Schemes relative to Actegories

Subhajit Das Indian Institute of Science

jww Dr. Abhishek Banerjee and Dr. Surjeet Kour

CT 2025

Masaryk University, Brno
July 18

Usual Algebraic Geometry on
the big site of affine schemes

Relative Algebraic Geometry

[Toën and Vaquié, 2009]

$$(Ab, \otimes, \mathbb{Z})$$

 $(e, \otimes, 1)$

CRing

Comm(C)

(commutative monoids in 2)

Zariski Site: AffSch

"Zariski" Site: $Aff_{\mathcal{C}} := Comm(\mathcal{C})^{\circ P}$ (affines)

Schemes

 \mathcal{C} — Schemes

ullet Toën and Vaquié used actions of commutative monoids in ${\mathcal C}$ on objects of ${\mathcal C}$ to define a Grothendieck topology on $Aff_{\varphi} = Comm(z)^{\circ P}$.

Microcosm Principle : Categorification allows Internalization

Bénabou cosmos

$$+ \left(\mathcal{M}, \mathbf{M} \right)$$
left \mathcal{P} - acteorry

left C-actegory

bicomplete, $C \times M \xrightarrow{\boxtimes} M$

cocontinuous in both arguments

(comm. monoids in C)

$$M - Zariski$$
 Site

Aff = Comm(\mathfrak{C})

(affines)

→ M-Schemes

•
$$c \in Comm(c)$$

monad $c \boxtimes -$ on \mathcal{M} .

$$Mod_{\mathcal{M}}(c)$$
 $=$ $\mathcal{M}^{c \boxtimes -}$ Eilenberg-Moore category

(actions of c in M)

$$Mod_{\mathcal{M}}(c)$$
 forgetful \longrightarrow \mathcal{M} creates limits and colimits

$$\Rightarrow$$

Mod_M(c) is bicomplete

$$\Rightarrow \begin{array}{c} \alpha: \alpha \longrightarrow b \\ \text{in } Comm(\mathcal{E}) \end{array}$$

example to
$$\alpha = \text{Extension}$$

induces $Mod_{M}(\alpha)$
 $Mod_{M}(b)$
 $A = \text{Restriction}$

The construction

$$\begin{array}{cccc}
\alpha & \longmapsto & \operatorname{Mod}_{\mathbf{M}}(a) \\
\alpha & \longmapsto & \downarrow & \alpha^* & = & \operatorname{extension of scalars} \\
b & \longmapsto & \operatorname{Mod}_{\mathbf{M}}(b)
\end{array}$$

defines a pseudo-functor $Comm(\mathcal{C}) \longrightarrow Cat$

Notation: Comm(
$$\mathcal{E}$$
) $\ni a$ \longrightarrow Spec (a) $\in Aff_{\mathcal{E}} = Comm(\mathcal{E})$ (affine)

$$\Rightarrow$$
 if $\forall i \in I$, $\alpha_i : \alpha \longrightarrow \alpha_i$ in $Comm(\mathcal{E})$ is an

 \Rightarrow \exists $K \subseteq I$ such that $\{\alpha_{\kappa}^{*}\}_{\kappa \in K}$ is collectively conservative.

Zariski M-site : (Aff_e, J_m) where J_m has as basis :

Aff
$$e \ni Spec(a) \longmapsto \begin{cases} Zariski \ M-covers for \\ Spec(a) \end{cases}$$

• In particular, $(M, \boxtimes) := (\mathcal{C}, \otimes)$ recovers Toën and Vaquié's theory.

• J_M is not always subcanonical! Call M to be subcanonical if J_M is subcanonical.

Example

The (Digrph, x, 1) - actegory structure on (Digrph, x) restricts under

Set
$$\xrightarrow{\text{disc}}$$
 Cat $\xrightarrow{\text{forgetful}}$ Digrph

to make Digrph into a subcanonical (Set, x, 1) - actegory.

M - scheme $\ref{eq:scheme}$ Sheaf $F: Aff_{e}^{op} \longrightarrow Set w.r.t J_M$ which can be

"nicely covered" by representables in $Sh(Aff_{e}, J_{M})$.

Sch(\mathcal{C})_M: full subcategory of Sh($Aff_{\mathcal{C}}$, $J_{\mathcal{M}}$) consisting of M-schemes.

• Sch(C)_M \hookrightarrow Sh(Aff_e, J_M) is closed under pullbacks, coproducts, quotients by "nice" equivalence relations.

Change of Base

• an adjunction in symMonCat_{lax}:
$$\mathcal{L}$$
 \mathcal{L} \mathcal{L} induces adjunctions of Comm's and Aff's

• \mathcal{C} - actegory \mathcal{M} , \mathcal{D} - actegory \mathcal{N} [not necessarily subcanonical]

a lax \mathcal{C} -linear functor $L: \mathcal{N} \longrightarrow \mathcal{M}$

Theorem: If

- \bigcirc A: \bigcirc \bigcirc \bigcirc preserves filtered colimits,
- (2) $L: \mathcal{N} \longrightarrow \mathcal{M}$ is conservative and left exact,

3 a technical condition holds,

then,

the functor $-\circ \beta^{\circ}: PSh(Aff_{\mathfrak{Q}}) \longrightarrow PSh(Aff_{\mathfrak{Q}})$ restricts to a functor $\beta_{!}: Sh(Aff_{\mathfrak{Q}}, J_{\mathcal{N}}) \longrightarrow Sh(Aff_{\mathfrak{Q}}, J_{\mathcal{M}})$ which has a left-adjoint $A_{!}$.

② If M and N are subcanonical, the left – adjoint A_1 restricts to a functor $Sch(\mathcal{C})_M$ — \longrightarrow $Sch(\mathfrak{D})_N$

such that the following diagram commutes upto a natural isomorphism:

References

[1] A. Banerjee, S. Das and S. Kour, Categorification of modules and construction of schemes, arXiv:2412.08952.

[2] F. Borceux, G. Janelidze and G.M. Kelly, **Internal Object Actions**, Commentationes Mathematicae Universitatis Carolinae, 46, 2, 2005, 235 - 255.

[3] M. Capucci and B. Gavranović, Actegories for the Working Amthematician, arXiv:2203.16351 (2022).

[4] G. Janelidze and G.M. Kelly, A note on actions of a monoidal category, Theory Appl. Categ. 9 (2001/02), 61-91. CT2000 Conference (Como).

[5] S. Mac Lane and I. Moerdijk, Sheaves in geometry and logic, Universitext, Springer-Verlag, New York, 1994.

[6] B. Toën and M. Vaquié, Au-dessous de Spec Z, J. K-Theory 3 (2009), no. 3, 437-500.

Thank You