Homotopical recognition of diagram categories

Boris Chorny

University of Haifa (Oranim)

CT 2025, Brno July 16, 2025 Joint work with David White

Outline

- Introduction
 - Recognition of presheaf categories
- Homotopical recognition of diagram categories
 - Dwyer-Kan orbits
 - Homotopy atoms
 - Main recognition result
- 3 Applications
 - Examples of homotopy atoms
 - Categories of functors (not necessarily presheaves)
 - Classification of polynomial functors

Ordinary case:

Theorem (M. Bunge '69 – PhD thesis)

& is isomorphic to a presheaf category iff it is a cocomplete atomic regular category with a generating set A of atoms.

 $A \in \mathscr{A}$ is an atom if hom(A, -) commutes with all colimits

Simplicial case:

Theorem (W.G. Dwyer and D. Kan '84)

Let \mathcal{M} be a simplicial category equipped with a set of orbits \mathcal{O} . Then there exists a model structure on \mathcal{M} Quillen equivalent to $\mathcal{P}(\mathcal{O})$.

$$\mathscr{M}\simeq_{\mathsf{Q}} \mathcal{S}^{\mathsf{O}^{\mathsf{op}}}$$

Ordinary case:

Theorem (M. Bunge '69 – PhD thesis)

E is isomorphic to a presheaf category iff it is a cocomplete atomic regular category with a generating set A of atoms.

 $A \in \mathscr{A}$ is an atom if hom(A, -) commutes with all colimits

Simplicial case:

Theorem (W.G. Dwyer and D. Kan '84)

Let \mathscr{M} be a simplicial category equipped with a set of orbits \mathscr{O} . Then there exists a model structure on \mathscr{M} Quillen equivalent to $\mathcal{P}(\mathscr{O})$.

$$\mathscr{M}\simeq_{\mathsf{Q}} \mathcal{S}^{\mathscr{O}^{\mathsf{op}}}$$

Ordinary case:

Theorem (M. Bunge '69 – PhD thesis)

 \mathscr{E} is isomorphic to a presheaf category iff it is a cocomplete atomic regular category with a generating set \mathscr{A} of atoms.

$$\mathscr{E} \sim \mathsf{Set}^{\mathscr{A}^\mathsf{op}}$$

 $A \in \mathscr{A}$ is an atom if hom(A, -) commutes with all colimits

Simplicial case:

Theorem (W.G. Dwyer and D. Kan '84)

Let \mathscr{M} be a simplicial category equipped with a set of orbits \mathscr{O} . Then there exists a model structure on \mathscr{M} Quillen equivalent to $\mathcal{P}(\mathscr{O})$.

$$\mathscr{M}\simeq_{\mathsf{Q}} \mathscr{S}^{\mathscr{O}^{\mathsf{op}}}$$

Ordinary case:

Theorem (M. Bunge '69 – PhD thesis)

 \mathscr{E} is isomorphic to a presheaf category iff it is a cocomplete atomic regular category with a generating set \mathscr{A} of atoms.

$$\mathscr{E} \simeq \mathsf{Set}^{\mathscr{A}^\mathsf{op}}$$

 $A \in \mathscr{A}$ is an atom if hom(A, -) commutes with all colimits.

Simplicial case:

Theorem (W.G. Dwyer and D. Kan '84)

Let \mathscr{M} be a simplicial category equipped with a set of orbits \mathscr{O} . Then there exists a model structure on \mathscr{M} Quillen equivalent to $\mathcal{P}(\mathscr{O})$.

$$\mathscr{M} \simeq_{\mathsf{Q}} \mathcal{S}^{\mathscr{O}^{\mathsf{op}}}$$

Ordinary case:

Theorem (M. Bunge '69 – PhD thesis)

 \mathscr{E} is isomorphic to a presheaf category iff it is a cocomplete atomic regular category with a generating set \mathscr{A} of atoms.

$$\mathscr{E} \simeq \mathsf{Set}^{\mathscr{A}^\mathsf{op}}$$

 $A \in \mathscr{A}$ is an atom if hom(A, -) commutes with all colimits.

Simplicial case:

Theorem (W.G. Dwyer and D. Kan '84)

Let \mathscr{M} be a simplicial category equipped with a set of orbits \mathscr{O} . Then there exists a model structure on \mathscr{M} Quillen equivalent to $\mathcal{P}(\mathscr{O})$.

$$\mathscr{M} \simeq_{\mathsf{Q}} \mathcal{S}^{\mathscr{O}^\mathsf{op}}$$

Ordinary case:

Theorem (M. Bunge '69 – PhD thesis)

 \mathscr{E} is isomorphic to a presheaf category iff it is a cocomplete atomic regular category with a generating set \mathscr{A} of atoms.

$$\mathscr{E} \simeq \mathsf{Set}^{\mathscr{A}^\mathsf{op}}$$

 $A \in \mathscr{A}$ is an atom if hom(A, -) commutes with all colimits.

Simplicial case:

Theorem (W.G. Dwyer and D. Kan '84)

Let \mathscr{M} be a simplicial category equipped with a set of orbits \mathscr{O} . Then there exists a model structure on \mathscr{M} Quillen equivalent to $\mathcal{P}(\mathscr{O})$.

$$\mathscr{M} \simeq_{\mathsf{Q}} \mathcal{S}^{\mathscr{O}^\mathsf{op}}$$

Ordinary case:

Theorem (M. Bunge '69 – PhD thesis)

 \mathscr{E} is isomorphic to a presheaf category iff it is a cocomplete atomic regular category with a generating set \mathscr{A} of atoms.

$$\mathscr{E}\simeq\mathsf{Set}^{\mathscr{A}^\mathsf{op}}$$

 $A \in \mathscr{A}$ is an atom if hom(A, -) commutes with all colimits.

Simplicial case:

Theorem (W.G. Dwyer and D. Kan '84)

Let \mathscr{M} be a simplicial category equipped with a set of orbits \mathscr{O} . Then there exists a model structure on \mathscr{M} Quillen equivalent to $\mathcal{P}(\mathscr{O})$.

$$\mathscr{M} \simeq_{\mathsf{Q}} \mathcal{S}^{\mathscr{O}^\mathsf{op}}$$

Bunge's conditions: & cocomplete, atomic, regular

cocomplete: & is closed under arbitrary colimits;

atomic: & has a dense subcategory \(\alpha \) of universally presentable objects;

dense: every object is canonically a colimit of objects in \mathscr{A} .

regular: & has finite limits, kernel pairs, and satisfies exactness conditions like existence of images and the image factorization (regular epi-mono).

Dwyer-Kan orbits: \mathcal{M} is equipped with a set of orbits $\{O_e\}_{e \in E}$ if

Q0: *M* is closed under arbitrary limits and colimits;

Q1:
$$\forall e \in E$$
, $(O_{e'} \otimes K)^{O_e} \longrightarrow X_a^{O_e}$ hom. p.-o. \downarrow $(O_{e'} \otimes L)^{O_e} \longrightarrow X_{a+1}^{O_e}$, where $(K \hookrightarrow L) \in S_{Ga}$:

Q2:
$$\forall \alpha \forall e \in E$$
, $(\operatorname*{colim}_{a < \alpha} X_a)^{O_e} \simeq \operatorname*{colim}_{a < \alpha} X_a^{O_e}$;

Q3: $\exists \kappa : \forall e \in E$, $(\operatorname{colim} X_a)_{e}^{O_e} \cong \operatorname{colim} X_a^{O_e}$.

<u>cocomplete</u>, atomic, regular cocomplete: & is closed under arbitrary colimits;

atomic: & has a dense subcategory \(\alpha \) of universally presentable objects;

dense: every object is canonically a colimit of objects in .a..

regular: & has finite limits, kernel pairs, and satisfies exactness conditions like existence of images and the image factorization (regular epi-mono).

Dwyer-Kan orbits: \mathcal{M} is equipped with a set of orbits $\{O_e\}_{e \in E}$ if

Q0: *M* is closed under arbitrary limits and colimits;

Q1: $\forall e \in E$, $(O_{e'} \otimes K)^{O_e} \longrightarrow X_a^{O_e}$ hom. p.-o. \downarrow $(O_{e'} \otimes L)^{O_e} \longrightarrow X_{a+1}^{O_e}$, where $(K \hookrightarrow L) \in \mathcal{S}_{\mathrm{fin}}$;

Q2: $\forall \alpha \forall e \in E$, $(\operatorname*{colim}_{a < \alpha} X_a)^{O_e} \simeq \operatorname*{colim}_{a < \alpha} X_a^{O_e}$;

Q3: $\exists \kappa : \forall e \in E$, $(\operatorname{colim}_{A_a}X_a)_{a_a}^{O_e} \cong \operatorname{colim}_{A_a}X_a^{O_e}$.

atomic: & has a dense subcategory \(\alpha \) of universally presentable objects;

dense: every object is canonically a colimit of objects in \mathscr{A} .

regular: & has finite limits, kernel pairs, and satisfies exactness conditions like existence of images and the image factorization (regular epi-mono).

Dwyer-Kan orbits: \mathcal{M} is equipped with a set of orbits $\{O_e\}_{e \in E}$ if

Q0: *M* is closed under arbitrary limits and colimits:

Q1: $\forall e \in E$, $(O_{e'} \otimes K)^{O_e} \longrightarrow X_a^{O_e}$ hom. p.-o. \downarrow $(O_{e'} \otimes L)^{O_e} \longrightarrow X_{a+1}^{O_e}$, where $(K \hookrightarrow L) \in \mathcal{S}_{\mathrm{fin}}$:

Q2: $\forall \alpha \forall e \in E$, $(\underset{a < \alpha}{\operatorname{colim}} X_a)^{O_e} \simeq \underset{a < \alpha}{\operatorname{colim}} X_a^{O_e}$;

Q3: $\exists \kappa : \forall e \in E$, $(\operatorname{colim}_{A_a})_{a}^{O_e} \cong \operatorname{colim}_{A_a}^{X_{O_e}}$

atomic: ℰ has a dense subcategory ৶ of universally presentable objects;

dense: every object is canonically a colimit of objects in \mathscr{A} .

regular: & has finite limits, kernel pairs, and satisfies exactness conditions like existence of images and the image factorization (regular epi-mono).

Dwyer-Kan orbits: \mathcal{M} is equipped with a set of orbits $\{O_e\}_{e \in E}$ if

Q0: *M* is closed under arbitrary limits and colimits;

Q1: $\forall e \in E$, $(O_{e'} \otimes K)^{O_e} \longrightarrow X_a^{O_e}$ hom. p.-o. \downarrow $(O_{e'} \otimes L)^{O_e} \longrightarrow X_{a+1}^{O_e}$, where $(K \hookrightarrow L) \in \mathcal{S}_{\mathrm{fin}}$:

Q2: $\forall \alpha \forall e \in E$, $(\operatorname*{colim}_{a < \alpha} X_a)^{O_e} \simeq \operatorname*{colim}_{a < \alpha} X_a^{O_e}$;

Q3: $\exists \kappa : \forall e \in E$, $(\operatorname{colim}_{A_{a}} X_{a}) \stackrel{O_{e}}{=} \subseteq \operatorname{colim}_{A_{a}} X_{a} \stackrel{O_{e}}{=} \dots$

atomic: & has a dense subcategory \(\alpha \) of universally presentable objects;

dense: every object is canonically a colimit of objects in \mathscr{A} .

regular: & has finite limits, kernel pairs, and satisfies exactness conditions like existence of images and the image factorization (regular epi-mono).

Dwyer-Kan orbits: \mathcal{M} is equipped with a set of orbits $\{O_e\}_{e \in E}$ if

Q0: *M* is closed under arbitrary limits and colimits;

Q1:
$$\forall e \in E$$
, $(O_{e'} \otimes K)^{O_e} \longrightarrow X_a^{O_e}$ hom. p.-o. \downarrow $(O_{e'} \otimes L)^{O_e} \longrightarrow X_{a+1}^{O_e}$, where $(K \hookrightarrow L) \in \mathcal{S}_{\mathrm{fin}}$;

Q2:
$$\forall \alpha \forall e \in E$$
, $(\underset{a < \alpha}{\operatorname{colim}} X_a)^{O_e} \simeq \underset{a < \alpha}{\operatorname{colim}} X_a^{O_e}$;

Q3:
$$\exists \kappa : \forall e \in E$$
, $(\operatorname{colim}_{A_a} X_a)^{O_e} \cong \operatorname{colim}_{A_a} X_a^{O_e}$.

Theorem: (Dwyer-Kan, '84)

Theorem

Let \mathscr{M} be a simplicial category equipped with a set of orbits $\mathcal{O} = \{O_e\}_{e \in E}$. Then \mathscr{M} is a model category with $f \colon X \to Y$ a W.E. or a fib if the induced map $\mathsf{hom}(O_e,f) \colon \mathsf{hom}(O_e,X) \to \mathsf{hom}(O_e,Y)$ is a W.E. or a fib., respectively. Moreover, the adjunction

$$\mathscr{M} \overset{-\otimes_{\mathcal{O}} \mathsf{Inc}}{\underset{\mathsf{hom}(\mathcal{O}, -)}{\longleftarrow}} \mathcal{S}^{\mathcal{O}^{\mathsf{op}}}, \quad \mathsf{Inc} \colon \mathcal{O} \hookrightarrow \mathscr{M}$$

is a Quillen equivalence if the category of presheaves is equipped with the projective model structure.

Examples of Dwyer-Kan orbits

• Bredon homotopy theory: $\mathcal{M} = \mathcal{S}^{G}$, $\mathcal{O}_{G} = \{G/H | H < G\}$

$$\mathcal{S}^{G} \xrightarrow{\text{Elmendorf}} \mathcal{S}^{\mathcal{O}_{G}^{\text{op}}},$$
 fixed points

• Relative homotopy theory: Balmer-Matthey (2004) $\mathcal{M} = \mathcal{S}^{\mathcal{D}}, \ \mathcal{C} \subset \mathcal{D}, \ \mathcal{O} = \{R^{\mathcal{C}} = \text{hom}(\mathcal{C}, -) \mid \mathcal{C} \in \mathcal{C}\} \simeq \mathcal{C}^{\text{op}}$

$$S^{\mathscr{D}} \xrightarrow{-\otimes_{\mathcal{O}} \operatorname{Inc}} S^{\mathscr{C}}, \quad \operatorname{Inc} : \mathcal{O} \hookrightarrow \mathscr{M}$$

• Farjoun-Zabrodsky orbits (1986): $\mathcal{M} = \mathcal{S}^D$, even if D is small, $\mathcal{O}_D = \{ \underline{T} \mid \operatorname{colim}_D \underline{T} = * \}$ may be large, and \mathcal{M} not cofibrantly generated.

Examples of Dwyer-Kan orbits

• Bredon homotopy theory: $\mathcal{M} = \mathcal{S}^G$, $\mathcal{O}_G = \{G/H | H < G\}$

$$\mathcal{S}^{G} \xrightarrow{\text{Elmendorf}} \mathcal{S}^{\mathcal{O}_{G}^{\text{op}}},$$
 fixed points

• Relative homotopy theory: Balmer-Matthey (2004) $\mathscr{M} = \mathcal{S}^{\mathscr{D}}, \ \mathscr{C} \subset \mathscr{D}, \ \mathcal{O} = \{R^{\mathcal{C}} = \mathsf{hom}(\mathcal{C}, -) \mid \mathcal{C} \in \mathscr{C}\} \simeq \mathscr{C}^{\mathsf{op}}$

$$\mathcal{S}^{\mathscr{D}} \xrightarrow[\text{hom}(\mathcal{O}, -)]{-\otimes_{\mathcal{O}} \text{Inc}}} \mathcal{S}^{\mathscr{C}}, \quad \text{Inc} \colon \mathcal{O} \hookrightarrow \mathscr{M}$$

• Farjoun-Zabrodsky orbits (1986): $\mathcal{M} = \mathcal{S}^D$, even if D is small, $\mathcal{O}_D = \{ \underline{T} \mid \operatorname{colim}_D \underline{T} = * \}$ may be large, and \mathcal{M} not cofibrantly generated.

Examples of Dwyer-Kan orbits

• Bredon homotopy theory: $\mathcal{M} = \mathcal{S}^{G}$, $\mathcal{O}_{G} = \{G/H | H < G\}$

$$\mathcal{S}^{G} \xrightarrow{\text{Elmendorf}} \mathcal{S}^{\mathcal{O}_{G}^{\text{op}}},$$
 fixed points

• Relative homotopy theory: Balmer-Matthey (2004) $\mathcal{M} = \mathcal{S}^{\mathcal{D}}, \ \mathscr{C} \subset \mathscr{D}, \ \mathcal{O} = \{R^{\mathcal{C}} = \text{hom}(\mathcal{C}, -) \mid \mathcal{C} \in \mathscr{C}\} \simeq \mathscr{C}^{\text{op}}$

$$\mathcal{S}^{\mathscr{D}} \overset{-\otimes_{\mathcal{O}} \mathsf{Inc}}{\longleftrightarrow} \mathcal{S}^{\mathscr{C}}, \quad \mathsf{Inc} \colon \mathcal{O} \hookrightarrow \mathscr{M}$$

• Farjoun-Zabrodsky orbits (1986): $\mathcal{M} = \mathcal{S}^D$, even if D is small, $\mathcal{O}_D = \{ \tilde{\mathcal{I}} \mid \operatorname{colim}_D \tilde{\mathcal{I}} = * \}$ may be large, and \mathcal{M} not cofibrantly generated.

Homotopy Atoms

Let \mathscr{M} be a \mathscr{V} -model category, \mathscr{V} combinatorial, generated by $I_{\mathscr{V}} = \{A_i \hookrightarrow B_i \mid i \in I\}.$

Definition

 ${\mathscr M}$ is equipped with a set of *homotopy atoms* if there exists a set of cofibrant objects ${\mathcal H}\subset {\mathscr M}$ such that

- The functors $\{\text{hom}(T,-) \mid T \in \mathcal{H}\}$ jointly reflect weak equivalences between fibrant objects;
- ② The functors $\{ \mathsf{hom}(T, \widehat{-}) \mid T \in \mathcal{H} \}$ commute with homotopy pushouts, sequential homotopy colimits, and $\otimes A_i$ and $\otimes B_i$, up to weak equivalence.

Related work: Anna Montarulli, 'Representation theorems for abelian and model categories'. 2023
Guillou-May 'Enriched mod. cat. and presheaf cat.' 2010.

Homotopy Atoms

Let \mathscr{M} be a \mathscr{V} -model category, \mathscr{V} combinatorial, generated by $I_{\mathscr{V}} = \{A_i \hookrightarrow B_i \mid i \in I\}.$

Definition

 \mathcal{M} is equipped with a set of *homotopy atoms* if there exists a set of cofibrant objects $\mathcal{H} \subset \mathcal{M}$ such that

- The functors $\{\text{hom}(T,-) \mid T \in \mathcal{H}\}$ jointly reflect weak equivalences between fibrant objects;
- ② The functors $\{\text{hom}(T,\widehat{-}) \mid T \in \mathcal{H}\}$ commute with homotopy pushouts, sequential homotopy colimits, and $-\otimes A_i$ and $-\otimes B_i$, up to weak equivalence.

Related work: Anna Montarulli, 'Representation theorems for abelian and model categories'. 2023

Guillou-May 'Enriched mod. cat. and presheaf cat.', 2010.

Theorem

Let \mathscr{M} be a \mathscr{V} -model category. There exists a small \mathscr{V} -category \mathscr{C} and a Quillen equivalence $R: \mathscr{M} \xrightarrow{} \bot \mathscr{V}^{\mathscr{C}^{op}} : L$ iff \mathscr{M} may be equipped with a set of homotopy atoms.

proof idea:

$$(\Rightarrow)$$
 define $\mathcal{H} = \{T_C = L(\mathsf{hom}(-,C) \mid C \in \mathscr{C}\}.$ Note

Representable functors in proj. model str. are cofibrant.

Yoga of weighted homotopy colimits to check homotopy atoms.

 (\Leftarrow) proof idea: Let $\mathscr C$ be full $\mathscr V$ -subcat. of $\mathscr M$ on objects $\mathscr H$. Let $RM(T)=\mathsf{hom}(T,M)$ and $L(-)=(-)\otimes_{\mathscr C} H$ where $H:\mathscr C\hookrightarrow \mathscr M$.

Prove Q.E. using cellular induction.

Theorem

Let \mathscr{M} be a \mathscr{V} -model category. There exists a small \mathscr{V} -category \mathscr{C} and a Quillen equivalence $R: \mathscr{M} \hookrightarrow \bot \longrightarrow \mathscr{V}^{\mathsf{Cop}}: L$ iff \mathscr{M} may be equipped with a set of homotopy atoms.

proof idea:

(⇒) define
$$\mathcal{H} = \{T_C = L(\mathsf{hom}(-, C) \mid C \in \mathscr{C}\}$$
. Note $RM(C) = \mathsf{hom}(T_C, M)$ by Yoneda.

Yoga of weighted homotopy colimits to check homotopy atoms. (\Leftarrow) proof idea: Let $\mathscr C$ be full $\mathscr V$ -subcat. of $\mathscr M$ on objects $\mathcal H$. Let $RM(T) = \hom(T, M)$ and $L(-) = (-) \otimes_{\mathscr C} H$ where $H : \mathscr C \hookrightarrow \mathscr M$. Prove Q.E. using cellular induction.

Theorem

Let \mathscr{M} be a \mathscr{V} -model category. There exists a small \mathscr{V} -category \mathscr{C} and a Quillen equivalence $R: \mathscr{M} \xrightarrow{} \bot \mathscr{V}^{\mathscr{C}^{op}} : L$ iff \mathscr{M} may be equipped with a set of homotopy atoms.

proof idea:

(⇒) define $\mathcal{H} = \{T_C = L(\text{hom}(-, C) \mid C \in \mathscr{C}\}$. Note $RM(C) = \text{hom}(T_C, M)$ by Yoneda.

Representable functors in proj. model str. are cofibrant.

Yoga of weighted homotopy colimits to check homotopy atoms. (\Leftarrow) proof idea: Let $\mathscr C$ be full $\mathscr V$ -subcat. of $\mathscr M$ on objects $\mathcal H$. Let $RM(T) = \hom(T,M)$ and $L(-) = (-) \otimes_{\mathscr C} H$ where $H : \mathscr C \hookrightarrow \mathscr M$. Prove Q.E. using cellular induction.

Theorem

Let \mathscr{M} be a \mathscr{V} -model category. There exists a small \mathscr{V} -category \mathscr{C} and a Quillen equivalence $R: \mathscr{M} \hookrightarrow \bot \longrightarrow \mathscr{V}^{\mathsf{Cop}}: L$ iff \mathscr{M} may be equipped with a set of homotopy atoms.

proof idea:

$$(\Rightarrow)$$
 define $\mathcal{H} = \{ T_C = L(\mathsf{hom}(-,C) \mid C \in \mathscr{C} \}$. Note

 $RM(C) = hom(T_C, M)$ by Yoneda.

Representable functors in proj. model str. are cofibrant.

Yoga of weighted homotopy colimits to check homotopy atoms.

$$(\Leftarrow)$$
 proof idea: Let $\mathscr C$ be full $\mathscr V$ -subcat. of $\mathscr M$ on objects $\mathcal H$. Let $RM(T) = \mathsf{hom}(T,M)$ and $L(-) = (-) \otimes_{\mathscr C} H$ where $H : \mathscr C \hookrightarrow \mathscr M$. Prove Q.E. using cellular induction.

Theorem

Let \mathscr{M} be a \mathscr{V} -model category. There exists a small \mathscr{V} -category \mathscr{C} and a Quillen equivalence $R: \mathscr{M} \hookrightarrow \bot \longrightarrow \mathscr{V}^{\mathsf{Cop}}: L$ iff \mathscr{M} may be equipped with a set of homotopy atoms.

proof idea:

$$(\Rightarrow)$$
 define $\mathcal{H} = \{ T_C = L(\mathsf{hom}(-,C) \mid C \in \mathscr{C} \}$. Note

$$RM(C) = hom(T_C, M)$$
 by Yoneda.

Representable functors in proj. model str. are cofibrant.

Yoga of weighted homotopy colimits to check homotopy atoms.

(
$$\Leftarrow$$
) proof idea: Let $\mathscr C$ be full $\mathscr V$ -subcat. of $\mathscr M$ on objects $\mathcal H$. Let $RM(T) = \hom(T, M)$ and $L(-) = (-) \otimes_{\mathscr C} H$ where $H : \mathscr C \hookrightarrow \mathscr M$.

Theorem

Let \mathscr{M} be a \mathscr{V} -model category. There exists a small \mathscr{V} -category \mathscr{C} and a Quillen equivalence $R: \mathscr{M} \xrightarrow{} \bot \mathscr{V}^{\mathscr{C}^{op}} : L$ iff \mathscr{M} may be equipped with a set of homotopy atoms.

proof idea:

(⇒) define
$$\mathcal{H} = \{ T_C = L(\mathsf{hom}(-, C) \mid C \in \mathscr{C} \}$$
. Note

$$RM(C) = hom(T_C, M)$$
 by Yoneda.

Representable functors in proj. model str. are cofibrant.

Yoga of weighted homotopy colimits to check homotopy atoms.

$$(\Leftarrow)$$
 proof idea: Let $\mathscr C$ be full $\mathscr V$ -subcat. of $\mathscr M$ on objects $\mathscr H$. Let

$$RM(T) = \text{hom}(T, M) \text{ and } L(-) = (-) \otimes_{\mathscr{C}} H \text{ where } H : \mathscr{C} \hookrightarrow \mathscr{M}.$$

Prove Q.E. using cellular induction

Theorem

Let \mathscr{M} be a \mathscr{V} -model category. There exists a small \mathscr{V} -category \mathscr{C} and a Quillen equivalence $R: \mathscr{M} \hookrightarrow \bot \longrightarrow \mathscr{V}^{\mathsf{Cop}}: L$ iff \mathscr{M} may be equipped with a set of homotopy atoms.

proof idea:

(⇒) define
$$\mathcal{H} = \{ T_C = L(\mathsf{hom}(-, C) \mid C \in \mathscr{C} \}$$
. Note

 $RM(C) = hom(T_C, M)$ by Yoneda.

Representable functors in proj. model str. are cofibrant.

Yoga of weighted homotopy colimits to check homotopy atoms.

 (\Leftarrow) proof idea: Let $\mathscr C$ be full $\mathscr V$ -subcat. of $\mathscr M$ on objects $\mathscr H$. Let

RM(T) = hom(T, M) and $L(-) = (-) \otimes_{\mathscr{C}} H$ where $H : \mathscr{C} \hookrightarrow \mathscr{M}$. Prove Q.E. using cellular induction.

4 D > 4 D > 4 E > 4 E > E 9 Q C

Examples of homotopy atoms I

Example 1: Dwyer-Kan orbits in a simplicial category \mathcal{M} are homotopy atoms with respect to the model structure they induce on \mathcal{M} .

Example 2 (Schwede-Shipley '03): Let \mathscr{M} be a stable simplicial model category equipped with a set of (cofibrant) compact generators \mathscr{G} , then the spectral category $\operatorname{Sp}^\Sigma(\mathscr{M})$ is also equipped with a set of compact generators $\Sigma^\infty\mathscr{G}$ and it is Quillen equivalent to the category of modules over a 'ring with several objects' $\mathscr{E} = \operatorname{End}(\mathscr{G}_{\text{fib}})$

$$\operatorname{\mathsf{Sp}}(\mathscr{M}) \stackrel{\longleftarrow}{\longrightarrow} \operatorname{\mathsf{Sp}}^{\mathcal{E}^{\operatorname{op}}}$$

Then $\mathsf{Sp}^\Sigma(\mathscr{M})$ is equipped with a set of homotopy atoms.

Examples of homotopy atoms I

Example 1: Dwyer-Kan orbits in a simplicial category \mathcal{M} are homotopy atoms with respect to the model structure they induce on \mathcal{M} .

Example 2 (Schwede-Shipley '03): Let \mathscr{M} be a stable simplicial model category equipped with a set of (cofibrant) compact generators \mathcal{G} , then the spectral category $\operatorname{Sp}^\Sigma(\mathscr{M})$ is also equipped with a set of compact generators $\Sigma^\infty \mathcal{G}$ and it is Quillen equivalent to the category of modules over a 'ring with several objects' $\mathcal{E} = \operatorname{End}(\mathcal{G}_{\text{fib}})$

$$\mathsf{Sp}(\mathscr{M}) \stackrel{\longleftarrow}{ } \mathsf{Sp}^{\mathcal{E}^{\mathsf{op}}}$$

Then $\mathsf{Sp}^\Sigma(\mathscr{M})$ is equipped with a set of homotopy atoms.

Examples of homotopy atoms II

Example 3: Equivariant spaces + Elmendorf's theorem.

Example 4: Sarah Yeakel's isovariant homotopy theory + isovariant Elmendorf theorem (equivariant maps $f: X \to Y$ plus equality of stabilizers $G_X = G_{f(X)}$).

Example 5: Gu's model structures on diagrams of categories, with orbit model structures.

Examples of homotopy atoms II

Example 3: Equivariant spaces + Elmendorf's theorem.

Example 4: Sarah Yeakel's isovariant homotopy theory + isovariant Elmendorf theorem (equivariant maps $f: X \to Y$ plus equality of stabilizers $G_X = G_{f(X)}$).

Example 5: Gu's model structures on diagrams of categories, with orbit model structures.

Examples of homotopy atoms II

Example 3: Equivariant spaces + Elmendorf's theorem.

Example 4: Sarah Yeakel's isovariant homotopy theory + isovariant Elmendorf theorem (equivariant maps $f: X \to Y$ plus equality of stabilizers $G_X = G_{f(X)}$).

Example 5: Gu's model structures on diagrams of categories, with orbit model structures.

Categories of functors (not necessarily presheaves)

Next goal: Learn to recognize functor categories of the form \mathcal{N}^D , where \mathcal{N} is a combinatorial \mathcal{V} -category and D is a small \mathcal{V} -category.

Suppose $\mathscr{E} \subset \mathscr{N}$ is a full subcategory such that \mathscr{N} is Quillen equivalent to the localization of $\mathscr{V}^{\mathscr{E}^{op}}$ w.r.t. a set of maps \mathcal{F} . A \mathscr{V} -category \mathscr{M} is equipped with a natural function complex in \mathscr{N} if \mathscr{M} is a $\mathscr{V}^{\mathscr{E}^{op}}$ -category and $\forall f \in \mathcal{F} \ M \in \mathscr{M}, \ f \otimes \widetilde{M}$ is a w.eq.

Example: let $\mathscr{V} = \mathscr{S}_*$, and $\operatorname{Sp} = \operatorname{Bousfield-Friedlander}$ spectra = \mathscr{S}_*^{Sph} where $\operatorname{hom}_{\operatorname{Sph}}(i,j) = S^{j-i}$ if $i \leq j$ and * otherwise. Let $\mathscr{E} = \{\Sigma^{-i}(\Sigma^{\infty}S^0) \mid i \geq 0\}$, and $\mathscr{S}_*^{\operatorname{eop}} \leftrightarrows \operatorname{Sp}$ is a Quillen pair that becomes a Quillen equivalence after a left Bousfield localization that turns homotopy pullbacks into homotopy pushouts. Then Sp is equipped with a natural function complex over Sp and so are categories of diagrams of spectra.

Categories of functors (not necessarily presheaves)

Next goal: Learn to recognize functor categories of the form \mathcal{N}^D , where \mathcal{N} is a combinatorial \mathcal{V} -category and D is a small \mathcal{V} -category.

Suppose $\mathscr{E} \subset \mathscr{N}$ is a full subcategory such that \mathscr{N} is Quillen equivalent to the localization of $\mathscr{V}^{\mathscr{E}^{op}}$ w.r.t. a set of maps \mathcal{F} . A \mathscr{V} -category \mathscr{M} is equipped with a natural function complex in \mathscr{N} if \mathscr{M} is a $\mathscr{V}^{\mathscr{E}^{op}}$ -category and $\forall f \in \mathcal{F} \ M \in \mathscr{M}, \ f \otimes \tilde{M}$ is a w.eq.

Example: let $\mathscr{V}=\mathcal{S}_*$, and Sp = Bousfield-Friedlander spectra = \mathcal{S}_*^{Sph} where $\mathsf{hom}_{Sph}(i,j)=S^{j-i}$ if $i\leq j$ and * otherwise. Let $\mathscr{E}=\{\Sigma^{-i}(\Sigma^\infty S^0)\,|\,i\geq 0\}$, and $\mathcal{S}_*^{\mathscr{E}^{op}}\leftrightarrows Sp$ is a Quillen pair that becomes a Quillen equivalence after a left Bousfield localization that turns homotopy pullbacks into homotopy pushouts. Then Sp is equipped with a natural function complex over Sp and so are categories of diagrams of spectra.

Recognition of functor categories

Suppose \mathscr{M} is equipped with a natural function complex in $\mathscr{N}=(\mathscr{V}^{\mathscr{E}^{op}})_{\mathcal{F}}$ and $I_{\mathscr{N}}=\{A_i\hookrightarrow B_i\mid i\in I\}$ is a set of generating cofibrations. Suppose in addition that there is a full subcategory $\mathscr{F}\subset\mathscr{N}$ such that

- The functors $\{Nat(F, -) | F \in \mathscr{F}\}$ jointly reflect weak equivalences of fibrant objects;
- ② The functors $\{\operatorname{Nat}(F,\widehat{-}) \mid F \in \mathscr{F}\}$ commute with homotopy pushouts, sequential homotopy colimits, and $-\otimes A_i$ and $-\otimes B_i$, up to weak equivalence.

The objects of \mathscr{F} are called homotopy \mathscr{N} -atoms.

Theorem

 ${\mathscr M}$ is equipped with a set of homotopy ${\mathscr N}$ -atoms ${\mathscr F}$ if and only if ${\mathscr M}$ is Quillen equivalent to the diagram category ${\mathscr N}^{{\mathscr F}^{\operatorname{op}}}$.

n-excisive = 'polynomial of degree $\leq n$ ': takes strongly cocartesian (n+1)-cubes to cartesian.

Notation:
$$\mathcal{V} = \mathcal{S}_*$$
, $\mathcal{M} = (\operatorname{Sp}^{\mathcal{S}_*^{\operatorname{nin}}})_{n-\operatorname{exc}}$; $R^{S^0}(-) = \operatorname{hom}(S^0, -)$, $\mathscr{F} = \{\Sigma^{\infty}(\bigwedge_{i=1}^k R^{S^0})_{\operatorname{cof}}\}_{k=1}^n$.

Lemma (Biedermann-Ch.-Röndigs, '07)

For homotopy functor $F \in \operatorname{Sp}^{S_*^{\text{init}}}$, the n-th cross-efffect may be computed as $\operatorname{Nat}\left(\Sigma^{\infty}(\bigwedge_{i=1}^n R^{S^0})_{\operatorname{cof}}, F\right) = cr_n(S^0, \dots, S^0)$.

Goodwillie: $\forall F, G \in \operatorname{Sp}^{\mathcal{S}*}$ n-homogeneous, if $f: F \to G$ is such that $cr_n(f)$ is a weak equivalence, then f is a weak equivalence. Inductive argument, using Goodwillie's delooping theorem shows that $\{\operatorname{Nat}(F,-) \mid F \in \mathscr{F}\}$ jointly reflect weak equivalences of n-excisive functors.

n-excisive = 'polynomial of degree $\leq n$ ': takes strongly cocartesian (n+1)-cubes to cartesian.

Notation:
$$\mathcal{V} = \mathcal{S}_*$$
, $\mathcal{M} = (\operatorname{Sp}^{\mathcal{S}_*^{fin}})_{n\text{-exc}}$; $R^{S^0}(-) = \operatorname{hom}(S^0, -)$, $\mathscr{F} = \{\Sigma^{\infty}(\bigwedge_{i=1}^k R^{S^0})_{\text{cof}}\}_{k=1}^n$.

Lemma (Biedermann-Ch.-Röndigs, '07)

For homotopy functor $F \in \operatorname{Sp}^{S_*^{\text{init}}}$, the n-th cross-efffect may be computed as Nat $\left(\Sigma^{\infty}(\bigwedge_{i=1}^n R^{S^0})_{\operatorname{cof}}, F\right) = cr_n(S^0, \ldots, S^0)$.

Goodwillie: $\forall F, G \in \operatorname{Sp}^{\mathcal{S}*}$ n-homogeneous, if $f: F \to G$ is such that $cr_n(f)$ is a weak equivalence, then f is a weak equivalence. Inductive argument, using Goodwillie's delooping theorem shows that $\{\operatorname{Nat}(F,-) \mid F \in \mathscr{F}\}$ jointly reflect weak equivalences of n-excisive functors.

n-excisive = 'polynomial of degree $\leq n$ ': takes strongly cocartesian (n+1)-cubes to cartesian.

Notation:
$$\mathcal{V} = \mathcal{S}_*$$
, $\mathcal{M} = (\operatorname{Sp}^{\mathcal{S}_*^{fin}})_{n\text{-exc}}$; $R^{\mathcal{S}^0}(-) = \operatorname{hom}(\mathcal{S}^0, -)$, $\mathcal{F} = \{\Sigma^{\infty}(\bigwedge_{i=1}^k R^{\mathcal{S}^0})_{\text{cof}}\}_{k=1}^n$.

Lemma (Biedermann-Ch.-Röndigs, '07)

For homotopy functor $F \in \operatorname{Sp}^{S_*^{\text{ini}}}$, the n-th cross-efffect may be computed as $\operatorname{Nat}\left(\Sigma^{\infty}(\bigwedge_{i=1}^n R^{S^0})_{\operatorname{cof}}, F\right) = cr_n(S^0, \ldots, S^0)$.

Goodwillie: $\forall F, G \in \operatorname{Sp}^{S*}$ n-homogeneous, if $f: F \to G$ is such that $cr_n(f)$ is a weak equivalence, then f is a weak equivalence. Inductive argument, using Goodwillie's delooping theorem shows that $\{\operatorname{Nat}(F,-) \mid F \in \mathscr{F}\}$ jointly reflect weak equivalences of n-excisive functors.

n-excisive = 'polynomial of degree $\leq n$ ': takes strongly cocartesian (n+1)-cubes to cartesian.

Notation:
$$\mathcal{V} = \mathcal{S}_*$$
, $\mathcal{M} = (\operatorname{Sp}^{\mathcal{S}_*^{\text{fin}}})_{n\text{-exc}}$; $R^{\mathcal{S}^0}(-) = \operatorname{hom}(\mathcal{S}^0, -)$, $\mathscr{F} = \{\Sigma^{\infty}(\bigwedge_{i=1}^k R^{\mathcal{S}^0})_{\operatorname{cof}}\}_{k=1}^n$.

Lemma (Biedermann-Ch.-Röndigs, '07)

For homotopy functor $F \in \operatorname{Sp}^{S_*^{\text{ini}}}$, the n-th cross-efffect may be computed as $\operatorname{Nat}\left(\Sigma^{\infty}(\bigwedge_{i=1}^n R^{S^0})_{\operatorname{cof}}, F\right) = cr_n(S^0, \ldots, S^0)$.

Goodwillie: $\forall F, G \in \operatorname{Sp}^{\mathcal{S}*}$ n-homogeneous, if $f: F \to G$ is such that $cr_n(f)$ is a weak equivalence, then f is a weak equivalence. Inductive argument, using Goodwillie's delooping theorem shows that $\{\operatorname{Nat}(F,-) \mid F \in \mathscr{F}\}$ jointly reflect weak equivalences of n-excisive functors.

n-excisive = 'polynomial of degree $\leq n$ ': takes strongly cocartesian (n+1)-cubes to cartesian.

Notation:
$$\mathcal{V} = \mathcal{S}_*$$
, $\mathcal{M} = (\operatorname{Sp}^{\mathcal{S}_*^{\text{fin}}})_{n\text{-exc}}$; $R^{S^0}(-) = \operatorname{hom}(S^0, -)$, $\mathscr{F} = \{\Sigma^{\infty}(\bigwedge_{i=1}^k R^{S^0})_{\text{cof}}\}_{k=1}^n$.

Lemma (Biedermann-Ch.-Röndigs, '07)

For homotopy functor $F \in \operatorname{Sp}^{S^{\operatorname{hn}}_*}$, the n-th cross-efffect may be computed as $\operatorname{Nat}\left(\Sigma^{\infty}(\bigwedge_{i=1}^n R^{S^0})_{\operatorname{cof}}, F\right) = \operatorname{cr}_n(S^0, \dots, S^0)$.

Goodwillie: $\forall F, G \in \operatorname{Sp}^{S*}$ n-homogeneous, if $f : F \to G$ is such that $cr_n(f)$ is a weak equivalence, then f is a weak equivalence. Inductive argument, using Goodwillie's delooping theorem shows that $\{\operatorname{Nat}(F,-) \mid F \in \mathscr{F}\}$ jointly reflect weak equivalences of n-excisive functors.

n-excisive = 'polynomial of degree $\leq n$ ': takes strongly cocartesian (n+1)-cubes to cartesian.

Notation:
$$\mathcal{V} = \mathcal{S}_*$$
, $\mathcal{M} = (\operatorname{Sp}^{\mathcal{S}_*^{\text{fin}}})_{n\text{-exc}}$; $R^{S^0}(-) = \operatorname{hom}(S^0, -)$, $\mathscr{F} = \{\Sigma^{\infty}(\bigwedge_{i=1}^k R^{S^0})_{\text{cof}}\}_{k=1}^n$.

Lemma (Biedermann-Ch.-Röndigs, '07)

For homotopy functor $F \in \operatorname{Sp}^{S^{\text{fin}}_*}$, the n-th cross-effect may be computed as $\operatorname{Nat}\left(\Sigma^{\infty}(\bigwedge_{i=1}^n R^{S^0})_{\operatorname{cof}}, F\right) = \operatorname{cr}_n(S^0, \dots, S^0)$.

Goodwillie: $\forall F, G \in \operatorname{Sp}^{\mathcal{S}_*}$ n-homogeneous, if $f \colon F \to G$ is such that $cr_n(f)$ is a weak equivalence, then f is a weak equivalence. Inductive argument, using Goodwillie's delooping theorem shows that $\{\operatorname{Nat}(F,-) \mid F \in \mathscr{F}\}$ jointly reflect weak equivalences of n-excisive functors.

n-excisive = 'polynomial of degree $\leq n$ ': takes strongly cocartesian (n+1)-cubes to cartesian.

Notation:
$$\mathcal{V} = \mathcal{S}_*$$
, $\mathcal{M} = (\operatorname{Sp}^{\mathcal{S}_*^{\text{fin}}})_{n\text{-exc}}$; $R^{S^0}(-) = \operatorname{hom}(S^0, -)$, $\mathscr{F} = \{\Sigma^{\infty}(\bigwedge_{i=1}^k R^{S^0})_{\text{cof}}\}_{k=1}^n$.

Lemma (Biedermann-Ch.-Röndigs, '07)

For homotopy functor $F \in \operatorname{Sp}^{S_*^{\text{lin}}}$, the n-th cross-efffect may be computed as $\operatorname{Nat}\left(\Sigma^{\infty}(\bigwedge_{i=1}^n R^{S^0})_{\operatorname{cof}}, F\right) = \operatorname{cr}_n(S^0, \dots, S^0)$.

Goodwillie: $\forall F, G \in \operatorname{Sp}^{S_*}$ n-homogeneous, if $f \colon F \to G$ is such that $\operatorname{cr}_n(f)$ is a weak equivalence, then f is a weak equivalence. Inductive argument, using Goodwillie's delooping theorem shows that $\{\operatorname{Nat}(F,-) \mid F \in \mathscr{F}\}$ jointly reflect weak equivalences of n-excisive functors.

Theorem

 $(\operatorname{Sp}^{S_*^{\text{lin}}})_{n\text{-exc}}$ is Quillen equivalent to the projective model structure on $\operatorname{Sp}^{\mathscr{F}^{\circ p}}$.

surjections as morphisms, and $\Omega^+_{\leq n}$ is the category on the same objects and $\Omega^+_{\leq n}(m,k) = \Omega_{\leq n}(m,k)^+$ Previous results: Dwyer-Rezk(unpublished), Arone-Ching ('16) There is a Quillen equivalence $\operatorname{Sp}^{\Omega_{\leq n}} \leftrightarrows (\operatorname{Sp}^{S^{\text{fin}}_*})_{n\text{-exc}}$. Comparison of the results: There is a Dwyer-Kan equivalence of categories $\Omega_{\leq n}(m,k)^+ \to \mathscr{F}^{\operatorname{op}}$, hence the equivalence of the ∞ -categories of functors. But the underlying categories of $\operatorname{Sp}^{\Omega^+_{\leq n}} \in \mathcal{S}$ -cat. and $\operatorname{Sp}^{\Omega_{\leq n}} \in \mathcal{S}_*$ -cat. are isomorphic, hence carry the same model structure.

Theorem

 $(Sp^{S_*^{lin}})_{n\text{-exc}}$ is Quillen equivalent to the projective model structure on Sp FOP

Notation: Let $\Omega_{\leq n}$ be the category of finite non-empty sets with surjections as morphisms, and $\Omega_{< n}^+$ is the category on the same objects and $\Omega^+_{< n}(m, k) = \Omega_{< n}(m, k)^+$

Previous results: Dwyer-Rezk(unpublished), Arone-Ching ('16)

4 D > 4 D > 4 E > 4 E >

Theorem

 $(\operatorname{Sp}^{S_*^{\text{lin}}})_{n\text{-exc}}$ is Quillen equivalent to the projective model structure on $\operatorname{Sp}^{\mathscr{F}^{\operatorname{op}}}$.

Notation: Let $\Omega_{\leq n}$ be the category of finite non-empty sets with surjections as morphisms, and $\Omega_{\leq n}^+$ is the category on the same objects and $\Omega_{\leq n}^+(m,k) = \Omega_{\leq n}(m,k)^+$

Previous results: Dwyer-Rezk(unpublished), Arone-Ching ('16)

There is a Quillen equivalence $Sp^{\Omega_{\leq n}} \leftrightarrows (Sp^{S_*^{fin}})_{n-exc}$.

Comparison of the results: There is a Dwyer-Kan equivalence of categories $\Omega_{\leq n}(m,k)^+ \to \mathscr{F}^{op}$, hence the equivalence of the ∞ -categories of functors. But the underlying categories of $\operatorname{Sp}^{\Omega_{\leq n}^+} \in \mathcal{S}$ -cat. and $\operatorname{Sp}^{\Omega_{\leq n}} \in \mathcal{S}_*$ -cat. are isomorphic, hence carry the same model structure.

Theorem

 $(\operatorname{Sp}^{S_*^{\text{lin}}})_{n\text{-exc}}$ is Quillen equivalent to the projective model structure on $\operatorname{Sp}^{\mathscr{F}^{\circ p}}$.

Notation: Let $\Omega_{\leq n}$ be the category of finite non-empty sets with surjections as morphisms, and $\Omega_{< n}^+$ is the category on the same objects and $\Omega^+_{\leq n}(m,k) = \Omega_{\leq n}(m,k)^+$ Previous results: Dwyer-Rezk(unpublished), Arone-Ching ('16) There is a Quillen equivalence $Sp^{\Omega \leq n} = (Sp^{S_*^{tin}})_{n-exc}$. Comparison of the results: There is a Dwyer-Kan equivalence of categories $\Omega_{\leq n}(m,k)^+ \to \mathscr{F}^{op}$, hence the equivalence of the ∞ -categories of functors. But the underlying categories of 4 D > 4 D > 4 E > 4 E >

Theorem

 $(\operatorname{Sp}^{S_*^{\text{lin}}})_{n\text{-exc}}$ is Quillen equivalent to the projective model structure on $\operatorname{Sp}^{\mathscr{F}^{\operatorname{op}}}$.

same objects and $\Omega_{\leq n}^+(m,k) = \Omega_{\leq n}(m,k)^+$ Previous results: Dwyer-Rezk(unpublished), Arone-Ching ('16) There is a Quillen equivalence $\operatorname{Sp}^{\Omega_{\leq n}} \leftrightarrows (\operatorname{Sp}^{\mathcal{S}_*^{fin}})_{n\text{-exc}}$. Comparison of the results: There is a Dwyer-Kan equivalence of categories $\Omega_{\leq n}(m,k)^+ \to \mathscr{F}^{\operatorname{op}}$, hence the equivalence of the ∞ -categories of functors. But the underlying categories of $\operatorname{Sp}^{\Omega_{\leq n}^+} \in \mathcal{S}$ -cat. and $\operatorname{Sp}^{\Omega_{\leq n}} \in \mathcal{S}_*$ -cat. are isomorphic, hence carry the same model structure.

Notation: Let $\Omega_{\leq n}$ be the category of finite non-empty sets with surjections as morphisms, and $\Omega_{\leq n}^+$ is the category on the