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Torsion theories

A torsion theory is a triple (C, T ,F), where C is a pointed category and

(T ,F) is a pair of full replete subcategories of C, such that:

(T1) every morphism in C from an object in T to an object in F factors

through 0;

(T2) for every X ∈ C there is a sequence of morphisms

TX ℓX−→ X
rX−→ FXTX ℓX−→ X
rX−→ FXTX ℓX−→ X
rX−→ FX

such that TX ∈ TTX ∈ TTX ∈ T , FX ∈ FFX ∈ FFX ∈ F , ℓX = Ker(rX )ℓX = Ker(rX )ℓX = Ker(rX ) and rX = Coker(ℓX )rX = Coker(ℓX )rX = Coker(ℓX ).

Example.

(Ab, {torsion abelian groups}, {torsion-free abelian groups})

T (G ) G G/T (G )i π
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Products of torsion theories

Consider the 2-category Torch of torsion theories and functors preserving

torsion objects, torsion free objects and sending the chosen short exact

sequences to short exact sequences.

Theorem.

Consider a non-empty family C = (Ci )i∈I of pointed categories and a

family (Ti ,Fi )i∈I of pairs of categories. The triple

(ΠC,ΠT ,ΠF) =

(∏
i∈I

Ci ,
∏
i∈I

Ti ,
∏
i∈I

Fi

)

is a torsion theory if and only if each (Ci , Ti ,Fi ) is a torsion theory.
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A 2-monad for torsion theories

M : PointCat −→ PointCat

C

D

G Hα 7→
C× C

D× D

G×G H×H
α×α

is a (strict) 2-monad, with unit given by diagonal functors ηC : C → C× C
and multiplication µC = π1,4 : (C× C)× (C× C) → C× C sending

((X ,Y ), (Z ,W )) to (X ,W );

All M-pseudo-algebras are torsion theories:

given (C,Q,Qµ,Qη) we have (C, T ,F) ∈ Torch with T given by the

essential image of C× 0 ⊆ C× C Q−→ C and F given by the essential

image of 0× C ⊆ C× C Q−→ C.
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Rectangular torsion theories

Definition.

A rectangular torsion theory is a torsion theory (C, T ,F) such that the

canonical functor Γ: C → T × F sending X to the pair (TX ,FX ) is an

equivalence of categories.

Theorem.

The 2-category TorchR of rectangular torsion theories is 2-equivalent (over

PointCat) to the 2-category of M-pseudo-algebras.

Given (C, T ,F) the corresponding pseudo-algebra map is the composite

C× C Γ×Γ−−→ (T × F)× (T × F)
π1,4−−→ T × F Γ′−→ C;

(X ,Y ) 7→ ((TX ,FX ), (TY ,FY )) 7→ (TX ,FY ) 7→ Γ′((TX ,FY ))
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Internal rectangular bands

The algebras for the monad on Set given by X 7→ X × X are precisely the

rectangular bands, i.e. idempotent semigroups satisfying xyz = xz .

Definition.

Let L be a 2-category with squares. An internal rectangular band in the

2-category L is a pseudo-algebra for the 2-monad C 7→ C× C over L.

Rectangular torsion theories are rectangular bands in PointCat!

Theorem.

Every rectangular torsion theory is a product of the form

(C,C, 0C)× (D, 0D,D) in Torch.

Theorem.

The 2-category TorchR is biequivalent to PointCat× PointCat.
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Torsion theory classes of epimorphisms

Let C be a pointed category with binary products. Consider any full

subcategory of epimorphisms E of the arrow category C2 containing all

isomorphisms and all morphisms to a zero object.

Theorem.

(E , {isomorphisms}, {morphisms to a zero object}) is a rectangular torsion

theory if and only if every object of E is a product projection in C.

Theorem.

The class of split epimorphisms in a pointed regular category is a

rectangular torsion theory class if and only if every split epimorphism is a

product projection.
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Pretorsion theories

A pretorsion theory is a triple (C, T ,F), where C is a category and

(T ,F) is a pair of full replete subcategories, such that for the ideal N of

morphisms that factor through objects in the intersection T ∩ F :

(T1) Every morphism in C from an object in T to an object in F is in N ;

(T2) for every X ∈ C there is a sequence of morphisms

TX ℓX−→ X
rX−→ FX

such that TX ∈ T , FX ∈ F , ℓX is a N -kernel of rX and rX is a

N -cokernel of ℓX .

Example.

(Preord, {equivalence relations}, {partial orders})
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The category of short exact sequences in C

Let C be a category with all kernels and cokernels and let N be a closed

ideal of (null) morphisms in C.

We consider the category Ses (C).

X Y Zf g

We define a pretorsion theory (Ses (C) , T ,F), where

- T consists of s.e.s of the form • ∼= • → •

- F consists of s.e.s of the form • → • ∼= •

Elena Caviglia Structures for torsion theories 17/07/2025 9 / 19



The category of short exact sequences in C
Let C be a category with all kernels and cokernels and let N be a closed

ideal of (null) morphisms in C.

We consider the category Ses (C).

X Y Z

X ′ Y ′ Z ′

f g

u v w

f ′ g ′

We define a pretorsion theory (Ses (C) , T ,F), where

- T consists of s.e.s of the form • ∼= • → •

- F consists of s.e.s of the form • → • ∼= •

Elena Caviglia Structures for torsion theories 17/07/2025 9 / 19



The category of short exact sequences in C
Let C be a category with all kernels and cokernels and let N be a closed

ideal of (null) morphisms in C.

We consider the category Ses (C).

X Y Z

X ′ Y ′ Z ′

f g

u v w

f ′ g ′

We define a pretorsion theory (Ses (C) , T ,F), where

- T consists of s.e.s of the form • ∼= • → •

- F consists of s.e.s of the form • → • ∼= •

Elena Caviglia Structures for torsion theories 17/07/2025 9 / 19



Short exact sequences in Ses (C)

Proposition.

(u, v ,w) = Ker((u′, v ′,w ′)) iff u = Ker(u′) and v = Ker(v ′).

(u′, v ′,w ′) = Coker((u, v ,w)) iff v ′ = Coker(v) and w ′ = Coker(w).

X Y Z

X ′ Y ′ Z ′

X ′′ Y ′′ Z ′′

f

u

g

v w

f ′

u′
g ′

v ′ w ′

f ′′ g ′′

The s.e.s. associated to X
f−→ Y

g−→ Z ∈ Ses (C) is

X X Coker(idX )

X Y Z

Ker(idZ ) Z Z

f ∃!

f
∃!

g
g
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A pseudocomonad for pretorsion theories

Let ClIdl be the 2-category of

- categories with all kernels and cokernels equipped with a closed ideal

- functors preserving kernels and cokernels

- natural transformations

Proposition.

Ω : ClIdl −→ ClIdl

C

D

G Hα 7→

Ses (C)

Ses (D)

G H
α

is a pseudocomonad, with counit sending X → Y → Z to Y and

comultiplication selecting the chosen s.e.s of the pretorsion theory on

Ses (C).
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A pseudocomonad for pretorsion theories

All normal Ω-pseudo-coalgebras are pretorsion theories:

given ((C,N ), λ : C → Ses (C) , λδ : δC ◦ λ ≃
=⇒ Ω(λ) ◦ λ) we have

(C, T ,F) ∈ PTorck with T the collection of objects X ∈ C such that

λ(X ) is of the form • ∼= • → •, F defined dually and chosen s.e.s. given

by the coalgebra map λ.

The isomorphisms given by λδ ensure that the s.e.s. associated to X is of

the form T −→ X −→ F .

Remark.

The fact that λ : C → Ses (C) preserves kernels and cokernels implies that

Ω-pseudo-coalgebras are pretorsion theories with additional properties.
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Bihereditary pretorsion theories

Definition.

A pretorsion theory (C, T ,F) is said hereditary if the functor

C T−→ T ↪→ C preserves kernels and cohereditary if it has the dual

property. It is said bihereditary if it is both hereditary and cohereditary.

- Rectangular torsion theories are bihereditary.

- Given a finite preordered set (X = {1, 2, . . . , n},≤) the triple

(X ,T ,F ) is a pretorsion theory iff

(i) T ∪ F = X ;

(ii) 1 ∈ T and n ∈ F ;

(ii) for every i = 1, . . . , n − 1 if i ∈ T and i + 1 ∈ F , then either

i ∈ F or i + 1 ∈ T .

All such pretorsion theories are bihereditary.
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Exact sequences

Definition.

We say that the sequence A
g−→ B

h−→ C is exact if h ◦ g is null, the

replecement sequence (in blue) is a short exact sequence, the morphism

A −→ Ker(h) coreflects null morphisms and the morphism Coker(g) −→ C

reflects null morphism.

Ker(h)

A B C

Coker(g)

g h
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A pseudocomonad for pretorsion theories

Let ClIdlex be the 2-category of

- categories equipped with a closed ideal with all kernels and cokernels

- functors preserving exact sequences

- natural transformations

Proposition.

Ω̃ : ClIdlex −→ ClIdlex

C

D

G Hα 7→

Ses (C)

Ses (D)

[G ] [H]
[α]

where [G ] computes the short exact replacement of the image along G, is

a pseudocomonad.
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Generalized pretorsion theories

All pretorsion theories are normal Ω̃-pseudo-coalgebras!

But not all Ω̃-pseudo-coalgebras are pretorsion theories...

λ : C −→ Ses (C)

X

Y

h 7→

TX X FX

TY Y FY

ℓX

hT h

rX

hF

ℓY rY

with (ℓX )F(ℓX )F(ℓX )F null and (rX )T(rX )T(rX )T null for every X ∈ C
(with some additional coherence conditions).
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Can we characterize pretorsion theories among coalgebras?

Pretorsion theories are precisely the normal Ω̃-pseudo-coalgebras such that

λ : C → Ses (C)λ : C → Ses (C)λ : C → Ses (C) preserves the s.e.s. in its image.

Alternatively, we can characterize the pretorsion theories as the normal

pseudo-coalgebras satisfying a certain equation in terms of the adjoints

Ses (C) CεC

p3

p1

•=•→•

•→•=•

⊣
⊣

⊣
⊣
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What’s next?

• properties and examples of generalized pretorsion theories

• ”simplicial” monads

• further understand limits and colimits of (pre)torsion theories

• other structures for categories of torsion theories

• internal rectangular bands in other categories
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