On lax comma categories

Maria Manuel Clementino

Centre for Mathematics of the University of Coimbra

17th July 2025

(Joint work with Fernando Lucatelli Nunes, George Janelidze, Rui Prezado, Dirk Hofmann.)

Why?

The lax comma category G//H

G// H
$$\longrightarrow$$
 C \longrightarrow C \longrightarrow GB \xrightarrow{Gt} GB' \longrightarrow GB \xrightarrow{Gt} GB' \longrightarrow C \longrightarrow

The lax comma category $G/\!/H$

$$\begin{array}{c} G/\!\!/ H & \longrightarrow \mathbb{C} \\ \downarrow & \Longrightarrow \downarrow H \\ \mathbb{B} & \xrightarrow{\mathbb{G}} \mathbb{A} \end{array}$$

EXAMPLES

$$\begin{array}{c}
(1) \quad A / X \\
(1 = 1, H(x) = X, G = la_{A})
\end{array}$$

Cartesian closedness, extensivity, topologicity, and descent...

• Cat//**X**

Cartesian closedness, extensivity, topologicity, and descent...

- Cat//**X**
- Ord//*X*

Cartesian closedness, extensivity, topologicity, and descent...

- Cat//**X**
- Ord//*X*
- Top//*X*

Cartesian closedness, extensivity, topologicity, and descent...

- Cat//*X*
- Ord//*X*
- Top//**X**
- G//H.

Cat // **X**

C-Lucatelli-Prezado, Lax comma categories: cartesian closedness, extensivity, topologicity, and descent, TAC 2024

The forgetful functor $Cat/\!\!/X \xrightarrow{U} Cat$

▼ is a fibration;

The forgetful functor $Cat/\!/X \xrightarrow{U} Cat$

- ▼ is a fibration;
- has a left adjoint if X has initial object;

The forgetful functor $Cat/\!\!/X \xrightarrow{U} Cat$

- ▼ is a fibration;
- has a left adjoint if X has initial object;
- has a right adjoint if X has terminal object;

The forgetful functor $Cat//X \xrightarrow{U} Cat$

- is a fibration;
- has a left adjoint if X has initial object;
- has a right adjoint if X has terminal object;
- ▼ is a bifibration provided that X is cocomplete;

The forgetful functor $Cat//X \xrightarrow{U} Cat$

- ▼ is a fibration;
- has a left adjoint if X has initial object;
- has a right adjoint if X has terminal object;
- ▼ is a bifibration provided that X is cocomplete;
- ▼ is a topological functor iff **X** is large-complete.

The forgetful functor $Cat//X \xrightarrow{U} Cat$

- is a fibration;
- has a left adjoint if X has initial object;
- has a right adjoint if X has terminal object;
- ▼ is a bifibration provided that **X** is cocomplete;
- lacktriangledown is a topological functor iff $oldsymbol{X}$ is large-complete.

If X is complete, so is Cat//X.

The forgetful functor $Cat//X \xrightarrow{U} Cat$

- is a fibration;
- has a left adjoint if X has initial object;
- ▼ has a right adjoint if X has terminal object;
- ▼ is a bifibration provided that **X** is cocomplete;
- lacktriangledown is a topological functor iff $oldsymbol{X}$ is large-complete.

If X is complete, so is Cat//X.

If X is cocomplete, so is $Cat/\!/X$.

The forgetful functor $Cat//X \xrightarrow{U} Cat$

- ▼ is a fibration;
- has a left adjoint if X has initial object;
- has a right adjoint if X has terminal object;
- ▼ is a bifibration provided that **X** is cocomplete;
- ▼ is a topological functor iff **X** is large-complete.

If X is complete, so is Cat//X.

If X is cocomplete, so is $Cat/\!/X$.

If X has initial object, then $Cat/\!/X$ has coproducts (preserved by U).

The forgetful functor $Cat /\!\!/ X \xrightarrow{U} Cat$

- is a fibration;
- has a left adjoint if X has initial object;
- has a right adjoint if X has terminal object;
- ▼ is a bifibration provided that **X** is cocomplete;
- ▼ is a topological functor iff **X** is large-complete.

If X is complete, so is $Cat/\!/X$.

If X is cocomplete, so is $Cat/\!/X$.

If X has initial object, then $Cat/\!/X$ has coproducts (preserved by U).

If X has initial object, then $Cat/\!/X$ is (infinitary) extensive.

C-Lucatelli-Prezado, Lax comma categories: cartesian closedness, extensivity, topologicity, and descent, TAC 2024

C-Lucatelli-Prezado, Lax comma categories: cartesian closedness, extensivity, topologicity, and descent, TAC 2024

Thm. If X is complete and cartesian closed, then Cat//X is cartesian closed.

Thm. If X is complete and cartesian closed, then Cat//X is cartesian closed.

The exponential $(W,a)\Rightarrow (Y,b)$ is given by $(\mathsf{Cat}[W,Y],b^a)$, with

$$b^{a}(h) = \int_{w \in W} (a(w) \Rightarrow b \cdot h(w)).$$

Thm. If X is complete and cartesian closed, then Cat//X is cartesian closed.

The exponential $(W,a)\Rightarrow (Y,b)$ is given by $(\mathsf{Cat}[W,Y],b^a)$, with

$$b^a(h) = \int_{w \in W} (a(w) \Rightarrow b \cdot h(w)).$$

Recall:

Thm. If X is complete and cartesian closed, then Cat//X is cartesian closed.

The exponential $(W,a) \Rightarrow (Y,b)$ is given by $(Cat[W,Y],b^a)$, with

$$b^a(h) = \int_{w \in W} (a(w) \Rightarrow b \cdot h(w)).$$

Recall:

In a category A with pullbacks, a morphism $y \xrightarrow{f} z$ is effective for descent if the change-of-base functor $A/z \xrightarrow{f^*} A/y$ is monadic.

Thm. If X is complete and cartesian closed, then Cat//X is cartesian closed.

The exponential $(W,a) \Rightarrow (Y,b)$ is given by $(Cat[W,Y],b^a)$, with

$$b^a(h) = \int_{w \in W} (a(w) \Rightarrow b \cdot h(w)).$$

Recall:

In a category A with pullbacks, a morphism $y \xrightarrow{f} z$ is effective for descent if the change-of-base functor $A/z \xrightarrow{f^*} A/y$ is monadic.

Thm. If X has pullbacks, the functor $\operatorname{Cat}/\!\!/ X \xrightarrow{u} \operatorname{Cat}$ preserves effective descent morphisms provided that X has a strict initial object.

C-Lucatelli-Prezado, Lax comma categories: cartesian closedness, extensivity, topologicity, and descent, TAC 2024

Ord//**X**

Ord//**X**

 $a(y) \leq b(f(y))$

CT 2025, Brno

Prop. The forgetful functor $Ord/\!\!/X \xrightarrow{U} Ord$

- ▼ is a fibration;
- has a left adjoint if X has a bottom element;
- has a right adjoint if X has a top element;
- ▼ is a topological functor iff **X** is complete.

Prop. The forgetful functor $Ord/\!/X \xrightarrow{U} Ord$

- is a fibration;
- has a left adjoint if X has a bottom element;
- ▼ has a right adjoint if X has a top element;
- ▼ is a topological functor iff X is complete.

Cor.

- ▼ If **X** has bottom, **X** is complete iff Ord//**X** is complete.
- ▼ If X has top, then X is complete iff $Ord/\!/X$ is cocomplete.

Prop. The forgetful functor $Ord/\!\!/X \xrightarrow{U} Ord$

- is a fibration;
- has a left adjoint if X has a bottom element;
- ▼ has a right adjoint if X has a top element;
- ▼ is a topological functor iff **X** is complete.

Cor.

- ▼ If X has bottom, X is complete iff Ord $/\!/X$ is complete.
- **▼** If X has top, then X is complete iff $Ord/\!/X$ is cocomplete.

(Remark: Coequalisers are built in Ord, and then equipped with the left Kan extension.)

Prop. The forgetful functor $Ord/\!\!/X \xrightarrow{u} Ord$

- is a fibration;
- has a left adjoint if X has a bottom element;
- ▼ has a right adjoint if X has a top element;
- ▼ is a topological functor iff **X** is complete.

Cor.

- ▼ If X has bottom, X is complete iff Ord//X is complete.
- **▼** If X has top, then X is complete iff $Ord/\!/X$ is cocomplete.

(Remark: Coequalisers are built in Ord, and then equipped with the left Kan extension.)

Prop. If X has bottom element, then Ord $/\!/ X$ is (infinitary) extensive.

Ord//X: exponentiability

Ord//X: exponentiability

Thm. If X is a complete ordered set, then the following conditions are equivalent:

Ord//X: exponentiability

Thm. If X is a complete ordered set, then the following conditions are equivalent:

▼ Ord//X is cartesian closed;

Thm. If **X** is a complete ordered set, then the following conditions are equivalent:

- ▼ Ord//X is cartesian closed;
- ▼ X is a Heyting algebra.

Thm. If **X** is a complete ordered set, then the following conditions are equivalent:

- ▼ Ord//X is cartesian closed;
- **▼** X is a Heyting algebra.

In fact, the following conditions are equivalent, for (Y, a) in $Ord/\!/X$:

Thm. If **X** is a complete ordered set, then the following conditions are equivalent:

- ▼ Ord//X is cartesian closed;
- ▼ X is a Heyting algebra.

In fact, the following conditions are equivalent, for (Y, a) in $Ord/\!/X$:

 \lor (Y, a) is exponentiable in Ord $/\!/X$;

Thm. If **X** is a complete ordered set, then the following conditions are equivalent:

- ▼ Ord//X is cartesian closed;
- **▼** X is a Heyting algebra.

In fact, the following conditions are equivalent, for (Y, a) in $Ord/\!/X$:

- ▼ (Y, a) is exponentiable in Ord//X;
- **▼** for all $y \in Y$, a(y) is exponentiable in X.

Ord: (effective) descent monotone maps

Ord: (effective) descent monotone maps

Prop. Let X be complete, $f: (Y, a) \to (Z, b)$ a morphism in Ord $/\!/ X$.

Prop. Let X be complete, $f: (Y, a) \to (Z, b)$ a morphism in Ord $/\!/ X$.

(1) f is a regular epimorphism in Ord//X iff:

Prop. Let X be complete, $f: (Y, a) \to (Z, b)$ a morphism in Ord $/\!/ X$.

- (1) f is a regular epimorphism in Ord//X iff:
 - \mathbf{r} \mathbf{f} is a regular epimorphism in Ord, and

Prop. Let X be complete, $f: (Y, a) \to (Z, b)$ a morphism in Ord $/\!/ X$.

- (1) f is a regular epimorphism in Ord//X iff:
 - \mathbf{r} \mathbf{f} is a regular epimorphism in Ord, and
 - ▼ for all $z \in Z$, $b(z) = \bigvee_{f(y) \le z} a(y)$.

Prop. Let X be complete, $f: (Y, a) \to (Z, b)$ a morphism in $Ord/\!/X$.

- (1) f is a regular epimorphism in Ord//X iff:
 - \mathbf{r} \mathbf{f} is a regular epimorphism in Ord, and
 - ▼ for all $z \in Z$, $b(z) = \bigvee_{f(y) \le z} a(y)$.

(2) f is a stable regular epimorphism in Ord//X iff:

Prop. Let X be complete, $f: (Y, a) \to (Z, b)$ a morphism in $Ord/\!\!/ X$.

- (1) f is a regular epimorphism in Ord//X iff:
 - \mathbf{r} \mathbf{f} is a regular epimorphism in Ord, and
 - ▼ for all $z \in Z$, $b(z) = \bigvee_{f(y) \le z} a(y)$.

- (2) f is a stable regular epimorphism in Ord//X iff:
 - \mathbf{r} \mathbf{f} is a stable regular epimorphism in Ord, and

Prop. Let X be complete, $f: (Y, a) \to (Z, b)$ a morphism in $Ord /\!\!/ X$.

- (1) f is a regular epimorphism in Ord//X iff:
 - lacktriangledown f is a regular epimorphism in Ord, and

$$\bullet \text{ for all } z \in Z, \ b(z) = \bigvee_{f(y) \le z} a(y).$$

- (2) f is a stable regular epimorphism in Ord//X iff:
 - ▼ f is a stable regular epimorphism in Ord, and
 - ▼ for all $z \in Z$, $b(z) = \bigvee_{f(y)=z} a(y)$.

Prop. Let X be locally complete with \bot , $f:(Y,a)\to(Z,b)$ a morphism in Ord//X.

C-Lucatelli, Lax comma categories of ordered sets, QM 2023 C-Prezado, Effective descent morphisms of ordered families, QM 2025

Prop. Let X be locally complete with \bot , $f:(Y,a)\to(Z,b)$ a morphism in $Ord/\!/X$.

- (1) f is a regular epimorphism in Ord//X iff:
 - \mathbf{r} \mathbf{f} is a regular epimorphism in Ord, and
 - ▼ for all $z \in Z$, $b(z) = \bigvee_{f(y) \le z} a(y)$.

- (2) f is a stable regular epimorphism in Ord//X iff:
 - \mathbf{v} \mathbf{f} is a stable regular epimorphism in Ord, and
 - ▼ for all $z \in Z$ and $x \le b(z)$, $x = \bigvee_{f(y)=z} x \land a(y)$.

C-Lucatelli, Lax comma categories of ordered sets, QM 2023 C-Prezado, Effective descent morphisms of ordered families, QM 2025

X complete

X complete

 ${\it f}$ effective for descent in Ord// ${\it X}$

f effective for descent in Ord

$$Y_x = f^{-1}(\uparrow x) = \{ y \in Y \mid x \le a(y) \}$$

X complete

 $\emph{\textbf{f}}$ effective for descent in $Ord/\!\!/\emph{\textbf{X}}$

f effective for descent in Ord

X complete

 \emph{f} effective for descent in Ord// \emph{X}

 ${\it f}$ effective for descent in Ord

$$Y_x = f^{-1}(\uparrow x) = \{ y \in Y \mid x \le a(y) \}$$

X complete

 f_x effective for descent in Ord $(\forall x)$

 ${\it f}$ effective for descent in Ord// ${\it X}$

f effective for descent in Ord

$$Y_x = f^{-1}(\uparrow x) = \{y \in Y \mid x \le a(y)\}$$

X complete

 \mathbf{f}_{x} effective for descent in Ord $(\forall x)$

 \emph{f} effective for descent in Ord// \emph{X}

f effective for descent in Ord

C-Janelidze, Effective descent morphisms of filtered preorders, Order 2025 C-Lucatelli, Lax comma categories of ordered sets, QM 2023

 \boldsymbol{X} locally complete with $oldsymbol{\perp}$

C-Janelidze, Effective descent morphisms of filtered preorders, Order 2025 C-Lucatelli, Lax comma categories of ordered sets, QM 2023

 $m{X}$ locally complete with ot

f effective for descent in Ord//X ψ f effective for descent in Ord

 $m{X}$ locally complete with $oldsymbol{\perp}$

 \emph{f} effective descent & $\emph{f}_{\emph{x}}$ descent morphism in Ord $(\forall \emph{x})$

 $\emph{\textbf{f}}$ effective for descent in Ord// $\emph{\textbf{X}}$

f effective for descent in Ord

 $m{X}$ locally complete with ot

f effective descent & f_x descent morphism in Ord $(\forall x)$

 \emph{f} effective for descent in Ord// \emph{X}

 ${\it f}$ effective for descent in Ord

$$0$$
rd $\|X \longrightarrow 0$ rd $_X$

C-Janelidze, Effective descent morphisms of filtered preorders, Order 2025 C-Lucatelli, Lax comma categories of ordered sets, QM 2023

C-Janelidze, Effective descent morphisms of filtered preorders, Order 2025

Thm. Let X be locally complete with \bot .

A morphism $f\colon (Y,a) o (Z,b)$ is effective for descent in $\operatorname{Ord}/\!\!/ X$ iff

C-Prezado, Effective descent morphisms of ordered families, QM 2025
C-Janelidze, Effective descent morphisms of filtered preorders, Order 2025
C-Lucatelli, Lax comma categories of ordered sets, QM 2023

Thm. Let X be locally complete with \bot .

A morphism $f: (Y, a) \rightarrow (Z, b)$ is effective for descent in $Ord /\!\!/ X$ iff

▼ f is effective for descent in Ord,

Thm. Let X be locally complete with \bot .

A morphism $f: (Y, a) \rightarrow (Z, b)$ is effective for descent in $Ord /\!\!/ X$ iff

- ▼ f is effective for descent in Ord,
- $\text{for all } z_0 \leq z_1 \in \textbf{\textit{Z}}, \ x \leq \textbf{\textit{b}}(z_0), \ x \cong \bigvee_{y_0 \leq y_1, \ f(y_i) = z_i} x \land \textbf{\textit{a}}(y_0),$

Thm. Let X be locally complete with \bot .

A morphism $f: (Y, a) \rightarrow (Z, b)$ is effective for descent in $Ord /\!\!/ X$ iff

- ▼ **f** is effective for descent in Ord,
- $\text{for all } z_0 \leq z_1 \in \textbf{\textit{Z}}, \, x \leq \textbf{\textit{b}}(z_0), \, x \cong \bigvee_{y_0 \leq y_1, \, f(y_i) = z_i} x \wedge \textbf{\textit{a}}(y_0),$
- lacktriangledown for every family $(c(y))_{y\in Y}\leq (a(y))_{y\in Y}$,

if
$$(\forall z \in Z) (\forall y, y' \in f^{-1}(z)) c(y') \land a(y) \cong a(y') \land c(y)$$
,

then
$$(\forall z \in Z) (\forall y' \in f^{-1}(z)) a(y') \wedge \bigvee_{f(y)=z} c(y) \cong c(y')$$
.

Thm. Let X be locally complete with \bot .

A morphism $f: (Y, a) \rightarrow (Z, b)$ is effective for descent in $Ord /\!\!/ X$ iff

- ▼ **f** is effective for descent in Ord,
- $\text{for all } z_0 \leq z_1 \in \textbf{\textit{Z}}, \, x \leq \textbf{\textit{b}}(z_0), \, x \cong \bigvee_{y_0 \leq y_1, \, f(y_i) = z_i} x \wedge \textbf{\textit{a}}(y_0),$
- **▼** for every family $(c(y))_{y \in Y} \le (a(y))_{y \in Y}$,

if
$$(\forall z \in Z) (\forall y, y' \in f^{-1}(z)) c(y') \wedge a(y) \cong a(y') \wedge c(y)$$
,

then
$$(\forall z \in Z) (\forall y' \in f^{-1}(z)) a(y') \wedge \bigvee_{f(y)=z} c(y) \cong c(y').$$

Cor. Let X be locally complete with \bot , and locally cartesian closed.

Ord//X: effective descent morphisms

Cor. Let X be locally complete with \bot , and locally cartesian closed.

A morphism $f: (Y, a) \rightarrow (Z, b)$ is effective for descent in Ord $/\!/ X$ iff

Ord//X: effective descent morphisms

Cor. Let X be locally complete with \bot , and locally cartesian closed.

A morphism $f: (Y, a) \rightarrow (Z, b)$ is effective for descent in Ord $/\!/ X$ iff

- **▼** *f* is effective for descent in Ord,
- $\text{for all } z_0 \leq z_1 \in Z, \ b(z_0) \cong \bigvee_{y_0 \leq y_1, \ f(y_i) = z_i} a(y_0).$

Ord//X: effective descent morphisms

Cor. Let X be locally complete with \bot , and locally cartesian closed.

A morphism $f: (Y, a) \to (Z, b)$ is effective for descent in $Ord/\!/X$ iff

- ▼ f is effective for descent in Ord,
- $\text{for all } z_0 \leq z_1 \in Z, \ b(z_0) \cong \bigvee_{y_0 \leq y_1, \ f(y_i) = z_i} a(y_0).$

Remark. f effective descent in Ord// $X \not\Rightarrow f_x$ surjective!

C-Lucatelli, Lax comma categories of ordered sets, QM 2023

Top//**X**

Top//*X*

Top // **X**

The natural order on a topological space X is given by:

$$x \leq x'$$
 if $x' \in \overline{\{x\}}$, or, equivalently, $\stackrel{\bullet}{x} \rightarrow x'$

The natural order on a topological space X is given by:

(that is, it is the opposite of the specialization order).

The natural order on a topological space X is given by:

$$x \leq x'$$
 if $x' \in \overline{\{x\}}$, or, equivalently, $x \to x'$ (that is, it is the opposite of the specialization order).

Remark: Given an ordered set Z, there are several topologies on Z inducing its order, eg:

The natural order on a topological space X is given by:

$$x \leq x'$$
 if $x' \in \overline{\{x\}}$, or, equivalently, $\stackrel{\bullet}{x} \to x'$ (that is, it is the opposite of the specialization order).

Remark: Given an ordered set Z, there are several topologies on Z inducing its order, eg:

▼ the lower topology: closed sets generated by $\uparrow z$ ($z \in Z$);

The natural order on a topological space X is given by:

$$x \leq x'$$
 if $x' \in \overline{\{x\}}$, or, equivalently, $\stackrel{\bullet}{x} \to x'$ (that is, it is the opposite of the specialization order).

Remark: Given an ordered set Z, there are several topologies on Z inducing its order, eg:

- **▼** the lower topology: closed sets generated by $\uparrow z$ ($z \in Z$);
- ▼ the lower Scott topology: A ⊆ Z closed if A is up-closed and stable under codirected infima;

The natural order on a topological space X is given by:

$$x \leq x'$$
 if $x' \in \overline{\{x\}}$, or, equivalently, $\stackrel{\bullet}{x} \to x'$ (that is, it is the opposite of the specialization order).

Remark: Given an ordered set Z, there are several topologies on Z inducing its order, eg:

- **▼** the lower topology: closed sets generated by $\uparrow z$ ($z \in Z$);
- ▼ the lower Scott topology: A ⊆ Z closed if A is up-closed and stable under codirected infima;
- lacktriangledown the lower Alexandroff topology: $m{A} \subseteq m{Z}$ closed if $m{A}$ is up-closed.

The topological space X is:

The topological space X is:

▼ a topological \land -semilattice if its natural order makes it a \land -semilattice and the map $X \times X \xrightarrow{\land} X$ is continuous.

The topological space X is:

- ▼ a topological \land -semilattice if its natural order makes it a \land -semilattice and the map $X \times X \xrightarrow{\land} X$ is continuous.
- ▼ a topological \land -semilattice if the map $X' \xrightarrow{\land} X$ exists and is continuous (I any set).

The topological space X is:

- ▼ a topological \land -semilattice if its natural order makes it a \land -semilattice and the map $X \times X \xrightarrow{\land} X$ is continuous.
- ▼ a topological \land -semilattice if the map $X' \xrightarrow{\land} X$ exists and is continuous (I any set).

Prop. The following assertions are equivalent, for X a T0-space:

The topological space X is:

- ▼ a topological \land -semilattice if its natural order makes it a \land -semilattice and the map $X \times X \xrightarrow{\land} X$ is continuous.
- ▼ a topological \land -semilattice if the map $X' \xrightarrow{\land} X$ exists and is continuous (I any set).

Prop. The following assertions are equivalent, for \boldsymbol{X} a T0-space:

▼ X is a topological \(\sigma\)-semilattice;

The topological space X is:

- ▼ a topological \land -semilattice if its natural order makes it a \land -semilattice and the map $X \times X \xrightarrow{\land} X$ is continuous.
- ▼ a topological \land -semilattice if the map $X' \xrightarrow{\land} X$ exists and is continuous (I any set).

Prop. The following assertions are equivalent, for \boldsymbol{X} a T0-space:

- ▼ X is a topological \(\simega\)-semilattice;
- ▼ X is sober and a topological ∧-semilattice;

The topological space X is:

- ▼ a topological \land -semilattice if its natural order makes it a \land -semilattice and the map $X \times X \xrightarrow{\land} X$ is continuous.
- ▼ a topological \land -semilattice if the map $X' \xrightarrow{\land} X$ exists and is continuous (I any set).

Prop. The following assertions are equivalent, for X a T0-space:

- ▼ X is a topological \(\sigma\)-semilattice;
- ▼ X is sober and a topological ∧-semilattice;
- X is an algebra for the lower Vietoris monad on Top;

The topological space X is:

- ▼ a topological \land -semilattice if its natural order makes it a \land -semilattice and the map $X \times X \xrightarrow{\land} X$ is continuous.
- ▼ a topological \land -semilattice if the map $X' \xrightarrow{\land} X$ exists and is continuous (I any set).

Prop. The following assertions are equivalent, for X a T0-space:

- ▼ X is a topological \(\sigma\)-semilattice;
- ▼ X is sober and a topological ∧-semilattice;
- X is an algebra for the lower Vietoris monad on Top;
- \mathbf{V} \mathbf{X}_{\circ} is complete and every ultrafilter on \mathbf{X} has a smallest convergence point.

The topological space X is:

- ▼ a topological \land -semilattice if its natural order makes it a \land -semilattice and the map $X \times X \xrightarrow{\land} X$ is continuous.
- ▼ a topological \land -semilattice if the map $X' \xrightarrow{\land} X$ exists and is continuous (I any set).

Prop. The following assertions are equivalent, for \boldsymbol{X} a T0-space:

- ▼ X is a topological \(\simega\)-semilattice;
- ▼ X is sober and a topological ∧-semilattice;
- X is an algebra for the lower Vietoris monad on Top;
- \mathbf{V} \mathbf{X}_{0} is $\frac{\text{finitely}}{\text{complete}}$ and every ultrafilter on \mathbf{X} has a smallest convergence point.

The topological space X is:

- ▼ a topological \land -semilattice if its natural order makes it a \land -semilattice and the map $X \times X \xrightarrow{\land} X$ is continuous.
- ▼ a topological \land -semilattice if the map $X' \xrightarrow{\land} X$ exists and is continuous (I any set).

Prop. The following assertions are equivalent, for X a T0-space:

- ▼ X is a topological \(\shcap-\)-semilattice;
- ▼ X is sober and a topological ∧-semilattice;
- ▼ X is an algebra for the lower Vietoris monad on Top;
- \mathbf{V} \mathbf{X}_{0} is $\frac{\text{finitely}}{\text{complete}}$ and every ultrafilter on \mathbf{X} has a smallest convergence point.

Thm. The following assertions are equivalent:

The topological space X is:

- ▼ a topological \land -semilattice if its natural order makes it a \land -semilattice and the map $X \times X \xrightarrow{\land} X$ is continuous.
- ▼ a topological \land -semilattice if the map $X' \xrightarrow{\land} X$ exists and is continuous (I any set).

Prop. The following assertions are equivalent, for X a T0-space:

- ▼ X is a topological \(\sigma\)-semilattice;
- ▼ X is sober and a topological ∧-semilattice;
- ▼ X is an algebra for the lower Vietoris monad on Top;
- \mathbf{V} \mathbf{X}_{0} is $\frac{\text{finitely}}{\text{complete}}$ and every ultrafilter on \mathbf{X} has a smallest convergence point.

Thm. The following assertions are equivalent:

▼ The forgetful functor $Top//X \xrightarrow{U} Top$ is topological;

The topological space X is:

- ▼ a topological \land -semilattice if its natural order makes it a \land -semilattice and the map $X \times X \xrightarrow{\land} X$ is continuous.
- ▼ a topological \land -semilattice if the map $X' \xrightarrow{\land} X$ exists and is continuous (I any set).

Prop. The following assertions are equivalent, for X a T0-space:

- ▼ X is a topological \(\shcap-\)-semilattice;
- ▼ X is sober and a topological ∧-semilattice;
- X is an algebra for the lower Vietoris monad on Top;
- \mathbf{V} \mathbf{X}_{0} is $\frac{\text{finitely}}{\text{complete}}$ and every ultrafilter on \mathbf{X} has a smallest convergence point.

Thm. The following assertions are equivalent:

- ▼ The forgetful functor $Top//X \xrightarrow{U} Top$ is topological;
- ▼ X is a topological \(\frac{1}{2}\)-semilattice.

Special examples:

- ▼ If X is a complete ordered set equipped with the lower topology, then it is a topological \(\rightarrow\)-semilattice.
- If X is an injective space, then it is a topological \(\shcap-\semilattice; \) moreover, the map \(\varphi : X \times X \to X \) is continuous.

(1) If X is the Sierpinski space \mathbb{S} (0 \leq 1), then:

- (1) If X is the Sierpinski space \mathbb{S} (0 \leq 1), then:
 - ▼ it is both a continuous and an op-continuous lattice;

- (1) If X is the Sierpinski space \mathbb{S} (0 \leq 1), then:
 - it is both a continuous and an op-continuous lattice;
 - ▼ the three (lower) topologies coincide;

- (1) If X is the Sierpinski space \mathbb{S} (0 \leq 1), then:
 - ▼ it is both a continuous and an op-continuous lattice;
 - ▼ the three (lower) topologies coincide;
 - **▼** Top//S can be described as having as objects pairs (A, A_0) , where $A_0 \subseteq A$ is closed, and morphisms $f: (A, A_0) \to (B, B_0)$ continuous maps $f: A \to B$ with $f(A_0) \subseteq B_0$.

- (1) If X is the Sierpinski space \mathbb{S} (0 \leq 1), then:
 - ▼ it is both a continuous and an op-continuous lattice;
 - ▼ the three (lower) topologies coincide;
 - **▼** Top//S can be described as having as objects pairs (A, A_0) , where $A_0 \subseteq A$ is closed, and morphisms $f: (A, A_0) \to (B, B_0)$ continuous maps $f: A \to B$ with $f(A_0) \subseteq B_0$.
- (2) $X = \mathbb{N}$ with $n \leq m$ if m divides n:

- (1) If X is the Sierpinski space \mathbb{S} (0 \leq 1), then:
 - ▼ it is both a continuous and an op-continuous lattice;
 - ▼ the three (lower) topologies coincide;
 - **▼** Top//S can be described as having as objects pairs (A, A_0) , where $A_0 \subseteq A$ is closed, and morphisms $f: (A, A_0) \to (B, B_0)$ continuous maps $f: A \to B$ with $f(A_0) \subseteq B_0$.
- (2) $X = \mathbb{N}$ with $n \leq m$ if m divides n:
 - ▼ it is a complete lattice;

- (1) If X is the Sierpinski space \mathbb{S} (0 \leq 1), then:
 - ▼ it is both a continuous and an op-continuous lattice;
 - ▼ the three (lower) topologies coincide;
 - **▼** Top//S can be described as having as objects pairs (A, A_0) , where $A_0 \subseteq A$ is closed, and morphisms $f: (A, A_0) \to (B, B_0)$ continuous maps $f: A \to B$ with $f(A_0) \subseteq B_0$.
- (2) $X = \mathbb{N}$ with $n \leq m$ if m divides n:
 - it is a complete lattice;
 - it is an op-continuous (but not continuous) lattice;

- (1) If X is the Sierpinski space \mathbb{S} (0 \leq 1), then:
 - it is both a continuous and an op-continuous lattice;
 - ▼ the three (lower) topologies coincide;
 - **▼** Top//S can be described as having as objects pairs (A, A_0) , where $A_0 \subseteq A$ is closed, and morphisms $f: (A, A_0) \to (B, B_0)$ continuous maps $f: A \to B$ with $f(A_0) \subseteq B_0$.
- (2) $X = \mathbb{N}$ with $n \leq m$ if m divides n:
 - it is a complete lattice;
 - ▼ it is an op-continuous (but not continuous) lattice;
 - V lower = Scott lower topology ≠ Alexandroff topology.

- (1) If X is the Sierpinski space \mathbb{S} (0 \leq 1), then:
 - ▼ it is both a continuous and an op-continuous lattice;
 - ▼ the three (lower) topologies coincide;
 - **▼** Top//S can be described as having as objects pairs (A, A_0) , where $A_0 \subseteq A$ is closed, and morphisms $f: (A, A_0) \to (B, B_0)$ continuous maps $f: A \to B$ with $f(A_0) \subseteq B_0$.
- (2) $X = \mathbb{N}$ with $n \leq m$ if m divides n:
 - ▼ it is a complete lattice;
 - it is an op-continuous (but not continuous) lattice;
 - V lower = Scott lower topology ≠ Alexandroff topology.
- (3) X = [0, 1] with the natural order:

- (1) If X is the Sierpinski space \mathbb{S} (0 \leq 1), then:
 - ▼ it is both a continuous and an op-continuous lattice;
 - ▼ the three (lower) topologies coincide;
 - **▼** Top//S can be described as having as objects pairs (A, A_0) , where $A_0 \subseteq A$ is closed, and morphisms $f: (A, A_0) \to (B, B_0)$ continuous maps $f: A \to B$ with $f(A_0) \subseteq B_0$.
- (2) $X = \mathbb{N}$ with $n \leq m$ if m divides n:
 - ▼ it is a complete lattice;
 - ▼ it is an op-continuous (but not continuous) lattice;
 - V lower = Scott lower topology ≠ Alexandroff topology.
- (3) X = [0, 1] with the natural order:
 - ▼ it is both a continuous and an op-continuous lattice;

- (1) If X is the Sierpinski space \mathbb{S} (0 \leq 1), then:
 - ▼ it is both a continuous and an op-continuous lattice;
 - ▼ the three (lower) topologies coincide;
 - ▼ Top//S can be described as having as objects pairs (A, A_0) , where $A_0 \subseteq A$ is closed, and morphisms $f: (A, A_0) \to (B, B_0)$ continuous maps $f: A \to B$ with $f(A_0) \subseteq B_0$.
- (2) $X = \mathbb{N}$ with $n \leq m$ if m divides n:
 - ▼ it is a complete lattice;
 - ▼ it is an op-continuous (but not continuous) lattice;
 - V lower = Scott lower topology ≠ Alexandroff topology.
- (3) X = [0, 1] with the natural order:
 - ▼ it is both a continuous and an op-continuous lattice;
 - V lower = Scott lower topology ≠ Alexandroff topology.

▼ Top//X has coproducts

▼ Top//X has coproducts (preserved by U).

- ▼ Top//X has coproducts (preserved by U).
- ▼ Top//X has equalisers (preserved by U).

- **▼** Top//X has coproducts (preserved by U).
- ▼ Top//X has equalisers (preserved by U).
- ▼ Top//X is extensive.

- ▼ Top//X has coproducts (preserved by U).
- ▼ Top//X has equalisers (preserved by U).
- ▼ Top//X is extensive.
- **▼** Top//X has and U preserves finite limits iff X is a topological \land -semilattice.

- ▼ Top//X has coproducts (preserved by U).
- **▼** Top//X has equalisers (preserved by U).
- ▼ Top//X is extensive.
- **▼** Top//X has and U preserves finite limits iff X is a topological \land -semilattice.

Remark: iff the product $(X, 1_X) \times (X, 1_X)$ exists in Top//X and has $X \times X$ as underlying space.

- ▼ Top//X has coproducts (preserved by U).
- ▼ Top//X has equalisers (preserved by U).
- ▼ Top//X is extensive.
- **▼** Top//X has and U preserves finite limits iff X is a topological \land -semilattice.

```
Remark: iff the product (X, 1_X) \times (X, 1_X) exists in Top//X and has X \times X as underlying space.
```

▼ Top//X has and U preserves limits iff X is a topological \land -semilattice.

- **▼** Top//X has coproducts (preserved by U).
- **▼** Top//X has equalisers (preserved by U).
- ▼ Top//X is extensive.
- **▼** Top//X has and U preserves finite limits iff X is a topological \land -semilattice.

```
Remark: iff the product (X, 1_X) \times (X, 1_X) exists in Top//X and has X \times X as underlying space.
```

- **▼** Top//X has and U preserves limits iff X is a topological \land -semilattice.
- ▼ Top//X has coequalisers and U preserves them iff for every $Y \xrightarrow{a} X$ continuous and $Y \xrightarrow{q} Q$ quotient, $\operatorname{Lan}_q(a)$ exists.

- ▼ Top//X has coproducts (preserved by U).
- ▼ Top//X has equalisers (preserved by U).
- ▼ Top//X is extensive.
- **▼** Top//X has and U preserves finite limits iff X is a topological \land -semilattice.

```
Remark: iff the product (X, 1_X) \times (X, 1_X) exists in Top//X and has X \times X as underlying space.
```

- **▼** Top//X has and U preserves limits iff X is a topological \land -semilattice.
- ▼ Top//X has coequalisers and U preserves them iff

```
for every Y \xrightarrow{a} X continuous and Y \xrightarrow{q} Q quotient, \operatorname{Lan}_q(a) exists.
```

Remark: This is the case when X is a topological \land -semilattice.

Prop. If X is a topological \land -semilattice with bottom, then:

▼ Top// $X \xrightarrow{U}$ Top preserves exponentiable objects;

C-Hofmann-Prezado, Topological lax comma categories, 2025

Prop. If X is a topological \land -semilattice with bottom, then:

- ▼ Top// $X \xrightarrow{U}$ Top preserves exponentiable objects;
- **▼** *U* preserves exponentials.

Prop. If X is a topological \land -semilattice with bottom, then:

- ▼ Top// $X \xrightarrow{U}$ Top preserves exponentiable objects;
- ▼ U preserves exponentials.

Thm. If X is a topological \land -semilattice, (Y, a) is exponentiable in Top $/\!\!/ X$ whenever:

Prop. If X is a topological \land -semilattice with bottom, then:

- ▼ Top// $X \xrightarrow{U}$ Top preserves exponentiable objects;
- ▼ U preserves exponentials.

Thm. If X is a topological \land -semilattice, (Y, a) is exponentiable in Top//X whenever:

▼ Y is exponentiable in Top,

Prop. If X is a topological \land -semilattice with bottom, then:

- ▼ Top// $X \xrightarrow{U}$ Top preserves exponentiable objects;
- ▼ U preserves exponentials.

Thm. If X is a topological \land -semilattice, (Y, a) is exponentiable in Top $/\!\!/ X$ whenever:

- **▼** Y is exponentiable in Top,
- lacktriangledown X has continuous infima for all families indexed by the underlying set of lacktriangledown,

Prop. If X is a topological \land -semilattice with bottom, then:

- ▼ Top// $X \xrightarrow{U}$ Top preserves exponentiable objects;
- ▼ U preserves exponentials.

Thm. If X is a topological \land -semilattice, (Y, a) is exponentiable in Top $/\!\!/ X$ whenever:

- **▼ Y** is exponentiable in Top,
- f X has continuous infima for all families indexed by the underlying set of f Y,
- \blacktriangledown and, for every $y \in Y$, $(X \xrightarrow{a(y) \land -} X) \dashv (X \xrightarrow{a(y) \Rightarrow -} X)$ in Top.

Prop. If X is a topological \land -semilattice with bottom, then:

- ▼ Top// $X \xrightarrow{U}$ Top preserves exponentiable objects;
- ▼ U preserves exponentials.

Thm. If X is a topological \land -semilattice, (Y, a) is exponentiable in Top//X whenever:

- **▼** Y is exponentiable in Top,
- f X has continuous infima for all families indexed by the underlying set of f Y,
- \blacksquare and, for every $y \in Y$, $(X \xrightarrow{a(y) \land -} X) \dashv (X \xrightarrow{a(y) \Rightarrow -} X)$ in Top.

A topological \land -semilattice X is a topological Heyting \land -semilattice if, for every $x \in X$, the continuous map $X \xrightarrow{x \land -} X$ has a right adjoint in Top.

C-Hofmann-Prezado, Topological lax comma categories, 2025

CT 2025, Brno

Prop. If X is a topological \land -semilattice with bottom, then:

- ▼ Top// $X \xrightarrow{U}$ Top preserves exponentiable objects;
- ▼ U preserves exponentials.

Thm. If X is a topological \land -semilattice, (Y, a) is exponentiable in Top $/\!\!/ X$ whenever:

- **▼ Y** is exponentiable in Top,
- f X has continuous infima for all families indexed by the underlying set of f Y,
- \blacksquare and, for every $y \in Y$, $(X \xrightarrow{a(y) \land -} X) \dashv (X \xrightarrow{a(y) \Rightarrow -} X)$ in Top.

A topological \land -semilattice X is a topological Heyting \land -semilattice if, for every $x \in X$, the continuous map $X \xrightarrow{x \land -} X$ has a right adjoint in Top.

Examples: Any complete Heyting algebra equipped with the lower topology:

Prop. If X is a topological \land -semilattice with bottom, then:

- ▼ Top// $X \xrightarrow{U}$ Top preserves exponentiable objects;
- ▼ U preserves exponentials.

Thm. If X is a topological \land -semilattice, (Y, a) is exponentiable in Top//X whenever:

- ▼ Y is exponentiable in Top,
- f X has continuous infima for all families indexed by the underlying set of f Y,
- \blacksquare and, for every $y \in Y$, $(X \xrightarrow{a(y) \land -} X) \dashv (X \xrightarrow{a(y) \Rightarrow -} X)$ in Top.

A topological \land -semilattice X is a topological Heyting \land -semilattice if, for every $x \in X$, the continuous map $X \xrightarrow{x \land -} X$ has a right adjoint in Top.

Examples: Any complete Heyting algebra equipped with the lower topology: $\mathbb{S},\ \mathbb{N},\ [0,1].$

Prop. If X is a topological \wedge -semilattice with bottom, then:

- ▼ Top //X \xrightarrow{U} Top preserves exponentiable objects;
- U preserves exponentials.

Thm. If X is a topological \land -semilattice, (Y, a) is exponentiable in Top//X whenever:

- ▼ Y is exponentiable in Top.
- X has continuous infima for all families indexed by the underlying set of Y,
- \checkmark and, for every $y \in Y$, $(X \xrightarrow{a(y) \land -} X) \dashv (X \xrightarrow{a(y) \Rightarrow -} X)$ in Top.

A topological \land -semilattice X is a topological Heyting \land -semilattice if, for every $x \in X$, the continuous map $X \xrightarrow{x \land -} X$ has a right adjoint in Top.

Examples: Any complete Heyting algebra equipped with the lower topology: S, N, [0, 1].

Cor. If X is a topological Heyting Λ -semilattice, then:

C-Hofmann-Prezado, Topological lax comma categories, 2025

Niefield, Exponentiability in lax slices of Top, 2006

CT 2025, Brno

Prop. If X is a topological \land -semilattice with bottom, then:

- ▼ Top// $X \xrightarrow{U}$ Top preserves exponentiable objects;
- ▼ U preserves exponentials.

Thm. If X is a topological \land -semilattice, (Y, a) is exponentiable in Top $/\!\!/ X$ whenever:

- **▼** Y is exponentiable in Top,
- f X has continuous infima for all families indexed by the underlying set of f Y,
- \blacksquare and, for every $y \in Y$, $(X \xrightarrow{a(y) \land -} X) \dashv (X \xrightarrow{a(y) \Rightarrow -} X)$ in Top.

A topological \land -semilattice X is a topological Heyting \land -semilattice if, for every $x \in X$, the continuous map $X \xrightarrow{x \land -} X$ has a right adjoint in Top.

Examples: Any complete Heyting algebra equipped with the lower topology: $\mathbb{S},\ \mathbb{N},\ [0,1].$

Cor. If X is a topological Heyting \bigwedge -semilattice, then:

(Y, a) is exponentiable in Top//X iff Y is exponentiable in Top.

Niefield, Exponentiability in lax slices of Top, 2006

C-Hofmann-Prezado, Topological lax comma categories, 2025

Prop. If $f: (Y, a) \to (Z, b)$ is effective for descent in Top//X, then it is effective for descent in Top.

Prop. If $f: (Y, a) \to (Z, b)$ is effective for descent in Top//X, then it is effective for descent in Top.

Recall: If X is a \bigwedge -semilattice there exists $\sigma\colon UX\to X$ with $\sigma(\mathfrak{x})$ the smallest conv point of \mathfrak{x}

Prop. If $f: (Y, a) \to (Z, b)$ is effective for descent in Top//X, then it is effective for descent in Top.

Recall: If X is a \(\shcap \- \cdot \) semilattice there exists $\sigma \colon UX \to X$ with $\sigma(x)$ the smallest conv point of x

Thm. If X is a \bigwedge -semilattice such that:

lacktriangle binary meets preserve $oldsymbol{\sigma}$ and commute with arbitrary joins,

Prop. If $f: (Y, a) \to (Z, b)$ is effective for descent in Top//X, then it is effective for descent in Top.

Recall: If X is a \bigwedge -semilattice there exists $\sigma \colon UX \to X$ with $\sigma(\mathfrak{x})$ the smallest conv point of \mathfrak{x}

Thm. If X is a \bigwedge -semilattice such that:

lacktriangledown binary meets preserve $oldsymbol{\sigma}$ and commute with arbitrary joins,

then $f: (Y, a) \to (Z, b)$ is effective for descent in Top//X iff:

Prop. If $f: (Y, a) \to (Z, b)$ is effective for descent in Top//X, then it is effective for descent in Top.

Recall: If X is a \bigwedge -semilattice there exists $\sigma\colon UX\to X$ with $\sigma(\mathfrak{x})$ the smallest conv point of \mathfrak{x}

Thm. If X is a \bigwedge -semilattice such that:

- **▼** binary meets preserve σ and commute with arbitrary joins, then $f: (Y, a) \to (Z, b)$ is effective for descent in Top//X iff:
- **▼** *f* is effective for descent in Top;

Prop. If $f: (Y, a) \to (Z, b)$ is effective for descent in Top//X, then it is effective for descent in Top.

Recall: If X is a \bigwedge -semilattice there exists $\sigma\colon UX \to X$ with $\sigma(\mathfrak{x})$ the smallest conv point of \mathfrak{x}

Thm. If X is a \bigwedge -semilattice such that:

- **▼** binary meets preserve σ and commute with arbitrary joins, then $f: (Y, a) \to (Z, b)$ is effective for descent in Top//X iff:
- ▼ f is effective for descent in Top;
- \checkmark for every $\mathfrak{z} \rightsquigarrow z$ in Z,

Prop. If $f: (Y, a) \to (Z, b)$ is effective for descent in Top//X, then it is effective for descent in Top.

Recall: If X is a \bigwedge -semilattice there exists $\sigma \colon UX \to X$ with $\sigma(x)$ the smallest conv point of x

Thm. If X is a \bigwedge -semilattice such that:

- **▼** binary meets preserve σ and commute with arbitrary joins, then $f: (Y, a) \to (Z, b)$ is effective for descent in Top//X iff:
- ▼ f is effective for descent in Top;
- \checkmark for every $\mathfrak{z} \leadsto z$ in Z,

$$\sigma(Ub(\mathfrak{z})) = \bigvee \sigma(Ua(\mathfrak{y})), \ (\mathfrak{y} \leadsto y) \stackrel{f}{\mapsto} (\mathfrak{z} \leadsto z).$$

Prop. If $f: (Y, a) \to (Z, b)$ is effective for descent in Top//X, then it is effective for descent in Top.

Recall: If X is a \bigwedge -semilattice there exists $\sigma\colon UX\to X$ with $\sigma(\mathfrak{x})$ the smallest conv point of \mathfrak{x}

Thm. If X is a \bigwedge -semilattice such that:

- **▼** binary meets preserve σ and commute with arbitrary joins, then $f: (Y, a) \to (Z, b)$ is effective for descent in Top//X iff:
- ▼ **f** is effective for descent in Top;
- \checkmark for every $\mathfrak{z} \leadsto z$ in Z,

$$\sigma(Ub(\mathfrak{z})) = \bigvee \sigma(Ua(\mathfrak{y})), \ (\mathfrak{y} \leadsto y) \stackrel{f}{\mapsto} (\mathfrak{z} \leadsto z).$$

Example: The result applies when X is a completely distributive lattice equipped with the lower topology.

The general case: G//H

The general case: G//H

Thm. Let $G: \mathbb{B} \to \mathbb{A}$ and $H: \mathbb{C} \to \mathbb{A}$ be 2-functors, and $(B_i, C_i, GB_i \xrightarrow{d_i} HC_i)_{i \in I}$ a family of objects of $G/\!\!/H$ such that:

Thm. Let $G: \mathbb{B} \to \mathbb{A}$ and $H: \mathbb{C} \to \mathbb{A}$ be 2-functors, and $(B_i, C_i, GB_i \xrightarrow{d_i} HC_i)_{i \in I}$ a family of objects of $G/\!\!/H$ such that:

 \blacksquare $\prod_{i\in I} B_i$ exists in \mathbb{B} , with projections $p_j: \prod_{i\in I} B_i \to B_j$;

Thm. Let $G: \mathbb{B} \to \mathbb{A}$ and $H: \mathbb{C} \to \mathbb{A}$ be 2-functors, and $(B_i, C_i, GB_i \xrightarrow{d_i} HC_i)_{i \in I}$ a family of objects of $G/\!\!/H$ such that:

- \blacksquare $\prod_{i\in I} B_i$ exists in \mathbb{B} , with projections $p_j: \prod_{i\in I} B_i \to B_j$;
- ightharpoonup $\prod_{i\in I} C_i$ exists in \mathbb{C} , with projections $q_j\colon \prod_{i\in I} C_i \to C_j$;

Thm. Let $G: \mathbb{B} \to \mathbb{A}$ and $H: \mathbb{C} \to \mathbb{A}$ be 2-functors, and $(B_i, C_i, GB_i \xrightarrow{d_i} HC_i)_{i \in I}$ a family of objects of $G/\!\!/H$ such that:

- \blacksquare $\prod_{i\in I} B_i$ exists in \mathbb{B} , with projections $p_j: \prod_{i\in I} B_i \to B_j$;
- $ightharpoonup \prod_{i \in I} C_i$ exists in \mathbb{C} , with projections $q_j \colon \prod_{i \in I} C_i \to C_j$;
- abla $\prod_{i \in I} HC_i$ exists in \mathbb{A} ,

Thm. Let $G: \mathbb{B} \to \mathbb{A}$ and $H: \mathbb{C} \to \mathbb{A}$ be 2-functors, and $(B_i, C_i, GB_i \xrightarrow{d_i} HC_i)_{i \in I}$ a family of objects of $G/\!\!/ H$ such that:

- \blacksquare $\prod_{i \in I} B_i$ exists in \mathbb{B} , with projections $p_j \colon \prod_{i \in I} B_i \to B_j$;
- ightharpoonup $\prod_{i\in I} C_i$ exists in \mathbb{C} , with projections $q_j\colon \prod_{i\in I} C_i \to C_j$;
- abla $\prod_{i \in I} HC_i$ exists in \mathbb{A} ,
- \forall $\langle Hq_i \rangle_i \colon H(\prod_{i \in I} C_i) \to \prod_{i \in I} HC_i$ has a right adjoint r in \mathbb{A} .

Thm. Let $G: \mathbb{B} \to \mathbb{A}$ and $H: \mathbb{C} \to \mathbb{A}$ be 2-functors,

and $(B_i, C_i, GB_i \xrightarrow{d_i} HC_i)_{i \in I}$ a family of objects of $G/\!\!/H$ such that:

- \blacksquare $\prod_{i \in I} B_i$ exists in \mathbb{B} , with projections $p_j \colon \prod_{i \in I} B_i \to B_j$;
- $ightharpoonup \prod_{i \in I} C_i$ exists in \mathbb{C} , with projections $q_j \colon \prod_{i \in I} C_i \to C_j$;
- \blacksquare $\prod_{i \in I} HC_i$ exists in \mathbb{A} ,
- $\forall (Hq_i)_i : H(\prod_{i \in I} C_i) \to \prod_{i \in I} HC_i$ has a right adjoint r in \mathbb{A} .

Then the product of $(B_i, C_i, d_i)_i$ exists in $G/\!\!/B$, and it is given by

$$(\prod_{i\in I}B_i,\prod_{i\in I}C_i,\ G(\prod_{i\in I}B_i)\xrightarrow{\langle d_i\ Gp_i\rangle}\prod_{i\in I}HC_i\xrightarrow{r}H(\prod_{i\in I}C_i))$$

Thm. Let $G: \mathbb{B} \to \mathbb{A}$ and $H: \mathbb{C} \to \mathbb{A}$ be 2-functors,

and $(B_i, C_i, GB_i \xrightarrow{d_i} HC_i)_{i \in I}$ a family of objects of $G/\!\!/H$ such that:

- \blacksquare $\prod_{i \in I} B_i$ exists in \mathbb{B} , with projections $p_j \colon \prod_{i \in I} B_i \to B_j$;
- lacktriangledown $\prod_{i\in I} C_i$ exists in \mathbb{C} , with projections $q_j\colon \prod_{i\in I} C_i \to C_j$;
- $\mathbf{T}_{i\in I} HC_i$ exists in \mathbb{A} ,
- \forall $\langle Hq_i \rangle_i : H(\prod_{i \in I} C_i) \to \prod_{i \in I} HC_i$ has a right adjoint r in \mathbb{A} .

Then the product of $(B_i, C_i, d_i)_i$ exists in $G/\!\!/B$, and it is given by

Thm. Let $G: \mathbb{B} \to \mathbb{A}$ and $H: \mathbb{C} \to \mathbb{A}$ be 2-functors,

and $(B_i, C_i, GB_i \xrightarrow{d_i} HC_i)_{i \in I}$ a family of objects of $G/\!\!/H$ such that:

- \blacksquare $\prod_{i \in I} B_i$ exists in \mathbb{B} , with projections $p_j \colon \prod_{i \in I} B_i \to B_j$;
- $ightharpoonup \prod_{i \in I} C_i$ exists in \mathbb{C} , with projections $q_j \colon \prod_{i \in I} C_i \to C_j$;
- abla $\prod_{i \in I} HC_i$ exists in \mathbb{A} ,
- $\forall (Hq_i)_i : H(\prod_{i \in I} C_i) \to \prod_{i \in I} HC_i$ has a right adjoint r in \mathbb{A} .

Then the product of $(B_i, C_i, d_i)_i$ exists in $G/\!\!/H$, and it is given by

$$(\prod_{i\in I}B_i,\prod_{i\in I}C_i,\ G(\prod_{i\in I}B_i)\xrightarrow{\langle d_i\ Gp_i\rangle}\prod_{i\in I}HC_i\xrightarrow{r}H(\prod_{i\in I}C_i))$$

Thm. Let $G: \mathbb{B} \to \mathbb{A}$ and $H: \mathbb{C} \to \mathbb{A}$ be 2-functors,

and $(B_i, C_i, GB_i \xrightarrow{d_i} HC_i)_{i \in I}$ a family of objects of $G/\!\!/H$ such that:

- \blacksquare $\prod_{i \in I} B_i$ exists in \mathbb{B} , with projections $p_j \colon \prod_{i \in I} B_i \to B_j$;
- $ightharpoonup \prod_{i \in I} C_i$ exists in \mathbb{C} , with projections $q_j \colon \prod_{i \in I} C_i \to C_j$;
- $\mathbf{V} \prod_{i \in I} HC_i$ exists in \mathbb{A} ,
- $\forall (Hq_i)_i : H(\prod_{i \in I} C_i) \to \prod_{i \in I} HC_i$ has a right adjoint r in \mathbb{A} .

Then the product of $(B_i, C_i, d_i)_i$ exists in $G/\!\!/H$, and it is given by

$$(\prod_{i\in I}B_i,\prod_{i\in I}C_i,\ G(\prod_{i\in I}B_i)\xrightarrow{\langle d_i\ Gp_i\rangle}\prod_{i\in I}HC_i\xrightarrow{r}H(\prod_{i\in I}C_i\))$$

Applying this result to the category $H^{co op} /\!\!/ G^{co op}$ one obtains:

Thm. Let $G: \mathbb{B} \to \mathbb{A}$ and $H: \mathbb{C} \to \mathbb{A}$ be 2-functors, and $(B_i, C_i, GB_i \xrightarrow{d_i} HC_i)_{i \in I}$ a family of objects of $G/\!\!/ H$ such that:

- $\bigvee \coprod_{i \in I} B_i$ exists in \mathbb{B} ;
- $\bigvee \coprod_{i \in I} C_i$ exists in \mathbb{C} , with coprojections $c_j \colon C_j \to \coprod_{i \in I} C_i$;
- ▼ $\coprod_{i \in I} HC_i$ exists in \mathbb{A} ,
- \forall $\langle Hc_i \rangle_i : \coprod_{i \in I} HC_i \to H(\coprod_{i \in I} C_i)$ has a left adjoint s in \mathbb{A} .

Then the coproduct of $(B_i, C_i, d_i)_i$ exists in $G/\!\!/H$.

References

- M. Abaddini, V. Marra, L. Spada, Stone-Gelfand duality for metrically complete lattice-ordered groups. Adv Math 2025
- ▼ MMC, D. Hofmann, R. Prezado, Topological lax comma categories. arXiv 2504.12965
- ▼ MMC, D. Hofmann, W. Tholen, Cauchy convergence in V-normed categories. Adv Math 2025
- MMC, G. Janelidze, Effective descent morphisms of filtered preorders. Order 2025
- ▼ MMC, F. Lucatelli Nunes, Lax comma 2-categories and admissible 2-functors. TAC 2024
- ▼ MMC, F. Lucatelli Nunes, TBD, in preparation.
- ▼ MMC, F. Lucatelli Nunes, Lax comma categories of ordered sets. QM 2023
- MMC, F. Lucatelli Nunes, R. Prezado, Lax comma categories: cartesian closedness, extensivity, topologicity, and descent. TAC 2024
- MMC, R. Prezado, Effective descent morphisms of ordered families. QM 2025 (online)
- ▼ J. Funk, The Hurwitz action and braid groups orderings, TAC 2001
- ▼ S. Niefield, Exponentiability in lax slices of Top. TAC 2006
- P. Perrone, W. Tholen, Kan extensions are partial colimits. APCS 2022
- ▼ G Peschke, W Tholen, Diagrams, fibrations and the decomposition of colims. arXiv 2006.10890

