) of full replete subcategories of C is a torsion theory if

Hom(T ,F ) = 0 for all T ∈ T, F ∈ F;

for every X ∈ C there exists a short exact sequence

0 → TX → X → FX → 0 with T ∈ T,F ∈ F.

Example:
(T,F) in the category Ab of abelian groups, where

• T = torsion groups; • F = torsionfree groups

0 // t(G) // G // G/t(G) // 0 s.e.s

with t(G) = torsion subgroup of G .
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Torsion theories in pointed categories [Many authors in several contexts]

Definition: Let C be any pointed category.
A pair (T,F) of full replete subcategories of C is a torsion theory if
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for every X ∈ C there exists a short exact sequence

0 → TX → X → FX → 0 with T ∈ T,F ∈ F.

Example:
(T,F) in the category Ab of abelian groups, where

• T = torsion groups; • F = torsionfree groups

0 // t(G) // G // G/t(G) // 0 s.e.s

with t(G) = torsion subgroup of G .

Federico Campanini Pretorsion Theories CT2025, Brno - 14th July 2025 1 / 8



Pretorsion theories in general categories [Facchini, Finocchiaro, Gran]

Definition: Let C be any pointed category.
A pair (T,F) of full replete subcategories of C is a torsion theory if

Hom(T ,F ) = 0 for all T ∈ T, F ∈ F;

for every X ∈ C there exists a short exact sequence

0 → TX → X → FX → 0 with T ∈ T,F ∈ F.

Definition: Let C be any category.
A pair (T,F) of full replete subcategories of C is a pretorsion theory if

Hom(T ,F ) = Triv(T ,F ) for all T ∈ T, F ∈ F;

for every X ∈ C there exists a short Z-exact sequence

TX → X → FX with T ∈ T,F ∈ F.
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Comparable torsion theories [ —, Fedele ]:

Let C be a pointed category and consider two torsion theories (T1,F1) and (T2,F2) in it.

The following conditions are equivalent:

(i) T2 ⊆ T1 (F1 ⊆ F2)

(ii) (T1,F2) is a pretorsion theory.

Moreover, if these conditions hold, then the Z-short exact sequence of an object X ∈ C is given by

T1X // X // F2X

Notice: no hypothesis are required for C or the torsion theories.
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Lattices of pretorsion classes

Some remarks:

If T is a torsion class, then F is uniquely determined

F = T
⊥ := {X ∈ C | hom(T ,X ) = 0 for all T ∈ T}

The same is not true for pretorsion classes. A class T can be the torsion part of infinitely many pretorsion
theories.

Pretorsion classes in C are precisely the monocoreflective subcategories of C.
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A nice setting: C = modkQ

modkQ is the category of finitely generated (right) modules over a path algebra kQ.

Fact:

Any finite dimensional associative k-algebra is Morita equivalent to the path algebra of some bound quiver.

Why is modkQ nice?

modkQ is a Krull-Schmidt Noetherian abelian category.

T ⊆ C is a pretorsion class if and only if T is closed under quotients and finite direct-sums.

All the important information can be encoded into its Aulander-Reiten quiver.

Torsion and pretorsion classes are quite easy to detect.
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Example

Example: Q = A2 : 1 → 2

1
2
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2
@@

@@

1 ,

Let me try to draw a picture...
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Classification of distributive lattices for finite representation type (here Q = An,Dn,E6,E7,E8)

The poset of pretorsion classes is a complete lattice, with meet and join given, for every T1 and T2, by

T1 ∧ T2 = T1 ∩ T2 and T1 ∨ T2 = ⟨T1 ∪ T2⟩t .

Result 1 [ — , Fedele, Yıldırım ]

The lattice of pretorsion classes is distributive if and only if add{T1 ∪ T2} = ⟨T1 ∪ T2⟩t for every pair of pretorsion
classes T1 and T2 in modkQ.

Result 2 [ — , Fedele, Yıldırım ]

The lattice of pretorsion classes is distributive if and only if Q does not contain subquivers of the form

◦ ◦

◦ // ◦ ◦oo ◦ ◦oo

ff

xx

◦

ff

xx

◦oo

◦ ◦
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Classification of distributive lattices for finite representation type (here Q = An,Dn,E6,E7,E8)

Result 3 [ — , Fedele, Yıldırım ]

There is a bijection between the isomorphism classes of indecomposable modules and the join-irreducible
elements of the lattice of pretorsion classes, given by M 7→ ⟨M⟩t . Moreover, the join-irreducible elements are
torsion classes.

Result 4 [ — , Fedele, Yıldırım ]

If the lattice of pretorsion classes is distributive, than it is the distributive completion of the lattice of torsion
classes.
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Thank you
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