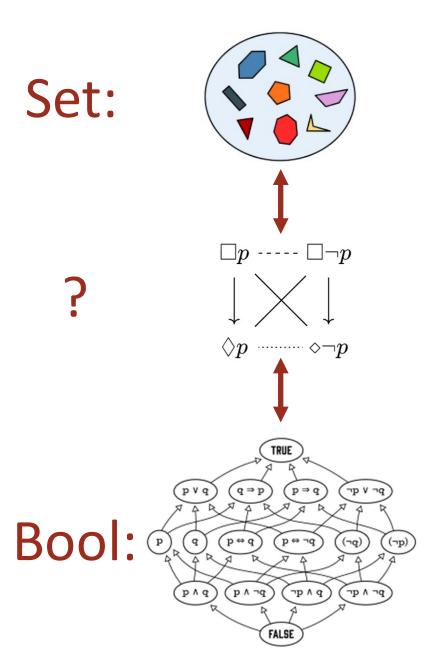
Between Set and Bool: Categories of Aristotelian Diagrams

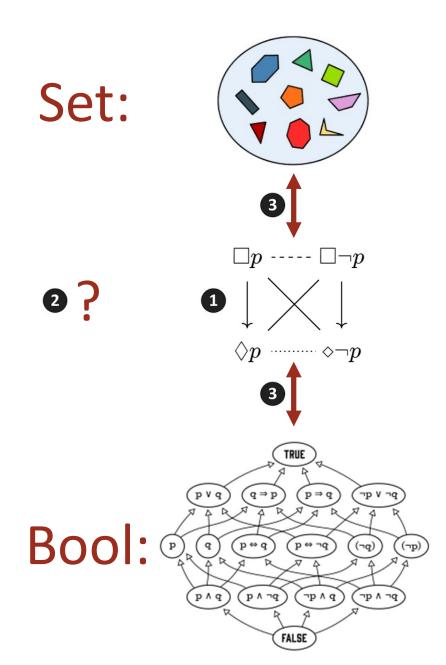
Alex De Klerck

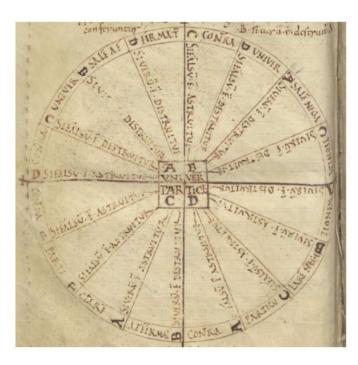
PhD student on the ERC Starting Grant STARTDIALOG project

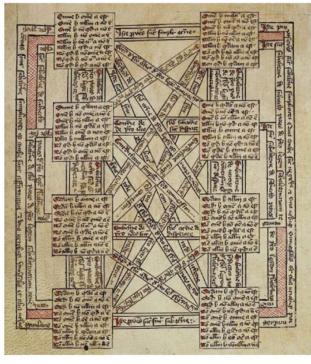
Joint work with Lorenz Demey, Leander Vignero

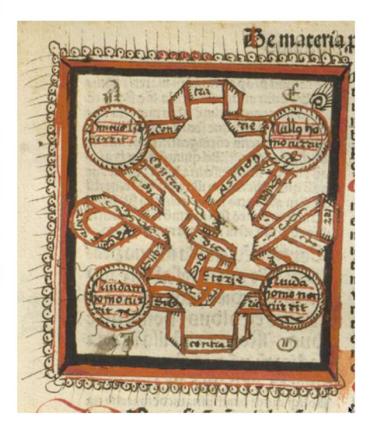


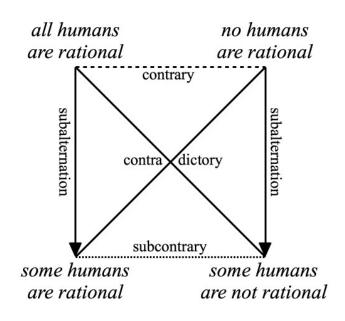
- What are Aristotelian diagrams?
- 2 Categorification
- 3 Connections with Set and Bool

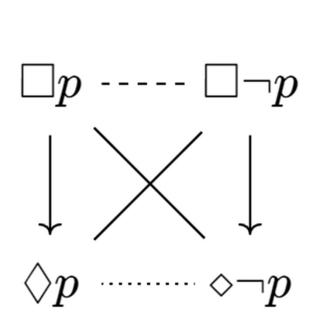


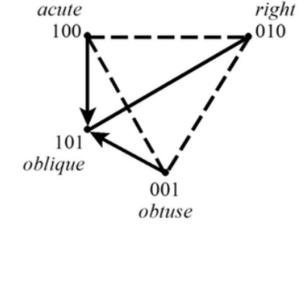










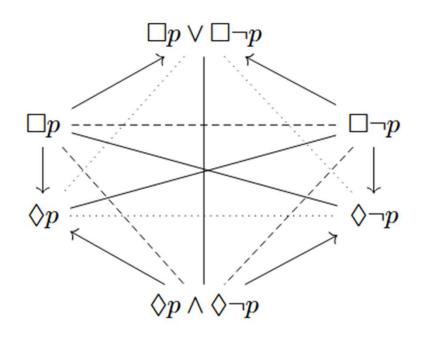


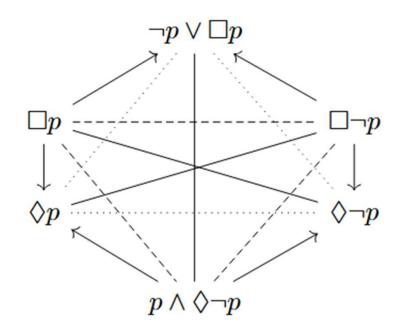
Contradiction x,y can both be true/false **x,y** can both be false, X-----V Contrariety but not both true x,y can both be true, Subcontrariety but not both false Subalternation x implies y, but not vice versa

Definition. Given a Boolean algebra B, we say that $x, y \in B$ are:

- B-contradictory iff $x \wedge y = 0$ and $x \vee y = 1$,
- B-contrary iff $x \wedge y = 0$ and $x \vee y \neq 1$,
- B-subcontrary iff $x \wedge y \neq 0$ and $x \vee y = 1$,
- in B-subalternation iff $\neg x \lor y = 1$ and $x \lor \neg y \neq 1$.

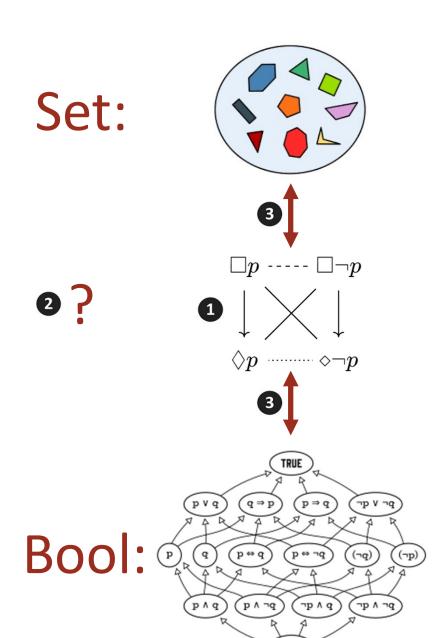
Definition. An Aristotelian diagram D is a pair (\mathcal{F}, B) , where B is a Boolean algebra and \mathcal{F} is a subset of B.





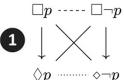
Similar Aristotelian diagrams, but different Boolean properties. Should they be considered isomorphic?

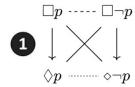
- What are Aristotelian diagrams?
- 2 Categorification
- 3 Connections with Set and Bool

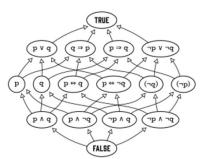


- What are Aristotelian diagrams?
- 2 Categorification
- 3 Connections with Set and Bool

Set:







	Relational structure level	Boolean structure level
Objects	Aristotelian diagrams	Aristotelian diagrams
Isomorphisms	Aristotelian isomorphisms	Boolean isomorphisms
Morphisms	?	?

Home > Logica Universalis > Article

Morphisms Between Aristotelian Diagrams

Open access | Published: 15 November 2023

Volume 18, pages 49 – 83, (2024) Cite this article

	Relational structure level	Boolean structure level
Objects	Aristotelian diagrams	Aristotelian diagrams
Isomorphisms	Aristotelian isomorphisms	Boolean isomorphisms
Morphisms	Increasing infomorphisms	?

Home > Logica Universalis > Article

Morphisms Between Aristotelian Diagrams

Open access | Published: 15 November 2023

Volume 18, pages 49 – 83, (2024) Cite this article

Definition. Let $D = (\mathcal{F}, B)$ and $D' = (\mathcal{F}', B')$ be Aristotelian diagrams. Then, a function $f : \mathcal{F} \to \mathcal{F}'$ is an increasing infomorphism from D to D' if and only if we have, for all $x, y \in \mathcal{F}$:

•
$$x \lor y = 1 \implies f(x) \lor f(y) = 1$$
,

$$\bullet \neg x \lor y = 1 \implies \neg f(x) \lor f(y) = 1,$$

•
$$x \vee \neg y = 1 \implies f(x) \vee \neg f(y) = 1$$
,

•
$$\neg x \lor \neg y = 1 \implies \neg f(x) \lor \neg f(y) = 1.$$

	Relational structure level	Boolean structure level
Objects	Aristotelian diagrams	Aristotelian diagrams
Isomorphisms	Aristotelian isomorphisms	Boolean isomorphisms
Morphisms	Increasing infomorphisms	?

	Relational structure level	Boolean structure level
Objects	Aristotelian diagrams	Aristotelian diagrams
Isomorphisms	Aristotelian isomorphisms	Boolean isomorphisms
Morphisms	Increasing infomorphisms	Boolean morphisms

Definition. Let (\mathcal{F}, B) and (\mathcal{F}', B') be Aristotelian diagrams. A Boolean morphism $f: (\mathcal{F}, B) \to (\mathcal{F}', B')$ is a function $f: \mathcal{F} \to \mathcal{F}'$ such that there exists a Boolean algebra morphism $\varphi: Cl_B(\mathcal{F}) \to Cl_{B'}(\mathcal{F}')$ such that $f = \varphi|_{\mathcal{F}}$.

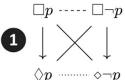
	Relational structure level	Boolean structure level
Objects	Aristotelian diagrams	Aristotelian diagrams
Isomorphisms	Aristotelian isomorphisms	Boolean isomorphisms
Morphisms	Increasing infomorphisms	Boolean morphisms

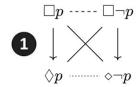
	Relational structure level	Boolean structure level
Objects	Aristotelian diagrams	Aristotelian diagrams
Isomorphisms	Aristotelian isomorphisms	Boolean isomorphisms
Morphisms	Increasing infomorphisms	Boolean morphisms
Complete	✓	✓
Cocomplete	✓	✓

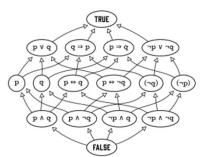
	Relational structure level	Boolean structure level
Terminal objects	$(\{*\},B_*)$	$(\{*\},B_*)$
Products	$(\mathcal{F} imes\mathcal{F}', B imes B')$	$(\mathcal{F} imes\mathcal{F}',B imes B')$
Equalizers	(eq(f,g),B)	$(eq(f,g),eq(\overline{f},\overline{g}))$
Pullbacks	(pb(f,g), B imes B')	$(pb(f,g),pb(\overline{f},\overline{g}))$
Initial Objects	(\emptyset,B)	(\emptyset,B)
Coproducts	$(\iota_B(\mathcal{F}) \cup \iota_{B'}(\mathcal{F}'), B+B')$	$(\iota_B(\mathcal{F}) \cup \iota_{B'}(\mathcal{F}'), B+B')$
Coequalizers	$(q_{\equiv_{coeq(f,g)}} \circ i_{\mathcal{F}}(\mathcal{F}), rac{F(\mathcal{F})}{\equiv_{coeq(f,g)}})$	$(q_B(\mathcal{F}), coeq(\overline{f}, \overline{g}))$
Pushouts	$ig(q_{\equiv_{coeq(f_X,g_X)}}\circ i_X(X),rac{F(X)}{\equiv_{coeq(f_X,g_X)}})$	$(q_{B+B'}(X),coeq(\overline{f_X},\overline{g_X}))$

- What are Aristotelian diagrams?
- 2 Categorification
- 3 Connections with Set and Bool

Set:

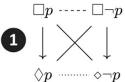


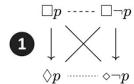


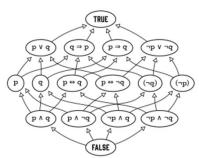


- What are Aristotelian diagrams?
- 2 Categorification
- 3 Connections with Set and Bool

Set:







$$\begin{array}{cccc}
\mathcal{F} & & & & & & & & \\
f & & & & & & & & \\
Set & & & & & & & \\
X & & & & & & & \\
f & & & & & & & \\
\end{array}$$

$$\begin{array}{cccc}
(\mathcal{F}, B) & & & & & \\
f & & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
(\mathcal{F}, B) & & & & & \\
f & & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
(\mathcal{F}, B) & & & & \\
f & & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
(\mathcal{F}, B) & & & & \\
f & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
(\mathcal{F}, B) & & & & \\
f & & & & \\
\end{array}$$

$$\begin{array}{cccccc}
(\mathcal{F}, B) & & & & \\
f & & & & \\
\end{array}$$

$$U(B) \longrightarrow U$$

$$U(f) \longrightarrow f$$

$$Set \longrightarrow \mathbb{D}^{Inc}_{\mathcal{OR} \times \mathcal{IR}} \longrightarrow \mathbb{Bool}$$

$$X \longrightarrow F(X)$$

$$F(f)$$

- What are Aristotelian diagrams?
- 2 Categorification
- 3 Connections with Set and Bool

Set:

