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The lax comma category G//H
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Plan

Cartesian closedness, extensivity, topologicity, and descent...

Cat//X

Ord//X

Top//X

G//H .
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Cat//X
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Cat//X : (co)limits

C-Lucatelli-Prezado, Lax comma categories: cartesian closedness, extensivity, topologicity, and descent, TAC 2024

The forgetful functor Cat//X U // Cat

▼ is a fibration;

▼ has a left adjoint if X has initial object;

▼ has a right adjoint if X has terminal object;

▼ is a bifibration provided that X is cocomplete;

▼ is a topological functor iff X is large-complete.

If X is complete, so is Cat//X .

If X is cocomplete, so is Cat//X .

If X has initial object, then Cat//X has coproducts (preserved by U).

If X has initial object, then Cat//X is (infinitary) extensive.
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Cat//X : exponentiability and descent

C-Lucatelli-Prezado, Lax comma categories: cartesian closedness, extensivity, topologicity, and descent, TAC 2024

Thm. If X is complete and cartesian closed, then Cat//X is cartesian closed.

The exponential (W , a) ⇒ (Y , b) is given by (Cat[W ,Y ], ba), with

ba(h) =

∫
w∈W

(a(w) ⇒ b · h(w)).

Recall:

In a category A with pullbacks, a morphism y f // z is effective for descent

if the change-of-base functor A/z f ∗ // A/y is monadic.

Thm. If X has pullbacks, the functor Cat//X U // Cat preserves effective descent

morphisms provided that X has a strict initial object.

CT 2025, Brno 7/32



Cat//X : exponentiability and descent

C-Lucatelli-Prezado, Lax comma categories: cartesian closedness, extensivity, topologicity, and descent, TAC 2024

Thm. If X is complete and cartesian closed, then Cat//X is cartesian closed.

The exponential (W , a) ⇒ (Y , b) is given by (Cat[W ,Y ], ba), with

ba(h) =

∫
w∈W

(a(w) ⇒ b · h(w)).

Recall:

In a category A with pullbacks, a morphism y f // z is effective for descent

if the change-of-base functor A/z f ∗ // A/y is monadic.

Thm. If X has pullbacks, the functor Cat//X U // Cat preserves effective descent

morphisms provided that X has a strict initial object.

CT 2025, Brno 7/32



Cat//X : exponentiability and descent

C-Lucatelli-Prezado, Lax comma categories: cartesian closedness, extensivity, topologicity, and descent, TAC 2024

Thm. If X is complete and cartesian closed, then Cat//X is cartesian closed.

The exponential (W , a) ⇒ (Y , b) is given by (Cat[W ,Y ], ba), with

ba(h) =

∫
w∈W

(a(w) ⇒ b · h(w)).

Recall:

In a category A with pullbacks, a morphism y f // z is effective for descent

if the change-of-base functor A/z f ∗ // A/y is monadic.

Thm. If X has pullbacks, the functor Cat//X U // Cat preserves effective descent

morphisms provided that X has a strict initial object.

CT 2025, Brno 7/32



Cat//X : exponentiability and descent

C-Lucatelli-Prezado, Lax comma categories: cartesian closedness, extensivity, topologicity, and descent, TAC 2024

Thm. If X is complete and cartesian closed, then Cat//X is cartesian closed.

The exponential (W , a) ⇒ (Y , b) is given by (Cat[W ,Y ], ba), with

ba(h) =

∫
w∈W

(a(w) ⇒ b · h(w)).

Recall:

In a category A with pullbacks, a morphism y f // z is effective for descent

if the change-of-base functor A/z f ∗ // A/y is monadic.

Thm. If X has pullbacks, the functor Cat//X U // Cat preserves effective descent

morphisms provided that X has a strict initial object.

CT 2025, Brno 7/32



Cat//X : exponentiability and descent

C-Lucatelli-Prezado, Lax comma categories: cartesian closedness, extensivity, topologicity, and descent, TAC 2024

Thm. If X is complete and cartesian closed, then Cat//X is cartesian closed.

The exponential (W , a) ⇒ (Y , b) is given by (Cat[W ,Y ], ba), with

ba(h) =

∫
w∈W

(a(w) ⇒ b · h(w)).

Recall:

In a category A with pullbacks, a morphism y f // z is effective for descent

if the change-of-base functor A/z f ∗ // A/y is monadic.

Thm. If X has pullbacks, the functor Cat//X U // Cat preserves effective descent

morphisms provided that X has a strict initial object.

CT 2025, Brno 7/32



Cat//X : exponentiability and descent

C-Lucatelli-Prezado, Lax comma categories: cartesian closedness, extensivity, topologicity, and descent, TAC 2024

Thm. If X is complete and cartesian closed, then Cat//X is cartesian closed.

The exponential (W , a) ⇒ (Y , b) is given by (Cat[W ,Y ], ba), with

ba(h) =

∫
w∈W

(a(w) ⇒ b · h(w)).

Recall:

In a category A with pullbacks, a morphism y f // z is effective for descent

if the change-of-base functor A/z f ∗ // A/y is monadic.

Thm. If X has pullbacks, the functor Cat//X U // Cat preserves effective descent

morphisms provided that X has a strict initial object.

CT 2025, Brno 7/32



Ord//X

C-Lucatelli, Lax comma categories of ordered sets, QM 2023.
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Ord//X

C-Lucatelli, Lax comma categories of ordered sets, QM 2023.
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Ord//X : (co)limits

C-Lucatelli, Lax comma categories of ordered sets, QM 2023.

Prop. The forgetful functor Ord//X U // Ord

▼ is a fibration;

▼ has a left adjoint if X has a bottom element;

▼ has a right adjoint if X has a top element;

▼ is a topological functor iff X is complete.

Cor.

▼ If X has bottom, X is complete iff Ord//X is complete.

▼ If X has top, then X is complete iff Ord//X is cocomplete.

(Remark: Coequalisers are built in Ord, and then equipped with the left Kan extension.)

Prop. If X has bottom element, then Ord//X is (infinitary) extensive.
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Ord//X : exponentiability

C-Lucatelli, Lax comma categories of ordered sets, QM 2023

Thm. If X is a complete ordered set, then the following conditions are equivalent:

▼ Ord//X is cartesian closed;

▼ X is a Heyting algebra.

In fact, the following conditions are equivalent, for (Y , a) in Ord//X :

▼ (Y , a) is exponentiable in Ord//X ;

▼ for all y ∈ Y , a(y) is exponentiable in X .
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Ord: (effective) descent monotone maps

Janelidze, Sobral, Finite preorders and topological descent I, JPAA 2022
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Ord//X : (stable) regular epimorphisms

C-Lucatelli, Lax comma categories of ordered sets, QM 2023

Prop. Let X be complete, f : (Y , a) → (Z , b) a morphism in Ord//X .

Y

≤

f //

a
  

Z

b��
X

(1) f is a regular epimorphism in Ord//X iff:

▼ f is a regular epimorphism in Ord, and

▼ for all z ∈ Z , b(z) =
∨

f (y)≤z

a(y).

(2) f is a stable regular epimorphism in Ord//X iff:

▼ f is a stable regular epimorphism in Ord, and

▼ for all z ∈ Z , b(z) =
∨

f (y)=z

a(y).
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Ord//X : (stable) regular epimorphisms

C-Lucatelli, Lax comma categories of ordered sets, QM 2023
C-Prezado, Effective descent morphisms of ordered families, QM 2025

Prop. Let X be locally complete with ⊥, f : (Y , a) → (Z , b) a morphism in Ord//X .

Y

≤

f //

a
  

Z

b��
X

(1) f is a regular epimorphism in Ord//X iff:

▼ f is a regular epimorphism in Ord, and

▼ for all z ∈ Z , b(z) =
∨
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Ord//X : effective descent morphisms
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Y

≤

f //

a
  

Z

b��
X

X complete

f effective for descent in Ord//X

⇓
f effective for descent in Ord

Yx = f −1(↑ x) = {y ∈ Y | x ≤ a(y)}

Yx

≤

fx //

a
  

Zx

b~~
X

fx effective for descent in Ord (∀x)

⇓
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Ord//X : effective descent morphisms
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Thm. Let X be locally complete with ⊥.

A morphism f : (Y , a) → (Z , b) is effective for descent in Ord//X iff

▼ f is effective for descent in Ord,

▼ for all z0 ≤ z1 ∈ Z , x ≤ b(z0), x ∼=
∨

y0≤y1, f (yi )=zi

x ∧ a(y0),

▼ for every family (c(y))y∈Y ≤ (a(y))y∈Y ,

if (∀z ∈ Z) (∀y , y ′ ∈ f −1(z)) c(y ′) ∧ a(y) ∼= a(y ′) ∧ c(y),

then (∀z ∈ Z) (∀y ′ ∈ f −1(z)) a(y ′) ∧
∨

f (y)=z

c(y) ∼= c(y ′).
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Ord//X : effective descent morphisms

C-Lucatelli, Lax comma categories of ordered sets, QM 2023
C-Janelidze, Effective descent morphisms of filtered preorders, Order 2025
C-Prezado, Effective descent morphisms of ordered families, QM 2025

Thm. Let X be locally complete with ⊥.

A morphism f : (Y , a) → (Z , b) is effective for descent in Ord//X iff

▼ f is effective for descent in Ord,

▼ for all z0 ≤ z1 ∈ Z , x ≤ b(z0), x ∼=
∨

y0≤y1, f (yi )=zi

x ∧ a(y0),

▼ for every family (c(y))y∈Y ≤ (a(y))y∈Y ,

if (∀z ∈ Z) (∀y , y ′ ∈ f −1(z)) c(y ′) ∧ a(y) ∼= a(y ′) ∧ c(y),

then (∀z ∈ Z) (∀y ′ ∈ f −1(z)) a(y ′) ∧
∨

f (y)=z

c(y) ∼= c(y ′).

CT 2025, Brno 16/32



Ord//X : effective descent morphisms

C-Lucatelli, Lax comma categories of ordered sets, QM 2023
C-Janelidze, Effective descent morphisms of filtered preorders, Order 2025
C-Prezado, Effective descent morphisms of ordered families, QM 2025

Thm. Let X be locally complete with ⊥.

A morphism f : (Y , a) → (Z , b) is effective for descent in Ord//X iff

▼ f is effective for descent in Ord,

▼ for all z0 ≤ z1 ∈ Z , x ≤ b(z0), x ∼=
∨

y0≤y1, f (yi )=zi

x ∧ a(y0),

▼ for every family (c(y))y∈Y ≤ (a(y))y∈Y ,

if (∀z ∈ Z) (∀y , y ′ ∈ f −1(z)) c(y ′) ∧ a(y) ∼= a(y ′) ∧ c(y),

then (∀z ∈ Z) (∀y ′ ∈ f −1(z)) a(y ′) ∧
∨

f (y)=z

c(y) ∼= c(y ′).

CT 2025, Brno 16/32



Ord//X : effective descent morphisms

C-Lucatelli, Lax comma categories of ordered sets, QM 2023
C-Janelidze, Effective descent morphisms of filtered preorders, Order 2025
C-Prezado, Effective descent morphisms of ordered families, QM 2025

Thm. Let X be locally complete with ⊥.

A morphism f : (Y , a) → (Z , b) is effective for descent in Ord//X iff

▼ f is effective for descent in Ord,

▼ for all z0 ≤ z1 ∈ Z , x ≤ b(z0), x ∼=
∨

y0≤y1, f (yi )=zi

x ∧ a(y0),

▼ for every family (c(y))y∈Y ≤ (a(y))y∈Y ,

if (∀z ∈ Z) (∀y , y ′ ∈ f −1(z)) c(y ′) ∧ a(y) ∼= a(y ′) ∧ c(y),

then (∀z ∈ Z) (∀y ′ ∈ f −1(z)) a(y ′) ∧
∨

f (y)=z

c(y) ∼= c(y ′).

CT 2025, Brno 16/32



Ord//X : effective descent morphisms

C-Lucatelli, Lax comma categories of ordered sets, QM 2023
C-Janelidze, Effective descent morphisms of filtered preorders, Order 2025
C-Prezado, Effective descent morphisms of ordered families, QM 2025

Thm. Let X be locally complete with ⊥.

A morphism f : (Y , a) → (Z , b) is effective for descent in Ord//X iff

▼ f is effective for descent in Ord,

▼ for all z0 ≤ z1 ∈ Z , x ≤ b(z0), x ∼=
∨

y0≤y1, f (yi )=zi

x ∧ a(y0),

▼ for every family (c(y))y∈Y ≤ (a(y))y∈Y ,

if (∀z ∈ Z) (∀y , y ′ ∈ f −1(z)) c(y ′) ∧ a(y) ∼= a(y ′) ∧ c(y),

then (∀z ∈ Z) (∀y ′ ∈ f −1(z)) a(y ′) ∧
∨

f (y)=z

c(y) ∼= c(y ′).

CT 2025, Brno 16/32



Ord//X : effective descent morphisms

C-Lucatelli, Lax comma categories of ordered sets, QM 2023
C-Janelidze, Effective descent morphisms of filtered preorders, Order 2025
C-Prezado, Effective descent morphisms of ordered families, QM 2025

Thm. Let X be locally complete with ⊥.

A morphism f : (Y , a) → (Z , b) is effective for descent in Ord//X iff

▼ f is effective for descent in Ord,

▼ for all z0 ≤ z1 ∈ Z , x ≤ b(z0), x ∼=
∨

y0≤y1, f (yi )=zi

x ∧ a(y0),

▼ for every family (c(y))y∈Y ≤ (a(y))y∈Y ,

if (∀z ∈ Z) (∀y , y ′ ∈ f −1(z)) c(y ′) ∧ a(y) ∼= a(y ′) ∧ c(y),

then (∀z ∈ Z) (∀y ′ ∈ f −1(z)) a(y ′) ∧
∨

f (y)=z

c(y) ∼= c(y ′).

CT 2025, Brno 17/32



Ord//X : effective descent morphisms
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Cor. Let X be locally complete with ⊥, and locally cartesian closed.

A morphism f : (Y , a) → (Z , b) is effective for descent in Ord//X iff

▼ f is effective for descent in Ord,

▼ for all z0 ≤ z1 ∈ Z , b(z0) ∼=
∨

y0≤y1, f (yi )=zi

a(y0).

Remark. f effective descent in Ord//X ̸⇒ fx surjective!
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Top//X : the natural order

C-Hofmann-Prezado, Topological lax comma categories, 2025

The natural order on a topological space X is given by:

x ≤ x ′ if x ′ ∈ {x}, or, equivalently,
•
x→ x ′

(that is, it is the opposite of the specialization order).

Remark: Given an ordered set Z , there are several topologies on Z inducing its order, eg:

▼ the lower topology: closed sets generated by ↑ z (z ∈ Z);

▼ the lower Scott topology: A ⊆ Z closed if A is up-closed

and stable under codirected infima;

▼ the lower Alexandroff topology: A ⊆ Z closed if A is up-closed.
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Top//X : order versus topology of X

C-Hofmann-Prezado, Topological lax comma categories, 2025

The topological space X is:

▼ a topological ∧-semilattice if its natural order makes it a ∧-semilattice

and the map X × X ∧ // X is continuous.

▼ a topological
∧

-semilattice if the map X I
∧
// X exists

and is continuous (I any set).

Prop. The following assertions are equivalent, for X a T0-space:

▼ X is a topological
∧

-semilattice;

▼ X is sober and a topological ∧-semilattice;

▼ X is an algebra for the lower Vietoris monad on Top;

▼ X◦ is complete and every ultrafilter on X has a smallest convergence point.finitely
complete

Thm. The following assertions are equivalent:

▼ The forgetful functor Top//X U // Top is topological;

▼ X is a topological
∧

-semilattice.
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Top//X : examples

C-Hofmann-Prezado, Topological lax comma categories, 2025

Special examples:

▼ If X is a complete ordered set equipped with the lower topology,

then it is a topological
∧

-semilattice.

▼ If X is an injective space, then it is a topological
∧

-semilattice;

moreover, the map ∨ : X × X → X is continuous.
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Top//X : examples

C-Hofmann-Prezado, Topological lax comma categories, 2025

(1) If X is the Sierpinski space S (0 ≤ 1), then:

▼ it is both a continuous and an op-continuous lattice;

▼ the three (lower) topologies coincide;

▼ Top//S can be described as having as objects pairs (A,A0), where A0 ⊆ A is closed,

and morphisms f : (A,A0) → (B,B0) continuous maps f : A → B with f (A0) ⊆ B0.

(2) X = N with n ≤ m if m divides n:

▼ it is a complete lattice;

▼ it is an op-continuous (but not continuous) lattice;

▼ lower = Scott lower topology ̸= Alexandroff topology.

(3) X = [0, 1] with the natural order:

▼ it is both a continuous and an op-continuous lattice;

▼ lower = Scott lower topology ̸= Alexandroff topology.
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Top//X : (co)limits

C-Hofmann-Prezado, Topological lax comma categories, 2025

▼ Top//X has coproducts

(preserved by U).

▼ Top//X has equalisers (preserved by U).

▼ Top//X is extensive.

▼ Top//X has and U preserves finite limits iff X is a topological ∧-semilattice.

Remark: iff the product (X , 1X ) × (X , 1X ) exists in Top//X
and has X × X as underlying space.

▼ Top//X has and U preserves limits iff X is a topological
∧

-semilattice.

▼ Top//X has coequalisers and U preserves them iff

for every Y a // X continuous and Y
q // Q quotient, Lanq(a) exists.

Remark: This is the case when X is a topological
∧

-semilattice.
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Top//X : exponentiability

C-Hofmann-Prezado, Topological lax comma categories, 2025

Niefield, Exponentiability in lax slices of Top, 2006

Prop. If X is a topological ∧-semilattice with bottom, then:

▼ Top//X U // Top preserves exponentiable objects;

▼ U preserves exponentials.

Thm. If X is a topological ∧-semilattice, (Y , a) is exponentiable in Top//X whenever:

▼ Y is exponentiable in Top,

▼ X has continuous infima for all families indexed by the underlying set of Y ,

▼ and, for every y ∈ Y , ( X
a(y)∧−// X ) ⊣ ( X

a(y)⇒−// X ) in Top.

A topological ∧-semilattice X is a topological Heyting ∧-semilattice if,

for every x ∈ X , the continuous map X
x∧− // X has a right adjoint in Top.

Examples: Any complete Heyting algebra equipped with the lower topology:

S, N, [0, 1].

Cor. If X is a topological Heyting
∧

-semilattice, then:

(Y , a) is exponentiable in Top//X iff Y is exponentiable in Top.
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Top: effective descent morphisms

Reiterman-Tholen, Effective descent maps of topological spaces„ TA 1994

C-Hofmann, Triquotient maps via ultrafilter convergence, PAMS 2002
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Top//X : effective descent morphisms

C-Hofmann-Prezado, Topological lax comma categories, 2025

Prop. If f : (Y , a) → (Z , b) is effective for descent in Top//X ,

then it is effective for descent in Top.

Recall: If X is a
∧

-semilattice
there exists σ : UX → X

with σ(x) the smallest conv point of x
Thm. If X is a

∧
-semilattice such that:

▼ binary meets preserve σ and commute with arbitrary joins,

then f : (Y , a) → (Z , b) is effective for descent in Top//X iff:

▼ f is effective for descent in Top;

▼ for every z ; z in Z ,

σ(Ub(z)) =
∨

σ(Ua(y)), (y ; y) f7→ (z ; z).

Example: The result applies when X is a completely distributive lattice

equipped with the lower topology.
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The general case: G//H

C-Lucatelli, in preparation, 2025
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G//H : products

C-Lucatelli, in preparation, 2025

Thm. Let G : B → A and H : C → A be 2-functors,

and (Bi ,Ci , GBi
di // HCi )i∈I a family of objects of G//H such that:

▼
∏

i∈I Bi exists in B, with projections pj :
∏

i∈I Bi → Bj ;

▼
∏

i∈I Ci exists in C, with projections qj :
∏

i∈I Ci → Cj ;

▼
∏

i∈I HCi exists in A,

▼ ⟨Hqi ⟩i : H(
∏

i∈I Ci ) →
∏

i∈I HCi has a right adjoint r in A.

Then the product of (Bi ,Ci , di )i exists in G//B, and it is given by

(
∏
i∈I

Bi ,
∏
i∈I

Ci , G(
∏

i∈I Bi )
⟨di Gpi ⟩// ∏

i∈I HCi
r // H(

∏
i∈I Ci ))(

∏
i∈I

Bi ,
∏
i∈I

Ci , G(
∏

i∈I Bi )
⟨di Gpi ⟩// ∏

i∈I HCi
r // H(

∏
i∈I Ci ))
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i∈I Bi → Bj ;

▼
∏

i∈I Ci exists in C, with projections qj :
∏

i∈I Ci → Cj ;

▼
∏

i∈I HCi exists in A,

▼ ⟨Hqi ⟩i : H(
∏

i∈I Ci ) →
∏

i∈I HCi has a right adjoint r in A.

Then the product of (Bi ,Ci , di )i exists in G//B, and it is given by

(
∏
i∈I

Bi ,
∏
i∈I

Ci , G(
∏

i∈I Bi )
⟨di Gpi ⟩// ∏

i∈I HCi
r // H(

∏
i∈I Ci ))(

∏
i∈I

Bi ,
∏
i∈I

Ci , G(
∏

i∈I Bi )
⟨di Gpi ⟩// ∏

i∈I HCi
r // H(

∏
i∈I Ci ))
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∏
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∏
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▼
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▼
∏
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▼ ⟨Hqi ⟩i : H(
∏

i∈I Ci ) →
∏

i∈I HCi has a right adjoint r in A.

Then the product of (Bi ,Ci , di )i exists in G//H , and it is given by

(
∏
i∈I

Bi ,
∏
i∈I

Ci , G(
∏

i∈I Bi )
⟨di Gpi ⟩// ∏

i∈I HCi
r // H(

∏
i∈I Ci ))

Applying this result to the category Hco op//G co op one obtains:
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G//H : coproducts

C-Lucatelli, in preparation, 2025

Thm. Let G : B → A and H : C → A be 2-functors,

and (Bi ,Ci , GBi
di // HCi )i∈I a family of objects of G//H such that:

▼
∐

i∈I Bi exists in B;

▼
∐

i∈I Ci exists in C, with coprojections cj : Cj →
∐

i∈I Ci ;

▼
∐

i∈I HCi exists in A,

▼ ⟨Hci ⟩i :
∐

i∈I HCi → H(
∐

i∈i Ci ) has a left adjoint s in A.

Then the coproduct of (Bi ,Ci , di )i exists in G//H .
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