Cartesian monoidality of the cubical Joyal model structure

Brandon Doherty

Florida State University

July 18, 2025

The box category \square : objects are posets $[1]^n = \{0 \le 1\}^n$. Maps are generated by:

The box category \square : objects are posets $[1]^n = \{0 \le 1\}^n$. Maps are generated by:

▶ faces $\partial_{i,\varepsilon}$: $[1]^n \to [1]^{n+1}$ for $\varepsilon \in \{0,1\}$:

$$(a_1,\ldots,a_n)\mapsto(a_1,\ldots,a_{i-1},\varepsilon,a_i,\ldots,a_n)$$

The box category \square : objects are posets $[1]^n = \{0 \le 1\}^n$. Maps are generated by:

▶ faces $\partial_{i,\varepsilon}$: $[1]^n \to [1]^{n+1}$ for $\varepsilon \in \{0,1\}$:

$$(a_1,\ldots,a_n)\mapsto(a_1,\ldots,a_{i-1},\varepsilon,a_i,\ldots,a_n)$$

degeneracies $\sigma_i : [1]^n \to [1]^{n-1}$:

$$(a_1,\ldots,a_n)\mapsto(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n)$$

The box category \square : objects are posets $[1]^n = \{0 \le 1\}^n$. Maps are generated by:

▶ faces $\partial_{i,\varepsilon}$: $[1]^n \to [1]^{n+1}$ for $\varepsilon \in \{0,1\}$:

$$(a_1,\ldots,a_n)\mapsto(a_1,\ldots,a_{i-1},\varepsilon,a_i,\ldots,a_n)$$

degeneracies $\sigma_i : [1]^n \to [1]^{n-1}$:

$$(a_1,\ldots,a_n)\mapsto(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n)$$

connections $\gamma_i : [1]^n \to [1]^{n-1}$:

$$(a_1,\ldots,a_n)\mapsto(a_1,\ldots,a_i\wedge a_{i+1},a_{i+2},\ldots,a_n)$$

The box category \square : objects are posets $[1]^n = \{0 \le 1\}^n$. Maps are generated by:

▶ faces $\partial_{i,\varepsilon}$: $[1]^n \to [1]^{n+1}$ for $\varepsilon \in \{0,1\}$:

$$(a_1,\ldots,a_n)\mapsto(a_1,\ldots,a_{i-1},\varepsilon,a_i,\ldots,a_n)$$

degeneracies $\sigma_i : [1]^n \to [1]^{n-1}$:

$$(a_1,\ldots,a_n)\mapsto(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n)$$

connections $\gamma_i : [1]^n \to [1]^{n-1}$:

$$(a_1,\ldots,a_n)\mapsto(a_1,\ldots,a_i\wedge a_{i+1},a_{i+2},\ldots,a_n)$$

$$\mathsf{cSet} = \mathsf{Set}^{\square^{\mathsf{op}}}.$$

The geometric product

Geometric product of cubical sets:

$$\square^m \otimes \square^n = \square^{m+n}$$

The geometric product

Geometric product of cubical sets:

$$\square^m \otimes \square^n = \square^{m+n}$$

This is **not** the Cartesian product in cSet – it's not even symmetric.

A cubical quasicategory is $X \in cSet$ having fillers for inner open boxes (having a specified edge degenerate).

In particular, this lets us "compose" edges.

A cubical quasicategory is $X \in \mathsf{cSet}$ having fillers for inner open boxes (having a specified edge degenerate).

In particular, this lets us "compose" edges.

A cubical quasicategory is $X \in \mathsf{cSet}$ having fillers for inner open boxes (having a specified edge degenerate).

In particular, this lets us "compose" edges.

A cubical quasicategory is $X \in \mathsf{cSet}$ having fillers for inner open boxes (having a specified edge degenerate).

In particular, this lets us "compose" edges.

Theorem (D.-Kapulkin-Lindsey-Sattler)

cSet carries a model structure for $(\infty, 1)$ -categories, the **cubical Joyal model structure**, with cubical quasicategories as fibrant objects. This model structure is monoidal with respect to the geometric product.

 $P^n \in \mathsf{cSet}$: *m*-cubes are **all poset maps** $[1]^m \to [1]^n$. $\square^n \subseteq P^n$ since $\square \subseteq \mathsf{Poset}$.

 $P^n \in \mathsf{cSet}$: *m*-cubes are **all poset maps** $[1]^m \to [1]^n$. $\square^n \subseteq P^n$ since $\square \subseteq \mathsf{Poset}$.

Have inclusions:

$$\square^m \otimes \square^n \hookrightarrow \square^m \times \square^n \hookrightarrow P^{m+n}$$

 $P^n \in \mathsf{cSet}$: m-cubes are **all poset maps** $[1]^m \to [1]^n$. $\square^n \subseteq P^n$ since $\square \subseteq \mathsf{Poset}$.

Have inclusions:

$$\square^m \otimes \square^n \hookrightarrow \square^m \times \square^n \hookrightarrow P^{m+n}$$

Proposition

These are trivial cofibrations in the cubical Joyal model structure.

 $P^n \in \mathsf{cSet}$: *m*-cubes are **all poset maps** $[1]^m \to [1]^n$. $\square^n \subset P^n$ since $\square \subset \mathsf{Poset}$.

Have inclusions:

$$\square^m \otimes \square^n \hookrightarrow \square^m \times \square^n \hookrightarrow P^{m+n}$$

Proposition

These are trivial cofibrations in the cubical Joyal model structure.

Idea: obtain P^n from \square^n by repeated pushouts of inner open box fillings (anodyne maps).

Small example: starting with \square^2 , how can we construct the diagonal $[1] \rightarrow [1]^2$ as a 1-cube of P^2 ?

Small example: starting with \square^2 , how can we construct the diagonal $[1] \rightarrow [1]^2$ as a 1-cube of P^2 ?

Small example: starting with \square^2 , how can we construct the diagonal 1-cube?

Via open box filling, obtain $00 \to 11$ as a composite $00 \to 10 \to 11$.

Via open box filling, obtain $00 \to 11$ as a composite $00 \to 10 \to 11$.

Standard decomposition cubes

Viewed as a map $[1] \rightarrow [1]^2$, the diagonal edge is:

$$a \mapsto (a, a)$$

Standard decomposition cubes

Viewed as a map $[1] \rightarrow [1]^2$, the diagonal edge is:

$$a \mapsto (a, a)$$

while this cube $[1]^2 \rightarrow [1]^2$ is:

$$(a,b)\mapsto (a,a\wedge b)$$

We can similarly obtain each $\phi: [1]^m \to [1]^n$ of P^n by filling an open box on a cube $N(\phi): [1]^{m+1} \to [1]^n$.

We can similarly obtain each $\phi: [1]^m \to [1]^n$ of P^n by filling an open box on a cube $N(\phi): [1]^{m+1} \to [1]^n$.

 $\square^m \times \square^n \subseteq P^{m+n}$ is closed under the N construction, so a similar argument shows $\square^{m+} \otimes \square^n \hookrightarrow \square^m \times \square^n$ is a natural trivial cofibration.

We can similarly obtain each $\phi \colon [1]^m \to [1]^n$ of P^n by filling an open box on a cube $N(\phi) \colon [1]^{m+1} \to [1]^n$.

 $\square^m \times \square^n \subseteq P^{m+n}$ is closed under the N construction, so a similar argument shows $\square^{m+} \otimes \square^n \hookrightarrow \square^m \times \square^n$ is a natural trivial cofibration.

This, in turn, implies:

Theorem

For any $X, Y \in \mathsf{cSet}$, the natural map $X \otimes Y \hookrightarrow X \times Y$ is a trivial cofibration in the cubical Joyal model structure.

We can similarly obtain each $\phi \colon [1]^m \to [1]^n$ of P^n by filling an open box on a cube $N(\phi) \colon [1]^{m+1} \to [1]^n$.

 $\square^m \times \square^n \subseteq P^{m+n}$ is closed under the N construction, so a similar argument shows $\square^{m+} \otimes \square^n \hookrightarrow \square^m \times \square^n$ is a natural trivial cofibration.

This, in turn, implies:

Theorem

For any $X, Y \in \mathsf{cSet}$, the natural map $X \otimes Y \hookrightarrow X \times Y$ is a trivial cofibration in the cubical Joyal model structure.

This, together with monoidality with respect to \otimes , lets us show cartesian monoidality.

References

D., Symmetry in the cubical Joyal model structure. To appear in Algebr. Geom. Topol., 2024. arXiv:2409.13842

D., Krzysztof Kapulkin, Zachery Lindsey, and Christian Sattler. Cubical models of $(\infty,1)$ -categories. Mem. Amer. Math. Soc., 297 (2024), no. 1484, v+110 pp. arXiv:2005.04853