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Recognition of presheaf categories

Recognition of presheaf categories: classical results

Ordinary case:

Theorem (M. Bunge ’69 – PhD
thesis)
E is isomorphic to a presheaf
category iff it is a cocomplete
atomic regular category with a
generating set A of atoms.

E ' SetA
op

A ∈ A is an atom if hom(A,−)
commutes with all colimits.

Simplicial case:

Theorem (W.G. Dwyer and
D. Kan ’84)
Let M be a simplicial category
equipped with a set of orbits O.
Then there exists a model
structure on M Quillen
equivalent to P(O).

M 'Q SOop

O ∈ O is an orbit if hom(O,−)
commutes with cellular
constructions up to homotopy.
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Recognition of presheaf categories

Bunge’s conditions:
E cocomplete, atomic, regular

cocomplete: E is closed under
arbitrary colimits;

atomic: E has a dense
subcategory A of universally
presentable objects;

dense: every object is
canonically a colimit of objects
in A .

regular: E has finite limits,
kernel pairs, and satisfies
exactness conditions like
existence of images and the
image factorization (regular
epi-mono).

Dwyer-Kan orbits: M is
equipped with a set of orbits
{Oe}e∈E if
Q0: M is closed under arbitrary

limits and colimits;
Q1: ∀e ∈ E ,

(Oe′ ⊗ K )Oe
� _

��

// X Oe
a

hom. p.-o.
��

(Oe′ ⊗ L)Oe // X Oe
a+1,

where (K ↪→ L) ∈ Sfin;
Q2: ∀α∀e ∈ E ,

(colim
a<α

Xa)Oe ' colim
a<α

X Oe
a ;

Q3: ∃κ : ∀e ∈ E ,
(colim

a<κ
Xa)Oe ∼= colim

a<κ
X Oe

a .
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Theorem: (Dwyer-Kan, ’84)

Theorem
Let M be a simplicial category equipped with a set of orbits
O = {Oe}e∈E . Then M is a model category with f : X → Y a
W.E. or a fib if the induced map
hom(Oe, f ) : hom(Oe,X )→ hom(Oe,Y ) is a W.E. or a fib.,
respectively. Moreover, the adjunction

M
hom(O,−)

22 SO
op
,

−⊗O Inc
tt Inc : O ↪→M

is a Quillen equivalence if the category of presheaves is
equipped with the projective model structure.
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Examples of Dwyer-Kan orbits

Bredon homotopy theory: M = SG, OG = {G/H |H < G}

SG

fixed points
22 SO

op
G ,

Elmendorf
ss

Relative homotopy theory: Balmer-Matthey (2004)
M = SD , C ⊂ D , O = {RC = hom(C,−) |C ∈ C } ' C op

SD

hom(O,−)

22 SC ,
−⊗O Inc

ss Inc : O ↪→M

Farjoun-Zabrodsky orbits (1986): M = SD, even if D is
small, OD = {T˜ | colimD T˜ = ∗} may be large, and M not
cofibrantly generated.
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Homotopy Atoms

Let M be a V -model category, V combinatorial, generated by
IV = {Ai ↪→ Bi | i ∈ I}.

Definition
M is equipped with a set of homotopy atoms if there exists a
set of cofibrant objects H ⊂M such that

1 The functors {hom(T ,−) |T ∈ H} jointly reflect weak
equivalences between fibrant objects;

2 The functors {hom(T , −̂) |T ∈ H} commute with homotopy
pushouts, sequential homotopy colimits, and −⊗ Ai and
−⊗ Bi , up to weak equivalence.

Related work: Anna Montarulli, ‘Representation theorems for
abelian and model categories’. 2023
Guillou-May ‘Enriched mod. cat. and presheaf cat.’ 2010.
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Main Theorem

Theorem
Let M be a V -model category. There exists a small V -category
C and a Quillen equivalence R : M ⊥ 22 V C opss :L iff M
may be equipped with a set of homotopy atoms.

proof idea:
(⇒) define H = {TC = L(hom(−,C) |C ∈ C }. Note
RM(C) = hom(TC ,M) by Yoneda.
Representable functors in proj. model str. are cofibrant.
Yoga of weighted homotopy colimits to check homotopy atoms.
(⇐) proof idea: Let C be full V -subcat. of M on objects H. Let
RM(T ) = hom(T ,M) and L(−) = (−)⊗C H where H : C ↪→M .
Prove Q.E. using cellular induction.
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Examples of homotopy atoms
Categories of functors (not necessarily presheaves)
Classification of polynomial functors

Examples of homotopy atoms I

Example 1: Dwyer-Kan orbits in a simplicial category M are
homotopy atoms with respect to the model structure they
induce on M .

Example 2 (Schwede-Shipley ‘03): Let M be a stable simplicial
model category equipped with a set of (cofibrant) compact
generators G, then the spectral category SpΣ(M ) is also
equipped with a set of compact generators Σ∞G and it is
Quillen equivalent to the category of modules over a ‘ring with
several objects’ E = End(Gfib)

Sp(M ) ⊥ 22 SpE
opqq

Then SpΣ(M ) is equipped with a set of homotopy atoms.
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Homotopical recognition of diagram categories

Applications

Examples of homotopy atoms
Categories of functors (not necessarily presheaves)
Classification of polynomial functors

Examples of homotopy atoms II

Example 3: Equivariant spaces + Elmendorf’s theorem.

Example 4: Sarah Yeakel’s isovariant homotopy theory +
isovariant Elmendorf theorem (equivariant maps f : X → Y plus
equality of stabilizers Gx = Gf (x)).

Example 5: Gu’s model structures on diagrams of categories,
with orbit model structures.

Boris Chorny joint w/ D. White Homotopical recognition of diagram categories



Introduction
Homotopical recognition of diagram categories

Applications

Examples of homotopy atoms
Categories of functors (not necessarily presheaves)
Classification of polynomial functors

Examples of homotopy atoms II

Example 3: Equivariant spaces + Elmendorf’s theorem.

Example 4: Sarah Yeakel’s isovariant homotopy theory +
isovariant Elmendorf theorem (equivariant maps f : X → Y plus
equality of stabilizers Gx = Gf (x)).

Example 5: Gu’s model structures on diagrams of categories,
with orbit model structures.

Boris Chorny joint w/ D. White Homotopical recognition of diagram categories



Introduction
Homotopical recognition of diagram categories

Applications

Examples of homotopy atoms
Categories of functors (not necessarily presheaves)
Classification of polynomial functors

Examples of homotopy atoms II

Example 3: Equivariant spaces + Elmendorf’s theorem.

Example 4: Sarah Yeakel’s isovariant homotopy theory +
isovariant Elmendorf theorem (equivariant maps f : X → Y plus
equality of stabilizers Gx = Gf (x)).

Example 5: Gu’s model structures on diagrams of categories,
with orbit model structures.

Boris Chorny joint w/ D. White Homotopical recognition of diagram categories



Introduction
Homotopical recognition of diagram categories

Applications

Examples of homotopy atoms
Categories of functors (not necessarily presheaves)
Classification of polynomial functors

Categories of functors (not necessarily presheaves)

Next goal: Learn to recognize functor categories of the form
N D, where N is a combinatorial V -category and D is a small
V -category.
Suppose E ⊂ N is a full subcategory such that N is Quillen
equivalent to the localization of V E op

w.r.t. a set of maps F . A
V -category M is equipped with a natural function complex in
N if M is a V E op

-category and ∀f ∈ F M ∈M , f ⊗ M̃ is a w.eq.

Example: let V = S∗, and Sp = Bousfield-Friedlander spectra =
SSph
∗ where homSph(i , j) = Sj−i if i ≤ j and ∗ otherwise. Let

E = {Σ−i(Σ∞S0) | i ≥ 0}, and SE op

∗ � Sp is a Quillen pair that
becomes a Quillen equivalence after a left Bousfield
localization that turns homotopy pullbacks into homotopy
pushouts. Then Sp is equipped with a natural function complex
over Sp and so are categories of diagrams of spectra.

Boris Chorny joint w/ D. White Homotopical recognition of diagram categories



Introduction
Homotopical recognition of diagram categories

Applications

Examples of homotopy atoms
Categories of functors (not necessarily presheaves)
Classification of polynomial functors

Categories of functors (not necessarily presheaves)

Next goal: Learn to recognize functor categories of the form
N D, where N is a combinatorial V -category and D is a small
V -category.
Suppose E ⊂ N is a full subcategory such that N is Quillen
equivalent to the localization of V E op

w.r.t. a set of maps F . A
V -category M is equipped with a natural function complex in
N if M is a V E op

-category and ∀f ∈ F M ∈M , f ⊗ M̃ is a w.eq.

Example: let V = S∗, and Sp = Bousfield-Friedlander spectra =
SSph
∗ where homSph(i , j) = Sj−i if i ≤ j and ∗ otherwise. Let

E = {Σ−i(Σ∞S0) | i ≥ 0}, and SE op

∗ � Sp is a Quillen pair that
becomes a Quillen equivalence after a left Bousfield
localization that turns homotopy pullbacks into homotopy
pushouts. Then Sp is equipped with a natural function complex
over Sp and so are categories of diagrams of spectra.

Boris Chorny joint w/ D. White Homotopical recognition of diagram categories



Introduction
Homotopical recognition of diagram categories

Applications

Examples of homotopy atoms
Categories of functors (not necessarily presheaves)
Classification of polynomial functors

Recognition of functor categories

Suppose M is equipped with a natural function complex in
N = (V E op

)F and IN = {Ai ↪→ Bi | i ∈ I} is a set of generating
cofibrations. Suppose in addition that there is a full subcategory
F ⊂ N such that

1 The functors {Nat(F ,−) |F ∈ F} jointly reflect weak
equivalences of fibrant objects;

2 The functors {Nat(F , −̂) |F ∈ F} commute with homotopy
pushouts, sequential homotopy colimits, and −⊗ Ai and
−⊗ Bi , up to weak equivalence.

The objects of F are called homotopy N -atoms.

Theorem
M is equipped with a set of homotopy N -atoms F if and only
if M is Quillen equivalent to the diagram category N F op

.
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Classification of (finitary) polynomial functors I

n-excisive = ‘polynomial of degree ≤ n’: takes strongly
cocartesian (n + 1)-cubes to cartesian.
Notation: V = S∗, M = (SpS

fin
∗ )n-exc; RS0

(−) = hom(S0,−),
F = {Σ∞(

∧k
i=1 RS0

)cof}nk=1.

Lemma (Biedermann-Ch.-Röndigs, ’07)

For homotopy functor F ∈ SpS
fin
∗ , the n-th cross-efffect may be

computed as Nat
(

Σ∞(
∧n

i=1 RS0
)cof,F

)
= crn(S0, . . . ,S0).

Goodwillie: ∀F ,G ∈ SpS∗ n-homogeneous, if f : F → G is such
that crn(f ) is a weak equivalence, then f is a weak equivalence.
Inductive argument, using Goodwillie’s delooping theorem
shows that {Nat(F ,−) |F ∈ F} jointly reflect weak
equivalences of n-excisive functors.
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Classification of (finitary) polynomial functors II

Theorem

(SpS
fin
∗ )n-exc is Quillen equivalent to the projective model

structure on SpF op
.

Notation: Let Ω≤n be the category of finite non-empty sets with
surjections as morphisms, and Ω+

≤n is the category on the
same objects and Ω+

≤n(m, k) = Ω≤n(m, k)+

Previous results: Dwyer-Rezk(unpublished), Arone-Ching (’16)
There is a Quillen equivalence SpΩ≤n � (SpS

fin
∗ )n-exc.

Comparison of the results: There is a Dwyer-Kan equivalence
of categories Ω≤n(m, k)+ → F op, hence the equivalence of the
∞-categories of functors. But the underlying categories of
SpΩ+

≤n ∈ S-cat. and SpΩ≤n ∈ S∗-cat. are isomorphic, hence
carry the same model structure.
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