Building pretorsion theories from torsion theories

Federico Campanini

joint work in progress with Francesca Fedele and Emine Yıldırım

Building (some) pretorsion theories from torsion theories and lattices of pretorsion classes

Federico Campanini

joint work in progress with Francesca Fedele and Emine Yıldırım

Definition: Let \mathbb{C} be an abelian category.

A pair $(\mathfrak{T},\mathfrak{F})$ of full replete subcategories of \mathbb{C} is a torsion theory if

- Hom(T, F) = 0 for all $T \in \mathcal{T}, F \in \mathcal{F}$;
- for every $X \in \mathbb{C}$ there exists a short exact sequence

$$0 \to T_X \to X \to F_X \to 0$$
 with $T \in \mathfrak{T}, F \in \mathfrak{F}$.

Definition: Let \mathbb{C} be an abelian category.

A pair $(\mathfrak{T},\mathfrak{F})$ of full replete subcategories of \mathbb{C} is a torsion theory if

- Hom(T, F) = 0 for all $T \in \mathcal{T}, F \in \mathcal{F}$:
- for every $X \in \mathbb{C}$ there exists a short exact sequence

$$0 \to T_X \to X \to F_X \to 0$$
 with $T \in \mathfrak{T}, F \in \mathfrak{F}$.

Example:

 $(\mathfrak{I},\mathfrak{F})$ in the category Ab of abelian groups, where

- $\mathfrak{I} = \text{torsion groups}$; $\mathfrak{F} = \text{torsionfree groups}$

$$0 \longrightarrow t(G) \longrightarrow G \longrightarrow G/t(G) \longrightarrow 0$$

s.e.s

with t(G) =torsion subgroup of G.

Definition: Let \mathbb{C} be any pointed category.

A pair $(\mathfrak{T},\mathfrak{F})$ of full replete subcategories of \mathbb{C} is a torsion theory if

- Hom(T, F) = 0 for all $T \in \mathcal{T}, F \in \mathcal{F}$:
- for every $X \in \mathbb{C}$ there exists a short exact sequence

$$0 \to T_X \to X \to F_X \to 0$$
 with $T \in \mathfrak{T}, F \in \mathfrak{F}$.

Example:

 $(\mathfrak{I},\mathfrak{F})$ in the category Ab of abelian groups, where

- \Im = torsion groups: \Im = torsionfree groups

$$0 \longrightarrow t(G) \longrightarrow G \longrightarrow G/t(G) \longrightarrow 0$$

s.e.s

with t(G) =torsion subgroup of G.

Definition: Let \mathbb{C} be any pointed category.

A pair $(\mathfrak{T},\mathfrak{F})$ of full replete subcategories of \mathbb{C} is a torsion theory if

- Hom(T, F) = 0 for all $T \in \mathcal{T}, F \in \mathcal{F}$:
- for every $X \in \mathbb{C}$ there exists a short exact sequence

$$0 \to T_X \to X \to F_X \to 0$$
 with $T \in \mathfrak{T}, F \in \mathfrak{F}$.

Definition: Let \mathbb{C} be any category.

A pair $(\mathfrak{I}, \mathfrak{F})$ of full replete subcategories of \mathbb{C} is a pretorsion theory if

- Hom(T, F) = Triv(T, F) for all $T \in \mathcal{T}, F \in \mathcal{F}$:
- for every $X \in \mathbb{C}$ there exists a short \mathcal{Z} -exact sequence

$$T_X \to X \to F_X$$
 with $T \in \mathfrak{T}, F \in \mathfrak{F}$.

Comparable torsion theories [—, Fedele]:

Let $\mathbb C$ be a pointed category and consider two torsion theories $(\mathfrak T_1,\mathfrak F_1)$ and $(\mathfrak T_2,\mathfrak F_2)$ in it.

The following conditions are equivalent:

- (i) $\mathfrak{T}_2 \subseteq \mathfrak{T}_1$ ($\mathfrak{F}_1 \subseteq \mathfrak{F}_2$)
- (ii) $(\mathfrak{I}_1, \mathfrak{F}_2)$ is a pretorsion theory.

Moreover, if these conditions hold, then the \mathbb{Z} -short exact sequence of an object $X\in\mathbb{C}$ is given by

$$T_1X \longrightarrow X \longrightarrow F_2X$$

Notice: no hypothesis are required for \mathbb{C} or the torsion theories.

Lattices of pretorsion classes

Some remarks:

• If \mathfrak{T} is a torsion class, then \mathfrak{F} is uniquely determined

$$\mathfrak{F}=\mathfrak{T}^{\perp}:=\{X\in\mathbb{C}\mid\mathsf{hom}(T,X)=0\;\mathsf{for\;all}\;T\in\mathfrak{T}\}$$

Lattices of pretorsion classes

Some remarks:

ullet If ${\mathfrak T}$ is a torsion class, then ${\mathfrak F}$ is uniquely determined

$$\mathfrak{F}=\mathfrak{T}^{\perp}:=\{X\in\mathbb{C}\mid \mathsf{hom}(T,X)=0 \;\mathsf{for\; all}\; T\in\mathfrak{T}\}$$

• The same is not true for pretorsion classes. A class T can be the torsion part of infinitely many pretorsion theories.

Lattices of pretorsion classes

Some remarks:

• If T is a torsion class, then F is uniquely determined

$$\mathfrak{F} = \mathfrak{T}^{\perp} := \{ X \in \mathbb{C} \mid \mathsf{hom}(T, X) = 0 \text{ for all } T \in \mathfrak{T} \}$$

- The same is not true for pretorsion classes. A class T can be the torsion part of infinitely many pretorsion theories.
- Pretorsion classes in $\mathbb C$ are precisely the monocoreflective subcategories of $\mathbb C$.

modkQ is the category of finitely generated (right) modules over a path algebra kQ.

modkQ is the category of finitely generated (right) modules over a path algebra kQ.

Fact:

Any finite dimensional associative k-algebra is Morita equivalent to the path algebra of some bound quiver.

modkQ is the category of finitely generated (right) modules over a path algebra kQ.

Fact:

Any finite dimensional associative k-algebra is Morita equivalent to the path algebra of some bound quiver.

modkQ is the category of finitely generated (right) modules over a path algebra kQ.

Fact:

Any finite dimensional associative *k*-algebra is Morita equivalent to the path algebra of some bound quiver.

Why is mod kQ nice?

modkQ is a Krull-Schmidt Noetherian abelian category.

modkQ is the category of finitely generated (right) modules over a path algebra kQ.

Fact:

Any finite dimensional associative k-algebra is Morita equivalent to the path algebra of some bound quiver.

- · modkQ is a Krull-Schmidt Noetherian abelian category.
- $T \subset \mathbb{C}$ is a pretorsion class if and only if T is closed under quotients and finite direct-sums.

mod kQ is the category of finitely generated (right) modules over a path algebra kQ.

Fact:

Any finite dimensional associative k-algebra is Morita equivalent to the path algebra of some bound quiver.

- modkQ is a Krull-Schmidt Noetherian abelian category.
- $\mathfrak{T}\subseteq\mathbb{C}$ is a pretorsion class if and only if \mathfrak{T} is closed under quotients and finite direct-sums.
- All the important information can be encoded into its Aulander-Reiten guiver.

modkQ is the category of finitely generated (right) modules over a path algebra kQ.

Fact:

Any finite dimensional associative k-algebra is Morita equivalent to the path algebra of some bound quiver.

- modkQ is a Krull-Schmidt Noetherian abelian category.
- $\mathfrak{T} \subseteq \mathbb{C}$ is a pretorsion class if and only if \mathfrak{T} is closed under quotients and finite direct-sums.
- All the important information can be encoded into its Aulander-Reiten guiver.
- Torsion and pretorsion classes are quite easy to detect.

Example: $Q = \mathbb{A}_2 : 1 \to 2$

Let me try to draw a picture...

The poset of pretorsion classes is a complete lattice, with meet and join given, for every \mathfrak{T}_1 and \mathfrak{T}_2 , by

$$\mathfrak{T}_1 \wedge \mathfrak{T}_2 = \mathfrak{T}_1 \cap \mathfrak{T}_2$$
 and $\mathfrak{T}_1 \vee \mathfrak{T}_2 = \langle \mathfrak{T}_1 \cup \mathfrak{T}_2 \rangle_t$.

The poset of pretorsion classes is a complete lattice, with meet and join given, for every \mathfrak{T}_1 and \mathfrak{T}_2 , by

$$\mathfrak{T}_1 \wedge \mathfrak{T}_2 = \mathfrak{T}_1 \cap \mathfrak{T}_2$$
 and $\mathfrak{T}_1 \vee \mathfrak{T}_2 = \langle \mathfrak{T}_1 \cup \mathfrak{T}_2 \rangle_t$.

Result 1 [— , Fedele, Yıldırım]

The lattice of pretorsion classes is distributive if and only if $\operatorname{add}\{\mathfrak{T}_1\cup\mathfrak{T}_2\}=\langle\mathfrak{T}_1\cup\mathfrak{T}_2\rangle_t$ for every pair of pretorsion classes \mathfrak{T}_1 and \mathfrak{T}_2 in $\operatorname{mod} kQ$.

Federico Campanini Pretorsion Theories CT2025, Brno - 14th July 2025

The poset of pretorsion classes is a complete lattice, with meet and join given, for every \mathcal{T}_1 and \mathcal{T}_2 , by

$$\mathfrak{I}_1 \wedge \mathfrak{I}_2 = \mathfrak{I}_1 \cap \mathfrak{I}_2$$
 and $\mathfrak{I}_1 \vee \mathfrak{I}_2 = \langle \mathfrak{I}_1 \cup \mathfrak{I}_2 \rangle_t$.

Result 1 [— , Fedele, Yıldırım]

The lattice of pretorsion classes is distributive if and only if $\operatorname{add}\{\mathfrak{T}_1\cup\mathfrak{T}_2\}=\langle\mathfrak{T}_1\cup\mathfrak{T}_2\rangle_t$ for every pair of pretorsion classes \mathfrak{T}_1 and \mathfrak{T}_2 in $\operatorname{mod} kQ$.

Result 2 [— , Fedele, Y<u>ıldırım]</u>

The lattice of pretorsion classes is distributive if and only if Q does not contain subquivers of the form



Federico Campanini Pretorsion Theories CT2025, Brno - 14th July 2025

Result 3 [— , Fedele, Yıldırım]

There is a bijection between the isomorphism classes of indecomposable modules and the join-irreducible elements of the lattice of pretorsion classes, given by $M \mapsto \langle M \rangle_t$. Moreover, the join-irreducible elements are torsion classes.

Result 3 [— , Fedele, Yıldırım]

There is a bijection between the isomorphism classes of indecomposable modules and the join-irreducible elements of the lattice of pretorsion classes, given by $M \mapsto \langle M \rangle_t$. Moreover, the join-irreducible elements are torsion classes.

Result 4 [— , Fedele, Yıldırım]

If the lattice of pretorsion classes is distributive, than it is the distributive completion of the lattice of torsion classes.

Thank you