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In categorical logic, we study geometric morphisms between elementary toposes

𝐹 ∶  𝒮 →  𝒞

Note – for this presentation, I represent geometric morphisms with the left adjoint functor. 



Categorical logic

In logic, we study theories, for example:

Axioms:
• 𝑎 ∗ 𝑏 ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐)
• 𝑎 ∗ 𝑒 = 𝑎 = 𝑒 ∗ 𝑎
• 𝑎 ∗ 𝑎−1 = 𝑒 = 𝑎−1 ∗ 𝑎

Signature:
• A type 𝐺
• Function symbols    ∗ ∶ 𝐺 × 𝐺 → 𝐺   

and   − −1 ∶ 𝐺 → 𝐺
• A constant   𝑒

To interpret a first-order theory, we use:

• An elementary topos 𝒞
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To interpret a geometric theory, we use:

• An elementary topos  𝒞
• A geometric morphism  𝑺𝒆𝒕 →  𝒞
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(𝑥𝑛 = 𝑒) This statement is indexed 
by an infinite set

Note – for this presentation, I represent geometric morphisms with the left adjoint functor. 
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Categorical logic

In logic, we study theories, for example:

Axioms:
• 𝑎 ∗ 𝑏 ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐)
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• Function symbols    ∗ ∶ 𝐺 × 𝐺 → 𝐺   

and   − −1 ∶ 𝐺 → 𝐺
• A constant   𝑒

To interpret a geometric 𝒮-theory (𝒮 an elementary topos), we use:

• An elementary topos  𝒞
• A geometric morphism  𝒮 →  𝒞

This leads to a theory of the classifying topos 𝒮 𝑇  for an 𝒮-theory 𝑇.

ሧ

𝑛∈𝑁

(𝑥𝑛 = 𝑒) This statement is indexed 
by an object 𝑁 ∈ 𝒮

Note – for this presentation, I represent geometric morphisms with the left adjoint functor. 
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Categorical logic

In categorical logic, we study geometric morphisms between elementary toposes

𝐹 ∶  𝒮 →  𝒞

The problem: geometric morphisms don’t preserve all the structure of elementary toposes.

Instead: Use arithmetic universes!

𝐹 ∶  𝒜 → ℬ

Note – for this presentation, I represent geometric morphisms with the left adjoint functor. 



Arithmetic universes

An arithmetic universe is a list-arithmetic pretopos. That is, a category with…
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Arithmetic universes

An arithmetic universe is a list-arithmetic pretopos. That is, a category with…

• Finite limits

• Stable disjoint finite coproducts

• Stable effective quotients of equivalence relations

• Parametrized list objects

𝑓 𝑎, ∅ = 𝑔(𝑎) 𝑓 𝑎, 𝑥 ∷ ℓ = ℎ 𝑥, 𝑓 𝑎, ℓ



Arithmetic universes

Some properties of arithmetic universes…

• Arithmetic universes have natural numbers 

objects

𝑁 = 𝐿(1)

1 
 0 

𝐿(1) 1 × 𝐿(1) 
 

𝐿(1)
d

 − , 𝑛  ↦  1 + 𝑛



Arithmetic universes

Some properties of arithmetic universes…

• Arithmetic universes have natural numbers 

objects

• Arithmetic universes have all finite colimits 

(all coequalizers!)

𝑁 = 𝐿(1)

1 
 0 

𝐿(1) 1 × 𝐿(1) 
 

𝐿(1)
d

 − , 𝑛  ↦  1 + 𝑛
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Some properties of arithmetic universes…

• Arithmetic universes are local

• The list object functor 𝐿 ∶  𝒜 → 𝒜 is a polynomial functor

 S. Desrochers. “The List Object Endofunctor is Polynomial”. arXiv:2503.20671, 2025.

𝒜/𝑌 𝒜/𝑋
𝑓∗

𝐿 𝑋 = ෍

𝑛∈𝑁

𝑋𝑛

(this is an internal coproduct)



Arithmetic universes

Some properties of arithmetic universes…

• Arithmetic universes are local

• The list object functor 𝐿 ∶  𝒜 → 𝒜 is a polynomial functor

 S. Desrochers. “The List Object Endofunctor is Polynomial”. arXiv:2503.20671, 2025.

• There is an initial arithmetic universe

𝒜/𝑌 𝒜/𝑋
𝑓∗

𝐿 𝑋 = ෍

𝑛∈𝑁

𝑋𝑛

(this is an internal coproduct)
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The classifying topos 𝒮[𝑇] for a theory 𝑇 over a base category 𝒮.

Models of 𝑇
in 𝒮 → 𝒞

Geometric morphisms

𝒮 𝑇  →  𝒞 

𝒮 
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The classifying topos 𝒮[𝑇] for a theory 𝑇 over a base category 𝒮.

Models of 𝑇
in 𝒮 → 𝒞

Geometric morphisms

𝒮 𝑇  →  𝒞 

𝒮 

Can we construct a “classifying arithmetic universe” 𝒜[𝑇] for a theory 𝑇 over an arithmetic universe 𝒜?

Models of 𝑇
in 𝒜 → ℬ

 AU morphisms 

𝒜 𝑇  →  ℬ 

𝒜 



Categorical logic with arithmetic universes

One of the simplest theories is 𝕆, the theory of objects:

Models of 𝕆 in ℬ are precisely the objects of ℬ.

What is 𝒜 𝕆 ?

Axioms:
• None

Signature:
• A type 𝑋



Categorical logic with arithmetic universes

𝒜

𝒜 𝕆 ℬ
෠𝐹

𝐹

𝑂 𝑌

∈∈

One of the simplest theories is 𝕆, the theory of objects:

Models of 𝕆 in ℬ are precisely the objects of ℬ.

What is 𝒜 𝕆 ?

Axioms:
• None

Signature:
• A type 𝑋



What is 𝓐 𝕆 ?

The answer is analogous to the case for Grothendieck toposes: 𝐒𝐞𝐭 𝕆 ≅ Func 𝐅𝐢𝐧, 𝐒𝐞𝐭 .

𝐒𝐞𝐭

Func 𝐅𝐢𝐧, 𝐒𝐞𝐭 𝒢

𝐹

𝑖𝑛𝑐𝑙 𝑌

෠𝐹

𝐶𝐹



What is 𝓐 𝕆 ?

𝒜

Func𝒜 𝐅𝐢𝐧𝒜 , 𝔸 ℬ

𝐹

𝑖𝑛𝑐𝑙 𝑌

෠𝐹

𝐶𝐹

We claim that 𝒜 𝕆 ≅ Func𝒜 𝐅𝐢𝐧𝒜 , 𝔸 .

In spirit, the proof is the same. However, filling in the details requires a lot of machinery from the 
theory of indexed categories and arithmetic universes.



Thank you for 
listening!
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Internal category of finite sets

• The object of objects for 𝐅𝐢𝐧 is 𝐶0 = 𝑁

• So the “objects” of 𝐅𝐢𝐧 are natural numbers

• The object of arrows 𝐶1 ⇉ 𝑁 for 𝐅𝐢𝐧 is constructed as follows

• We set 𝐶1 = 𝑏𝑎 ∶ 𝑎, 𝑏 ∈ 𝑁

• Formally: set 𝐸 =  {𝑘, 𝑛 ∈ 𝑁 ∣ 𝑘 < 𝑛}.

     Then 𝜋2
𝐸: 𝐸 → 𝑁 satisfies 𝜋2

𝐸 −1 𝑛 = {0, … , 𝑛 − 1}.

     𝐶1 ⇉ 𝑁 is an exponential in 𝒜/𝑁 × 𝑁 of 𝐸 × 𝑁 → 𝑁 × 𝑁 and 𝑁 × 𝐸 → 𝑁 × 𝑁

• Composition 𝐶1 ×𝑁 𝐶1 → 𝐶1 and identity 𝑁 → 𝐶1 are straightforward
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