July 17th, 2025 CT2025, Brno (CZ)

2-classifiers for 2-algebras

in 7 minutes

Matteo Capucci David Jaz Myers
University of Strathclyde / ARIA Creator Topos Research UK


https://matteocapucci.wordpress.com

What is Set?



What is Set?

In Cat, it can be characterized internally as the discrete opfibration 2-classifier:



What is Set?

In Cat, it can be characterized internally as the discrete opfibration 2-classifier:

E > 1 E—— 1/Set —— 1
pl / J{l pl ’ ui / ll
B -—-—--> Set B ——— Set Set

lp P



What is Set?

In Cat, it can be characterized internally as the discrete opfibration 2-classifier:

E——1 E——1/Set — 1

pl / J{l pl ’ ui / ll

B - s Set B ——— Set Set
Ell P

What happens when we equip categories with structure? Is Set still the 2-classifier?
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Cartesian maps of T-algebras

Definition
Let £ : A — B be a strict T-morphism. We call T-cartesianity defect of f the canonical comparison

map induced by the pullback below:
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We say f is T-cartesian when its defect is invertible.
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Cartesian objects of T-algebras

Definition
Let b: 1 — B be a colax T-morphism®. We call T-cartesianity defect of f at b the canonical

comparison map induced by the pullback below:

T(b/B) T(b/B)

Y TB 8o 2 t(B(b,a1), ..., B(b,an)) — B(b, t(a1, ..., an))
L b

b/B —5— B

We say (B, 3) is T-cartesian at b when its defect at b is invertible.
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Bonus fact: functors p : E — B = strict (tightly) discrete opfibrations p : (E — (B

~ Bénabou construction: Cat/B = DblCat(¢B, Set)
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Enhanced 2-categories

Definition
An enhanced 2-category, or .7-category, is a 2-category K =: K; whose 1-cells are called loose (~)
and a wide and locally full subcategory K¢ < K;. whose 1-cells are called tight (—).

Definition
Enhanced 2-functors are 2-functors that preserve tightness, while enhanced 2-natural

transformations, or tight natural transformations, are 2-natural transformations whose components

are all tight.

Definition (Enhanced 2-monad)
An enhanced 2-monad is an .%-monad, thus a 2-monad (T, i, m) such that T preserves tightness and

where i and m have tight components.
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Enhanced 2-category of T-algebras and lax morphisms

Definition
The enhanced 2-category of T-algebras and lax T-morphism Alg,(T) for an enhanced 2-monad T

on the enhanced 2-category C is the enhanced 2-category so comprised:

1. its objects are strict T-algebras whose structure map is tight in C,

2. its loose maps are lax T-morphisms,
TA s TB
| AL
A Baeraacs B

3. its tight maps are strict T-morphisms whose underlying map is tight in /C,
TA " TB
1L
A — B

4. its 2-morphisms are T-2-morphisms.

"



TDOs

Definition ((Tight) discrete opfibration)
A (tight) discrete opfibration in a(n enhanced) 2-category K is a (tight) map p: E — B that admits

unique (opcartesian) lifts:

X ~nSonns E Sy
TSE
B

p =



Representable TDOs

Definition (Representable discrete opfibration)

A discrete opfibration is representable if it is equivalent to the projection out of a comma object
dashed below:

b/B —— X
a1 / éb
¥

B B

We say b/B 2 Bis represented by the object b : X — B. When X =1, we say it is globally
representable. When b = idg, we get the domain opfibration associated to B.
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TDOs classifier
This is an ‘enhanced’ and refined version of a definition from (Weber 2007) and (Mesiti 2024):

Definition (Enhanced 2-classifier)

An enhanced 2-classifier in an enhanced 2-category K with tight terminal object 1 and (left-tight)
commas is a tight map
T:1-5Q

such that the functor 7/— induced by taking comma objects is amnestic, and fully faithful, and

equipped with the structure of an adjoint equivalence:
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TDOs classifier

This is an ‘enhanced’ and refined version of a definition from (Weber 2007) and (Mesiti 2024):

Definition (Enhanced 2-classifier)

An enhanced 2-classifier in an enhanced 2-category K with tight terminal object 1 and (left-tight)
commas is a tight map
7:1-Q

such that the functor [— induced by taking comma objects is amnestic, and fully faithful, and

equipped with the structure of an adjoint equivalence:

=~ tdos(B) 7777«17(777)777} K(B,Q) = Am/nestic / Adjoint equivalence
_ [f=[f=Ff=f, d([f)=f, [dp=p.
f=

A map f: B — Q is a formal copresheaf and [f its category of elements, while dp : B — Q is the
copresheaf of fibers of a tdos p: E — B.
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Generic discrete opfibration

The discrete opfibration classified by the identity or, equivalently, represented by 7, is called the

generic discrete opfibration:
7/Q

1

N
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The setting of plumbuses

Definition (Plumbus)

A plumbus is an enhanced 2-category K admitting the following enhanced 2-limits:
1. all left-tight pullbacks of tight discrete opfibrations,
2. all left-tight commas,

3. a tight terminal object.

Let (T,i, m) be an enhanced 2-monad on K.

Proposition

Let p: (E,n) — (B, B) be a strict T-morphism. Then if p is a tight discrete opfibration in Alg,(T),
then so it is in K.

Proposition

When K is a plumbus, the 2-category Alg,(T) is a plumbus too.

\: 16



Opfibrantly cartesian 2-monads

An enhanced 2-monad ‘cartesian enough’ to lift a 2-classifier.

Definition (Opfibrantly cartesian enhanced 2-monad)

An enhanced 2-monad (T, i, m) is opfibrantly cartesian when
1. T preserves pullbacks of tight discrete opfibrations,
2. T preserves tight discrete opfibrations,

3. i and m are cartesian at all tight discrete opfibrations.
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An enhanced 2-monad ‘cartesian enough’ to lift a 2-classifier.

Definition (Opfibrantly cartesian enhanced 2-monad)

An enhanced 2-monad (T, i, m) is opfibrantly cartesian when
1. T preserves pullbacks of the generic discrete opfibration u,
2. Tu is a (tight) discrete opfibration,

3. i and m are cartesian at the generic discrete opfibration u.
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Lemma

(Q,w) is a strict T-algebra, T: 1 — Q is a colax T-morphism, and (Q,w) is cartesian at T.



Opfibrantly cartesian 2-monads

An enhanced 2-monad ‘cartesian enough’ to lift a 2-classifier.

Definition
An enhanced 2-monad (T, i, m) is opfibrantly cartesian if and only if:
1. T preserves pullbacks of the generic discrete opfibration,

2. Q is equipped with a T-algebra w which is cartesian at 7.
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The theorem

Theorem (C., Myers)

Let T be an opfibrantly cartesian 2-monad on a plumbus K such that T : 1 — (Q,w) s a strict
T-morphism. Then its enhanced 2-category of T-algebras and lax morphisms admits T as enhanced
2-classifier.

Corollary

Let p: E — B be a tight discrete opfibration in Alg,(T). Its classifying map dp : B — Q is strong if
and only if p is T-cartesian. In particular, the representable copresheaf B(b, —) : B — Q associated to
a representable discrete opfibration b/B 2 Bis always a lax T-morphism, and it is strong precisely
when B is T-cartesian at b.

(18
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