July 17th, 2025 CT2025, Brno (CZ)

2-classifiers for 2-algebras

in 7 minutes

Matteo Capucci

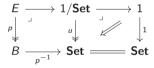
University of Strathclyde / ARIA Creator

David Jaz Myers

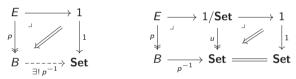
Topos Research UK

In Cat, it can be characterized internally as the discrete opfibration 2-classifier:

In Cat, it can be characterized internally as the discrete opfibration 2-classifier:

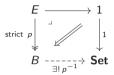


In Cat, it can be characterized internally as the discrete opfibration 2-classifier:

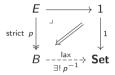


What happens when we equip categories with structure? Is **Set** still the 2-classifier?

e.g. consider monoidal categories, and let's try to classify strict monoidal discrete opfibrations:

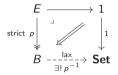


e.g. consider monoidal categories, and let's try to classify strict monoidal discrete opfibrations:



What is the monoidal structure on **Set**? What about the laxator of p^{-1} ?

e.g. consider monoidal categories, and let's try to classify strict monoidal discrete opfibrations:

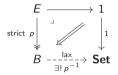


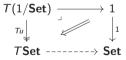
What is the monoidal structure on **Set**? What about the laxator of p^{-1} ?

Let T= free symmetric monoidal category 2-monad, consider

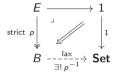
$$T\textbf{Set} \, -\text{----} \, \textbf{Set}$$

e.g. consider monoidal categories, and let's try to classify strict monoidal discrete opfibrations:





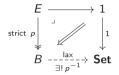
e.g. consider monoidal categories, and let's try to classify strict monoidal discrete opfibrations:



$$T(1/\mathsf{Set}) \stackrel{1}{\longrightarrow} 1 \ \downarrow_1 \ T\mathsf{Set} \stackrel{1}{\longrightarrow} \mathsf{Set}$$

$$(X_i)_{i\leq n}$$

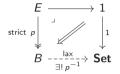
e.g. consider monoidal categories, and let's try to classify strict monoidal discrete opfibrations:



$$\{(x_i)_{i \leq n} \mid \forall i. x_i \in X_i\}$$
 $T(1/\mathbf{Set}) \xrightarrow{Tu} \downarrow 1$

$$\downarrow 1$$
 $T\mathbf{Set} \xrightarrow{T\mathbf{Set}} \mathbf{Set}$
 $(X_i)_{i \leq n}$

e.g. consider monoidal categories, and let's try to classify strict monoidal discrete opfibrations:



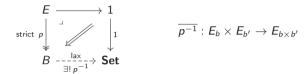
$$\prod_{i \leq n} X_i \qquad T(1/\mathbf{Set}) \xrightarrow{J} \qquad 1$$

$$\downarrow \qquad \qquad \downarrow \downarrow 1$$

$$\mathsf{TSet} \qquad \mathsf{Set}$$

$$(X_i)_{i \leq n}$$

e.g. consider monoidal categories, and let's try to classify strict monoidal discrete opfibrations:



$$T(1/\operatorname{Set}) \xrightarrow{Tu} 1$$
 $T \operatorname{Set} \xrightarrow{Tu} 1$
 $T \operatorname{Set} \xrightarrow{Tu} S \operatorname{Set} 1$

$$(X_i)_{i \leq n} \quad \longmapsto \quad \prod_{i \leq n} X_i$$

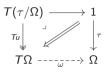
Theorem

If T is a nice enough 2-monad on a nice enough 2-category $\mathbb K$ with 2-classifier $1 \xrightarrow{\tau} \Omega$, then

Theorem

If T is a nice enough 2-monad on a nice enough 2-category \mathbb{K} with 2-classifier $1 \xrightarrow{\tau} \Omega$, then

ullet Ω is a strict T-algebra, via the map classifying Tu:



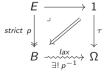
Theorem

If T is a nice enough 2-monad on a nice enough 2-category \mathbb{K} with 2-classifier $1 \xrightarrow{\tau} \Omega$, then

• Ω is a strict T-algebra, via the map classifying Tu:

$$T(au/\Omega) \longrightarrow 1 \ T_u \downarrow au \downarrow au \ T\Omega \longrightarrow \Omega$$

• 1 $\xrightarrow{\tau}$ (Ω, ω) 2-classifies strict discrete optibrations in $\mathbb{A}\mathbf{lg}_{lx}(T)$.



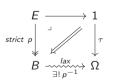
Theorem

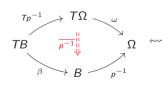
If T is a nice enough 2-monad on a nice enough 2-category \mathbb{K} with 2-classifier $1 \xrightarrow{\tau} \Omega$, then

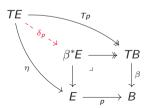
• Ω is a strict T-algebra, via the map classifying Tu:

$$T(au/\Omega) \longrightarrow 1 \ T_u \downarrow \qquad \qquad \downarrow_{ au} \ T\Omega \xrightarrow[]{ au} \qquad \qquad \Omega$$

• 1 $\xrightarrow{\tau}$ (Ω, ω) 2-classifies strict discrete optibrations in $\mathbb{A}\mathbf{lg}_{lx}(T)$.



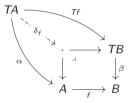




Cartesian maps of T-algebras

Definition

Let $f: A \to B$ be a strict T-morphism. We call T-cartesianity defect of f the canonical comparison map induced by the pullback below:

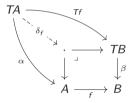


We say f is T-cartesian when its defect is invertible.

Cartesian maps of T-algebras

Definition

Let $f: A \to B$ be a strict T-morphism. We call T-cartesianity defect of f the canonical comparison map induced by the pullback below:



We say f is T-cartesian when its defect is invertible.

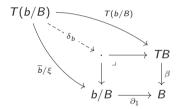
Corollary

 p^{-1} is T-strong if and only if p is T-cartesian.

Cartesian objects of T-algebras

Definition

Let $b: X \to B$ be a colax T-morphism¹. We call T-cartesianity defect of f at b the canonical comparison map induced by the pullback below:



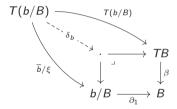
We say (B, β) is T-cartesian at b when its defect at b is invertible.

¹Not really needed btw.

Cartesian objects of T-algebras

Definition

Let $b: X \to B$ be a colax T-morphism¹. We call T-cartesianity defect of f at b the canonical comparison map induced by the pullback below:



We say (B, β) is *T*-cartesian at *b* when its defect at *b* is invertible.

Corollary

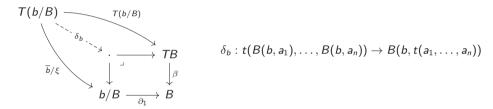
B(b, -) is T-strong if and only if B is cartesian at b.

¹Not really needed btw.

Cartesian objects of T-algebras

Definition

Let $b: \mathbf{1} \to B$ be a colax T-morphism¹. We call T-cartesianity defect of f at b the canonical comparison map induced by the pullback below:



We say (B, β) is T-cartesian at b when its defect at b is invertible.

Corollary

B(b, -) is T-strong if and only if B is cartesian at b.

¹Not really needed btw.

Example (Symmetric monoidal categories)

• T= free symmetric monoidal category 2-monad on ${\bf Cat},$ with $\Omega={\bf Set}.$

Example (Symmetric monoidal categories)

- $T = \text{free symmetric monoidal category 2-monad on } \mathbf{Cat}$, with $\Omega = \mathbf{Set}$.
- T-algebra structure on Ω : (Set, 1, \times).

Example (Symmetric monoidal categories)

- $T = \text{free symmetric monoidal category 2-monad on } \mathbf{Cat}, \text{ with } \Omega = \mathbf{Set}.$
- *T*-algebra structure on Ω : (**Set**, 1, \times).
- B(b,-) is strong monoidal iff $B(b,a_1\otimes\cdots\otimes a_n)\cong B(b,a_1)\times\cdots\times B(b,a_n)$.

Example (Symmetric monoidal categories)

- $T = \text{free symmetric monoidal category 2-monad on } \mathbf{Cat}, \text{ with } \Omega = \mathbf{Set}.$
- *T*-algebra structure on Ω : (**Set**, 1, \times).
- B(b, -) is strong monoidal iff $B(b, a_1 \otimes \cdots \otimes a_n) \cong B(b, a_1) \times \cdots \times B(b, a_n)$.

All (global) objects cartesian: cartesian monoidal category.

Example (Symmetric monoidal categories)

- $T = \text{free symmetric monoidal category 2-monad on } \mathbf{Cat}, \text{ with } \Omega = \mathbf{Set}.$
- T-algebra structure on Ω : (**Set**, 1, \times).
- B(b, -) is strong monoidal iff $B(b, a_1 \otimes \cdots \otimes a_n) \cong B(b, a_1) \times \cdots \times B(b, a_n)$. All (global) objects cartesian: **cartesian monoidal category**.

Example (Double categories)

• $T = \text{free double category 2-monad on } \mathbf{Cat}^{\cdot \Rightarrow \cdot}, \text{ with } \Omega = \mathbf{Set}^{\vee \cdot \vee} \stackrel{l}{\underset{r}{\Rightarrow}} \mathbf{Set} \text{ (see Mesiti 2024)}.$

Example (Symmetric monoidal categories)

- $T = \text{free symmetric monoidal category 2-monad on } \mathbf{Cat}, \text{ with } \Omega = \mathbf{Set}.$
- T-algebra structure on Ω : (**Set**, 1, \times).
- B(b, -) is strong monoidal iff $B(b, a_1 \otimes \cdots \otimes a_n) \cong B(b, a_1) \times \cdots \times B(b, a_n)$. All (global) objects cartesian: **cartesian monoidal category**.

- $T = \text{free double category 2-monad on } \mathbf{Cat} \stackrel{\Rightarrow}{\Rightarrow}, \text{ with } \Omega = \mathbf{Set}^{\bigvee \searrow} \stackrel{I}{\underset{r}{\Rightarrow}} \mathbf{Set} \text{ (see Mesiti 2024)}.$
- T-algebra structure on Ω : \mathbb{S} et := \mathbb{S} pan(\mathbb{S} et) \leadsto vindicating (Paré 2011).

Example (Symmetric monoidal categories)

- $T = \text{free symmetric monoidal category 2-monad on } \mathbf{Cat}, \text{ with } \Omega = \mathbf{Set}.$
- T-algebra structure on Ω : (Set, 1, \times).
- B(b, -) is strong monoidal iff $B(b, a_1 \otimes \cdots \otimes a_n) \cong B(b, a_1) \times \cdots \times B(b, a_n)$. All (global) objects cartesian: **cartesian monoidal category**.

- $T = \text{free double category 2-monad on } \mathbf{Cat}^{\cdot \rightrightarrows \cdot}$, with $\Omega = \mathbf{Set}^{\swarrow} \stackrel{\searrow}{\xrightarrow{}} \underset{r}{\overset{1}{\Longrightarrow}} \mathbf{Set}$ (see Mesiti 2024).
- T-algebra structure on Ω : \mathbb{S} et := \mathbb{S} pan(\mathbb{S} et) \leadsto vindicating (Paré 2011).
- B(b,-) is strong double functor iff $B(1_b,a_1\odot\cdots\odot a_n)\cong B(1_b,a_1)\times\cdots\times B(b,a_n)$.

Example (Symmetric monoidal categories)

- $T = \text{free symmetric monoidal category 2-monad on } \mathbf{Cat}, \text{ with } \Omega = \mathbf{Set}.$
- T-algebra structure on Ω : (Set, 1, \times).
- B(b,-) is strong monoidal iff $B(b,a_1\otimes\cdots\otimes a_n)\cong B(b,a_1)\times\cdots\times B(b,a_n)$.

All (global) objects cartesian: cartesian monoidal category.

- $T = \text{free double category 2-monad on } \mathbf{Cat} \xrightarrow{\Rightarrow}$, with $\Omega = \mathbf{Set}^{\checkmark} \xrightarrow{\searrow} \overset{!}{\underset{r}{\longrightarrow}} \mathbf{Set}$ (see Mesiti 2024).
- T-algebra structure on Ω : \mathbb{S} et := \mathbb{S} pan(\mathbb{S} et) \leadsto vindicating (Paré 2011).
- B(b,-) is strong double functor iff $B(1_b,a_1\odot\cdots\odot a_n)\cong B(1_b,a_1)\times\cdots\times B(b,a_n)$.

Example (Symmetric monoidal categories)

- $T = \text{free symmetric monoidal category 2-monad on } \mathbf{Cat}, \text{ with } \Omega = \mathbf{Set}.$
- T-algebra structure on Ω : (Set, 1, \times).
- B(b, -) is strong monoidal iff $B(b, a_1 \otimes \cdots \otimes a_n) \cong B(b, a_1) \times \cdots \times B(b, a_n)$. All (global) objects cartesian: **cartesian monoidal category**.

- $T = \text{free double category 2-monad on } \mathbf{Cat} \stackrel{\Rightarrow}{\Rightarrow} \text{, with } \Omega = \mathbf{Set}^{\bigvee \bigvee_{r}} \stackrel{I}{\underset{r}{\Rightarrow}} \mathbf{Set} \text{ (see Mesiti 2024)}.$
- T-algebra structure on Ω : \mathbb{S} et := \mathbb{S} pan(\mathbb{S} et) \leadsto vindicating (Paré 2011).
- B(b, -) is strong double functor iff $B(1_b, a_1 \odot \cdots \odot a_n) \cong B(1_b, a_1) \times \cdots \times B(b, a_n)$. All (global) objects cartesian: **spanish double category**.

Example (Symmetric monoidal categories)

- $T = \text{free symmetric monoidal category 2-monad on } \mathbf{Cat}, \text{ with } \Omega = \mathbf{Set}.$
- T-algebra structure on Ω : (Set, 1, \times).
- B(b, -) is strong monoidal iff $B(b, a_1 \otimes \cdots \otimes a_n) \cong B(b, a_1) \times \cdots \times B(b, a_n)$. All (global) objects cartesian: **cartesian monoidal category**.

Example (Double categories)

- $T = \text{free double category 2-monad on } \mathbf{Cat} \stackrel{\Rightarrow}{\Rightarrow} \text{, with } \Omega = \mathbf{Set}^{\vee} \stackrel{\vee}{\Rightarrow} \underset{r}{\overset{l}{\Rightarrow}} \mathbf{Set} \text{ (see Mesiti 2024)}.$
- T-algebra structure on Ω : \mathbb{S} et := \mathbb{S} pan(\mathbb{S} et) \leadsto vindicating (Paré 2011).
- B(b, -) is strong double functor iff $B(1_b, a_1 \odot \cdots \odot a_n) \cong B(1_b, a_1) \times \cdots \times B(b, a_n)$. All (global) objects cartesian: **spanish double category**.

Bonus fact: functors $p: E \to B = \text{strict (tightly)}$ discrete opfibrations $p: \ell E \to \ell B$ $\leadsto B \text{\'e}nabou\ construction}$: $\mathbf{Cat}/B \cong \mathbb{D}\mathbf{blCat}_{lx}(\ell B, \mathbb{S}\mathbf{et})$

Thanks!

Enhanced 2-categories

Definition

An **enhanced 2-category**, or \mathscr{F} -category, is a 2-category $\mathcal{K} \equiv : \mathcal{K}_l$ whose 1-cells are called **loose** (\leadsto) and a wide and locally full subcategory $\mathcal{K}_t \hookrightarrow \mathcal{K}_l$. whose 1-cells are called **tight** (\rightarrow).

Definition

Enhanced 2-functors are 2-functors that preserve tightness, while **enhanced 2-natural transformations**, or **tight natural transformations**, are 2-natural transformations whose components are all tight.

Definition (Enhanced 2-monad)

An **enhanced 2-monad** is an \mathscr{F} -monad, thus a 2-monad (T, i, m) such that T preserves tightness and where i and m have tight components.

Enhanced 2-category of *T*-algebras and lax morphisms

Definition

The enhanced 2-category of T-algebras and lax T-morphism $\mathcal{A}|g_I(T)$ for an enhanced 2-monad T on the enhanced 2-category \mathcal{K} is the enhanced 2-category so comprised:

- 1. its objects are strict T-algebras whose structure map is tight in K,
- 2. its loose maps are lax T-morphisms,

$$\begin{array}{ccc}
TA & \xrightarrow{Tf} & TB \\
\alpha \downarrow & & \downarrow \beta \\
A & \xrightarrow{} & B
\end{array}$$

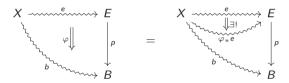
3. its tight maps are strict T-morphisms whose underlying map is tight in \mathcal{K} ,

4. its 2-morphisms are T-2-morphisms.

TDOs

Definition ((Tight) discrete opfibration)

A (tight) discrete opfibration in a(n enhanced) 2-category K is a (tight) map $p: E \to B$ that admits unique (opcartesian) lifts:



Representable TDOs

Definition (Representable discrete opfibration)

A discrete opfibration is **representable** if it is equivalent to the projection out of a comma object dashed below:

We say $b/B \xrightarrow{\partial_1} B$ is represented by the object $b: X \to B$. When X = 1, we say it is globally representable. When $b = \mathrm{id}_B$, we get the domain opfibration associated to B.

TDOs classifier

This is an 'enhanced' and refined version of a definition from (Weber 2007) and (Mesiti 2024):

Definition (Enhanced 2-classifier)

An enhanced 2-classifier in an enhanced 2-category \mathcal{K} with tight terminal object 1 and (left-tight) commas is a tight map

$$au: 1 o \Omega$$

such that the functor $\tau/-$ induced by taking comma objects is amnestic, and fully faithful, and equipped with the structure of an adjoint equivalence:

$$\cong$$
 tdos (B) $\xrightarrow{\tau/-}$ $\mathcal{K}(B,\Omega)$ \cong

TDOs classifier

This is an 'enhanced' and refined version of a definition from (Weber 2007) and (Mesiti 2024):

Definition (Enhanced 2-classifier)

An enhanced 2-classifier in an enhanced 2-category K with tight terminal object 1 and (left-tight) commas is a tight map

$$au: 1 o \Omega$$

such that the functor $\tau/-$ induced by taking comma objects is amnestic, and fully faithful, and equipped with the structure of an adjoint equivalence:

$$\cong$$
 tdos (B) $\xrightarrow{\tau/-}$ $\mathcal{K}(B,\Omega)$ \cong

TDOs classifier

This is an 'enhanced' and refined version of a definition from (Weber 2007) and (Mesiti 2024):

Definition (Enhanced 2-classifier)

An enhanced 2-classifier in an enhanced 2-category \mathcal{K} with tight terminal object 1 and (left-tight) commas is a tight map

$$au: 1 o \Omega$$

such that the functor \int – induced by taking comma objects is amnestic, and fully faithful, and equipped with the structure of an adjoint equivalence:

A map $f: B \to \Omega$ is a formal copresheaf and $\int f$ its category of elements, while $dp: B \to \Omega$ is the copresheaf of fibers of a tdos $p: E \to B$.

Generic discrete opfibration

The discrete opfibration classified by the identity or, equivalently, represented by τ , is called the **generic discrete opfibration**:

The setting of plumbuses

Definition (Plumbus)

A **plumbus** is an enhanced 2-category ${\cal K}$ admitting the following enhanced 2-limits:

- 1. all left-tight pullbacks of tight discrete opfibrations,
- 2. all left-tight commas,
- 3. a tight terminal object.

Let (T, i, m) be an enhanced 2-monad on K.

Proposition

Let $p:(E,\eta)\to (B,\beta)$ be a strict T-morphism. Then if p is a tight discrete opfibration in \mathcal{A} lg_I(T), then so it is in \mathcal{K} .

Proposition

When K is a plumbus, the 2-category $Alg_i(T)$ is a plumbus too.

An enhanced 2-monad 'cartesian enough' to lift a 2-classifier.

Definition (Opfibrantly cartesian enhanced 2-monad)

An enhanced 2-monad (T, i, m) is **opfibrantly cartesian** when

- ${f 1.}$ ${f T}$ preserves pullbacks of tight discrete opfibrations,
- ${f 2}.$ ${f T}$ preserves tight discrete opfibrations,
- 3. i and m are cartesian at all tight discrete opfibrations.

An enhanced 2-monad 'cartesian enough' to lift a 2-classifier.

Definition (Opfibrantly cartesian enhanced 2-monad)

An enhanced 2-monad (T, i, m) is **opfibrantly cartesian** when

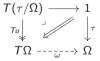
- 1. T preserves pullbacks of the **generic discrete opfibration** u,
- 2. Tu is a (tight) discrete opfibration,
- 3. i and m are cartesian at the **generic discrete opfibration** u.

An enhanced 2-monad 'cartesian enough' to lift a 2-classifier.

Definition (Opfibrantly cartesian enhanced 2-monad)

An enhanced 2-monad (T, i, m) is **opfibrantly cartesian** when

- 1. T preserves pullbacks of the **generic discrete opfibration** u,
- 2. Tu is a (tight) discrete opfibration,
- 3. i and m are cartesian at the **generic discrete opfibration** u.



An enhanced 2-monad 'cartesian enough' to lift a 2-classifier.

Definition (Opfibrantly cartesian enhanced 2-monad)

An enhanced 2-monad (T, i, m) is **opfibrantly cartesian** when

- 1. T preserves pullbacks of the **generic discrete opfibration** u,
- 2. Tu is a (tight) discrete opfibration,
- 3. i and m are cartesian at the generic discrete optibration u.

$$T(\tau/\Omega) \longrightarrow 1$$

$$T_{u} \downarrow \qquad \qquad \downarrow_{\tau}$$

$$T\Omega \xrightarrow{} \Omega$$

Lemma

 (Ω,ω) is a strict T-algebra, $\tau: 1 \to \Omega$ is a colax T-morphism, and (Ω,ω) is cartesian at τ .

An enhanced 2-monad 'cartesian enough' to lift a 2-classifier.

Definition

An enhanced 2-monad (T, i, m) is **opfibrantly cartesian** if and only if:

- ${f 1.}$ ${f T}$ preserves pullbacks of the generic discrete opfibration,
- 2. Ω is equipped with a T-algebra ω which is cartesian at τ .

The theorem

Theorem (C., Myers)

Let T be an opfibrantly cartesian 2-monad on a plumbus $\mathcal K$ such that $\tau: 1 \to (\Omega, \omega)$ is a strict T-morphism. Then its enhanced 2-category of T-algebras and lax morphisms admits τ as enhanced 2-classifier.

Corollary

Let $p: E \to B$ be a tight discrete opfibration in $\mathcal{A} lg_I(T)$. Its classifying map $\mathrm{d} p: B \to \Omega$ is strong if and only if p is T-cartesian. In particular, the representable copresheaf $B(b,-): B \to \Omega$ associated to a representable discrete opfibration $b/B \xrightarrow{\partial_1} B$ is always a lax T-morphism, and it is strong precisely when B is T-cartesian at b.

References I

- [1] L. Mesiti, 2-classifiers via dense generators and hofmann-streicher universe in stacks, 2024. DOI: 10.48550/ARXIV.2401.16900. [Online]. Available: https://arxiv.org/abs/2401.16900.
- [2] R. Paré, "Yoneda Theory for Double Categories", Theory and Applications of Categories, vol. 25, no. 17, pp. 436–489, Nov. 17, 2011. [Online]. Available: http://www.tac.mta.ca/tac/volumes/25/17/25-17.pdf.
- [3] M. Weber, "Yoneda structures from 2-toposes", Applied Categorical Structures, vol. 15, no. 3, pp. 259–323, May 2007, ISSN: 1572-9095. DOI: 10.1007/s10485-007-9079-2. [Online]. Available: http://dx.doi.org/10.1007/s10485-007-9079-2.