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Motivation

At the last CT in Spain, I presented my main result:

Theorem [CRVdL25]
Let C be a semi-abelian category and enough projectives that satisfy
Condition (P). Let E be a semi-abelian category,
and let F : C → E be a protoadditive functor that preserves binary
coproducts and proper morphisms.
Then the left-derived functors of F are defined as in the abelian context.

protoadditive = a functor preserving kernels of split
epimorphisms [EG10, EG15].

Example
π0 : XMod(V) → V where V is a semi-abelian variety satisfying the
Condition (P).
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Condition (P)

All the categories are assumed to be semi-abelian throughout my talk.

Definition [CRVdL25]
We call (P) the statement that for each split short exact sequence

0 ,2 K � ,2 k ,2 X
f � ,2 Y ,2lr
s

lr 0

if X is a projective object then K is projective.

Trivial examples [CRVdL25]
Any abelian category satisfies (P): X ∼= K ⊕ Y ;
Any Schreier variety of algebras (e.g. Gp, LieK (K is a field), Ab, ...)
satisfies (P): K is a subobject of a free object X .
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Internal actions

How to express an action of A on X?
It can be expressed as the (bold) bottom split short exact sequence

0 ,2 A ⋄ X
ψ

��

� ,2 ,2 A+ X

⟨s,ker(f )⟩
��

ΣA,X � ,2 A× X ,2

π1
��

0

0 ,2,2,2 X � ,2 ,2� ,2 ,2� ,2 ker(f ) ,2 Y
f � ,2� ,2� ,2 A ,2,2,2lrlr lrlr lr
s

lr 0

where A ⋄ X is called the binary cosmash product of A and X .

The original definition of internal crossed modules (G. Janelidze [Jan03])
is expressed in terms of an algebra over the monad A♭−.
Today, I make use of “ψ” (which codifies the above split short exact
sequence via a semi-direct product construction) which leads to an
alternative characterization (M. Hartl and T. Van der Linden [HVdL13]).
This approach leads to shorter proofs.

M. Culot (UCLouvain) Projective crossed modules July 2025 5 / 15



Internal actions

How to express an action of A on X?
It can be expressed as the (bold) bottom split short exact sequence

0 ,2 A ⋄ X
ψ

��

� ,2 ,2 A+ X

⟨s,ker(f )⟩
��

ΣA,X � ,2 A× X ,2

π1
��

0

0 ,2,2,2 X � ,2 ,2� ,2 ,2� ,2 ker(f ) ,2 Y
f � ,2� ,2� ,2 A ,2,2,2lrlr lrlr lr
s

lr 0

where A ⋄ X is called the binary cosmash product of A and X .

The original definition of internal crossed modules (G. Janelidze [Jan03])
is expressed in terms of an algebra over the monad A♭−.
Today, I make use of “ψ” (which codifies the above split short exact
sequence via a semi-direct product construction) which leads to an
alternative characterization (M. Hartl and T. Van der Linden [HVdL13]).
This approach leads to shorter proofs.

M. Culot (UCLouvain) Projective crossed modules July 2025 5 / 15



Definition of internal crossed modules

Definition
A internal crossed module is given by
(X ∈ C,A ∈ C, ∂ : X → A, ψ : A ⋄ X → X ) where ψ is an action core
and where ∂ is called the boundary morphism, satisfying three conditions.
An internal crossed module morphism
(fX , fA) : (X ,A, ψ, ∂) → (X ′,A′, ψ′, ∂′) is a pair of morphisms
fX : X → X ′, fA : A → A′ in C compatible with the action cores and with
the boundary morphisms.
This forms a category denoted XMod(C)
where C is the underlying semi-abelian category.

Remark
The motivation for the above definition is the equivalence of categories
between XMod(C) and Cat(C) the category of internal categories of C.
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A projective crossed module
Proposition [CCRG02]
In XMod(Gp), if P is a projective group and Q is a projective P-group then
the inclusion morphism Q → Q ⋊ P is a projective crossed module.

Theorem [Cul25]
If P is a projective object in C and if the split extension

0 ,2 Q � ,2 ∂
′
,2 Z

p � ,2 P ,2lr
s

lr 0

is a projective object in the category of split extensions of P ,
then the kernel ∂′, viewed as an internal crossed module,
is a projective object in XMod(C).

Any kernel can be endowed with a (unique) crossed module structure: the
action is the conjugation action core (denoted χ), and the boundary
map is the inclusion ∂′.
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Sketch of the proof

Consider a regular epimorphism (fX , fA) : (X ,A, ϕ, ∂) → (Q,Z , χ, ∂′) in
XMod(C):

X
∂ ,2

fX
����

A

fA
����

Q � ,2
∂′

,2

gX

U_

Z
p � ,2

gA

?I

Plr
s

lr

g
jq

1 Lifting of s along fA (P is projective);
2 A section of fX (the bottom is projective object in SSEP(C));
3 A section of fA (the construction of Z ∼= Q ⋊ψ P);
4 The pair of sections is a morphism in XMod(C) (“⋄” characterization).
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Free crossed modules in variety V
Consider a semi-abelian variety of algebras V with Fr : Set → V the
associated free functor. All free internal crossed modules are of the form

(Fr (S)♭Fr (S),Fr (S) + Fr (S), χ, κFr (S),Fr (S))

where κFr (S),Fr (S) : Fr (S)♭Fr (S) → Fr (S) + Fr (S), for some S ∈ Set.

Corollary [Cul25]
For any non-trivial semi-abelian variety V, the variety XMod(V) is not a
Schreier variety (free objects are not stable under subobjects).

Sketch of the proof
Consider two different projectives objects P and X in V, then

0 ,2 P♭X � ,2
κP,X ,2 P + X

⟨1P ,0⟩� ,2 P ,2lr
ι1
lr 0

the kernel part is projective in XMod(V) but not free since P ̸= X .
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Condition (P) in crossed modules

Theorem [Cul25]
Consider a semi-abelian variety V, if V satisfies the condition (P),
then so does the variety XMod(V).

Comments
The proof relies on

another characterization of (P) expressed in terms of free objects in
Mal’tsev variety [CRVdL25];
and it is also based on the two main results previously explained today!
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Thank you!

Questions? Or comments?
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