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What is Set?

e.g. consider monoidal categories, and let’s try to classify strict monoidal discrete opfibrations:

E 1

B Set

strict p

⌟

1

∃! p−1

p−1 : Eb × Eb′ → Eb×b′

What is the monoidal structure on Set? What about the laxator of p−1?

Let T = free symmetric monoidal category 2-monad, consider
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Sketch of the main result

Theorem

If T is a nice enough 2-monad on a nice enough 2-category K with 2-classifier 1
τ−→ Ω, then

• Ω is a strict T -algebra, via the map classifying Tu:

T (τ/Ω) 1
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⌟
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ω

• 1
τ−→ (Ω, ω) 2-classifies strict discrete opfibrations in Alglx(T ).
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Cartesian maps of T -algebras

Definition

Let f : A → B be a strict T -morphism. We call T -cartesianity defect of f the canonical comparison

map induced by the pullback below:

TA

· TB

A B

δf

Tf

α ⌟
β

f

We say f is T -cartesian when its defect is invertible.

Corollary

p−1 is T -strong if and only if p is T -cartesian.
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Cartesian objects of T -algebras

Definition

Let b : X → B be a colax T -morphism1. We call T -cartesianity defect of f at b the canonical

comparison map induced by the pullback below:

T (b/B)

· TB

b/B B

δb

T (b/B)

b/ξ
⌟

β

∂1

We say (B, β) is T -cartesian at b when its defect at b is invertible.

Corollary

B(b,−) is T -strong if and only if B is cartesian at b.

1Not really needed btw.
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· TB
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Examples

Example (Symmetric monoidal categories)

• T = free symmetric monoidal category 2-monad on Cat, with Ω = Set.

• T -algebra structure on Ω: (Set, 1,×).

• B(b,−) is strong monoidal iff B(b, a1 ⊗ · · · ⊗ an) ∼= B(b, a1)× · · · × B(b, an).

All (global) objects cartesian: cartesian monoidal category.

Example (Double categories)

• T = free double category 2-monad on Cat·⇒·, with Ω = Set
·

· ·
l

⇒
r
Set (see Mesiti 2024).

• T -algebra structure on Ω: Set := Span(Set) ⇝ vindicating (Paré 2011).

• B(b,−) is strong double functor iff B(1b, a1 ⊙ · · · ⊙ an) ∼= B(1b, a1) ⋉ · · · ⋉ B(b, an).

Bonus fact: functors p : E → B = strict (tightly) discrete opfibrations p : ℓE → ℓB

⇝ Bénabou construction: Cat/B ∼= DblCatlx(ℓB, Set)

8
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Enhanced 2-categories

Definition

An enhanced 2-category, or F -category, is a 2-category K ≡: Kl whose 1-cells are called loose (⇝)

and a wide and locally full subcategory Kt ↪→ Kl . whose 1-cells are called tight (→).

Definition

Enhanced 2-functors are 2-functors that preserve tightness, while enhanced 2-natural

transformations, or tight natural transformations, are 2-natural transformations whose components

are all tight.

Definition (Enhanced 2-monad)

An enhanced 2-monad is an F -monad, thus a 2-monad (T , i ,m) such that T preserves tightness and

where i and m have tight components.
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Enhanced 2-category of T -algebras and lax morphisms

Definition

The enhanced 2-category of T -algebras and lax T -morphism Algl(T ) for an enhanced 2-monad T

on the enhanced 2-category K is the enhanced 2-category so comprised:

1. its objects are strict T -algebras whose structure map is tight in K,

2. its loose maps are lax T -morphisms,

TA TB

A B

Tf

α β

f

3. its tight maps are strict T -morphisms whose underlying map is tight in K,

TA TB

A B

Tf

α β

f

4. its 2-morphisms are T -2-morphisms.
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TDOs

Definition ((Tight) discrete opfibration)

A (tight) discrete opfibration in a(n enhanced) 2-category K is a (tight) map p : E → B that admits

unique (opcartesian) lifts:

X E

B

e

b

φ p =

X E

B

e

φ∗e

b

p

∃!
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Representable TDOs

Definition (Representable discrete opfibration)

A discrete opfibration is representable if it is equivalent to the projection out of a comma object

dashed below:

b/B X

B B

∂1

⌟
b

We say b/B
∂1−→ B is represented by the object b : X → B. When X = 1, we say it is globally

representable. When b = idB , we get the domain opfibration associated to B.
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TDOs classifier

This is an ‘enhanced’ and refined version of a definition from (Weber 2007) and (Mesiti 2024):

Definition (Enhanced 2-classifier)

An enhanced 2-classifier in an enhanced 2-category K with tight terminal object 1 and (left-tight)

commas is a tight map

τ : 1 → Ω

such that the functor τ/− induced by taking comma objects is amnestic, and fully faithful, and

equipped with the structure of an adjoint equivalence:

tdos(B) K(B,Ω)∼=
d(−)

τ/−

∼=

A map f : B → Ω is a formal copresheaf and τ/f its category of elements, while dp : B → Ω is the

copresheaf of fibers of a tdos p : E → B.
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Generic discrete opfibration

The discrete opfibration classified by the identity or, equivalently, represented by τ , is called the

generic discrete opfibration:

τ/Ω 1

Ω Ω

u
⌟

τ
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The setting of plumbuses

Definition (Plumbus)

A plumbus is an enhanced 2-category K admitting the following enhanced 2-limits:

1. all left-tight pullbacks of tight discrete opfibrations,

2. all left-tight commas,

3. a tight terminal object.

Let (T , i ,m) be an enhanced 2-monad on K.

Proposition

Let p : (E , η) → (B, β) be a strict T -morphism. Then if p is a tight discrete opfibration in Algl(T ),

then so it is in K.

Proposition

When K is a plumbus, the 2-category Algl(T ) is a plumbus too.
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Opfibrantly cartesian 2-monads

An enhanced 2-monad ‘cartesian enough’ to lift a 2-classifier.

Definition (Opfibrantly cartesian enhanced 2-monad)

An enhanced 2-monad (T , i ,m) is opfibrantly cartesian when

1. T preserves pullbacks of tight discrete opfibrations,

2. T preserves tight discrete opfibrations,

3. i and m are cartesian at all tight discrete opfibrations.
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Opfibrantly cartesian 2-monads

An enhanced 2-monad ‘cartesian enough’ to lift a 2-classifier.

Definition (Opfibrantly cartesian enhanced 2-monad)

An enhanced 2-monad (T , i ,m) is opfibrantly cartesian when

1. T preserves pullbacks of the generic discrete opfibration u,

2. Tu is a (tight) discrete opfibration,

3. i and m are cartesian at the generic discrete opfibration u.

T (τ/Ω) 1

TΩ Ω

Tu
⌟

τ

ω

Lemma

(Ω, ω) is a strict T -algebra, τ : 1 → Ω is a colax T-morphism, and (Ω, ω) is cartesian at τ .

17



Opfibrantly cartesian 2-monads

An enhanced 2-monad ‘cartesian enough’ to lift a 2-classifier.

Definition (Opfibrantly cartesian enhanced 2-monad)

An enhanced 2-monad (T , i ,m) is opfibrantly cartesian when

1. T preserves pullbacks of the generic discrete opfibration u,

2. Tu is a (tight) discrete opfibration,

3. i and m are cartesian at the generic discrete opfibration u.

T (τ/Ω) 1

TΩ Ω

Tu
⌟

τ

ω

Lemma

(Ω, ω) is a strict T -algebra, τ : 1 → Ω is a colax T-morphism, and (Ω, ω) is cartesian at τ .

17



Opfibrantly cartesian 2-monads

An enhanced 2-monad ‘cartesian enough’ to lift a 2-classifier.

Definition (Opfibrantly cartesian enhanced 2-monad)

An enhanced 2-monad (T , i ,m) is opfibrantly cartesian when

1. T preserves pullbacks of the generic discrete opfibration u,

2. Tu is a (tight) discrete opfibration,

3. i and m are cartesian at the generic discrete opfibration u.

T (τ/Ω) 1

TΩ Ω

Tu
⌟

τ

ω

Lemma

(Ω, ω) is a strict T -algebra, τ : 1 → Ω is a colax T-morphism, and (Ω, ω) is cartesian at τ .
17



Opfibrantly cartesian 2-monads

An enhanced 2-monad ‘cartesian enough’ to lift a 2-classifier.

Definition

An enhanced 2-monad (T , i ,m) is opfibrantly cartesian if and only if:

1. T preserves pullbacks of the generic discrete opfibration,

2. Ω is equipped with a T -algebra ω which is cartesian at τ .
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The theorem

Theorem (C., Myers)

Let T be an opfibrantly cartesian 2-monad on a plumbus K such that τ : 1 → (Ω, ω) is a strict

T -morphism. Then its enhanced 2-category of T -algebras and lax morphisms admits τ as enhanced

2-classifier.

Corollary

Let p : E → B be a tight discrete opfibration in Algl(T ). Its classifying map dp : B → Ω is strong if

and only if p is T -cartesian. In particular, the representable copresheaf B(b,−) : B → Ω associated to

a representable discrete opfibration b/B
∂1−→ B is always a lax T-morphism, and it is strong precisely

when B is T-cartesian at b.
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