Schemes relative to Actegories Subhajit Das Indian Institute of Science jww Dr. Abhishek Banerjee and Dr. Surjeet Kour CT 2025 Masaryk University, Brno July 18 | Usual Algebraic Geometry on | |--------------------------------| | the big site of affine schemes | ## Relative Algebraic Geometry [Toën and Vaquié, 2009] $$(Ab, \otimes, \mathbb{Z})$$ $(e, \otimes, 1)$ CRing Comm(C) (commutative monoids in 2) Zariski Site: AffSch "Zariski" Site: $Aff_{\mathcal{C}} := Comm(\mathcal{C})^{\circ P}$ (affines) Schemes \mathcal{C} — Schemes ullet Toën and Vaquié used actions of commutative monoids in ${\mathcal C}$ on objects of ${\mathcal C}$ to define a Grothendieck topology on $Aff_{\varphi} = Comm(z)^{\circ P}$. Microcosm Principle : Categorification allows Internalization Bénabou cosmos $$+ \left(\mathcal{M}, \mathbf{M} \right)$$ left \mathcal{P} - acteorry left C-actegory bicomplete, $C \times M \xrightarrow{\boxtimes} M$ cocontinuous in both arguments (comm. monoids in C) $$M - Zariski$$ Site Aff = Comm(\mathfrak{C}) (affines) → M-Schemes • $$c \in Comm(c)$$ monad $c \boxtimes -$ on \mathcal{M} . $$Mod_{\mathcal{M}}(c)$$ $=$ $\mathcal{M}^{c \boxtimes -}$ Eilenberg-Moore category (actions of c in M) $$Mod_{\mathcal{M}}(c)$$ forgetful \longrightarrow \mathcal{M} creates limits and colimits $$\Rightarrow$$ Mod_M(c) is bicomplete $$\Rightarrow \begin{array}{c} \alpha: \alpha \longrightarrow b \\ \text{in } Comm(\mathcal{E}) \end{array}$$ example to $$\alpha = \text{Extension}$$ induces $Mod_{M}(\alpha)$ $Mod_{M}(b)$ $A = \text{Restriction}$ #### The construction $$\begin{array}{cccc} \alpha & \longmapsto & \operatorname{Mod}_{\mathbf{M}}(a) \\ \alpha & \longmapsto & \downarrow & \alpha^* & = & \operatorname{extension of scalars} \\ b & \longmapsto & \operatorname{Mod}_{\mathbf{M}}(b) \end{array}$$ defines a pseudo-functor $Comm(\mathcal{C}) \longrightarrow Cat$ Notation: Comm($$\mathcal{E}$$) $\ni a$ \longrightarrow Spec (a) $\in Aff_{\mathcal{E}} = Comm(\mathcal{E})$ (affine) $$\Rightarrow$$ if $\forall i \in I$, $\alpha_i : \alpha \longrightarrow \alpha_i$ in $Comm(\mathcal{E})$ is an \Rightarrow \exists $K \subseteq I$ such that $\{\alpha_{\kappa}^{*}\}_{\kappa \in K}$ is collectively conservative. Zariski M-site : (Aff_e, J_m) where J_m has as basis : Aff $$e \ni Spec(a) \longmapsto \begin{cases} Zariski \ M-covers for \\ Spec(a) \end{cases}$$ • In particular, $(M, \boxtimes) := (\mathcal{C}, \otimes)$ recovers Toën and Vaquié's theory. • J_M is not always subcanonical! Call M to be subcanonical if J_M is subcanonical. ### Example The (Digrph, x, 1) - actegory structure on (Digrph, x) restricts under Set $$\xrightarrow{\text{disc}}$$ Cat $\xrightarrow{\text{forgetful}}$ Digrph to make Digrph into a subcanonical (Set, x, 1) - actegory. M - scheme $\ref{eq:scheme}$ Sheaf $F: Aff_{e}^{op} \longrightarrow Set w.r.t J_M$ which can be "nicely covered" by representables in $Sh(Aff_{e}, J_{M})$. Sch(\mathcal{C})_M: full subcategory of Sh($Aff_{\mathcal{C}}$, $J_{\mathcal{M}}$) consisting of M-schemes. • Sch(C)_M \hookrightarrow Sh(Aff_e, J_M) is closed under pullbacks, coproducts, quotients by "nice" equivalence relations. # Change of Base • an adjunction in symMonCat_{lax}: $$\mathcal{L}$$ \mathcal{L} \mathcal{L} induces adjunctions of Comm's and Aff's • \mathcal{C} - actegory \mathcal{M} , \mathcal{D} - actegory \mathcal{N} [not necessarily subcanonical] a lax \mathcal{C} -linear functor $L: \mathcal{N} \longrightarrow \mathcal{M}$ Theorem: If - \bigcirc A: \bigcirc \bigcirc \bigcirc preserves filtered colimits, - (2) $L: \mathcal{N} \longrightarrow \mathcal{M}$ is conservative and left exact, 3 a technical condition holds, then, the functor $-\circ \beta^{\circ}: PSh(Aff_{\mathfrak{Q}}) \longrightarrow PSh(Aff_{\mathfrak{Q}})$ restricts to a functor $\beta_{!}: Sh(Aff_{\mathfrak{Q}}, J_{\mathcal{N}}) \longrightarrow Sh(Aff_{\mathfrak{Q}}, J_{\mathcal{M}})$ which has a left-adjoint $A_{!}$. ② If M and N are subcanonical, the left – adjoint A_1 restricts to a functor $Sch(\mathcal{C})_M$ — \longrightarrow $Sch(\mathfrak{D})_N$ such that the following diagram commutes upto a natural isomorphism: #### References [1] A. Banerjee, S. Das and S. Kour, Categorification of modules and construction of schemes, arXiv:2412.08952. [2] F. Borceux, G. Janelidze and G.M. Kelly, **Internal Object Actions**, Commentationes Mathematicae Universitatis Carolinae, 46, 2, 2005, 235 - 255. [3] M. Capucci and B. Gavranović, Actegories for the Working Amthematician, arXiv:2203.16351 (2022). [4] G. Janelidze and G.M. Kelly, A note on actions of a monoidal category, Theory Appl. Categ. 9 (2001/02), 61-91. CT2000 Conference (Como). [5] S. Mac Lane and I. Moerdijk, Sheaves in geometry and logic, Universitext, Springer-Verlag, New York, 1994. [6] B. Toën and M. Vaquié, Au-dessous de Spec Z, J. K-Theory 3 (2009), no. 3, 437-500. #### Thank You