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Cubical sets

The box category □: objects are posets [1]n = {0 ≤ 1}n. Maps are
generated by:

▶ faces ∂i ,ε : [1]
n → [1]n+1 for ε ∈ {0, 1}:

(a1, . . . , an) 7→ (a1, . . . , ai−1, ε, ai , . . . , an)

▶ degeneracies σi : [1]
n → [1]n−1:

(a1, . . . , an) 7→ (a1, . . . , ai−1, ai+1, . . . , an)

▶ connections γi : [1]
n → [1]n−1:

(a1, . . . , an) 7→ (a1, . . . , ai ∧ ai+1, ai+2, . . . , an)

cSet = Set□
op
.
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The geometric product

Geometric product of cubical sets:

□m ⊗□n = □m+n

This is not the Cartesian product in cSet – it’s not even symmetric.
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Cubical quasicategories

A cubical quasicategory is X ∈ cSet having fillers for inner open
boxes (having a specified edge degenerate).

In particular, this lets us “compose” edges.

x
f // y

g

��
x z
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Cubical quasicategories

A cubical quasicategory is X ∈ cSet having fillers for inner open
boxes (having a specified edge degenerate).

In particular, this lets us “compose” edges.

x
f // y

g

��
x

gf
// z

Theorem (D.-Kapulkin-Lindsey-Sattler)

cSet carries a model structure for (∞, 1)-categories, the cubical
Joyal model structure, with cubical quasicategories as fibrant
objects. This model structure is monoidal with respect to the
geometric product.
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Poset maps of cubes

Pn ∈ cSet: m-cubes are all poset maps [1]m → [1]n.
□n ⊆ Pn since □ ⊆ Poset.

Have inclusions:

□m ⊗□n ↪→ □m ×□n ↪→ Pm+n

Proposition

These are trivial cofibrations in the cubical Joyal model structure.

Idea: obtain Pn from □n by repeated pushouts of inner open box
fillings (anodyne maps).

6 / 13



Poset maps of cubes

Pn ∈ cSet: m-cubes are all poset maps [1]m → [1]n.
□n ⊆ Pn since □ ⊆ Poset.

Have inclusions:

□m ⊗□n ↪→ □m ×□n ↪→ Pm+n

Proposition

These are trivial cofibrations in the cubical Joyal model structure.

Idea: obtain Pn from □n by repeated pushouts of inner open box
fillings (anodyne maps).

6 / 13



Poset maps of cubes

Pn ∈ cSet: m-cubes are all poset maps [1]m → [1]n.
□n ⊆ Pn since □ ⊆ Poset.

Have inclusions:

□m ⊗□n ↪→ □m ×□n ↪→ Pm+n

Proposition

These are trivial cofibrations in the cubical Joyal model structure.

Idea: obtain Pn from □n by repeated pushouts of inner open box
fillings (anodyne maps).

6 / 13



Poset maps of cubes

Pn ∈ cSet: m-cubes are all poset maps [1]m → [1]n.
□n ⊆ Pn since □ ⊆ Poset.

Have inclusions:

□m ⊗□n ↪→ □m ×□n ↪→ Pm+n

Proposition

These are trivial cofibrations in the cubical Joyal model structure.

Idea: obtain Pn from □n by repeated pushouts of inner open box
fillings (anodyne maps).

6 / 13



Proving the trivial cofibration

Small example: starting with □2, how can we construct the
diagonal [1] → [1]2 as a 1-cube of P2?

00 //

��

10

��
01 // 11
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Proving the trivial cofibration

Via open box filling, obtain 00 → 11 as a composite
00 → 10 → 11.

00 // 10

��
00 11
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Standard decomposition cubes

00 // 10

��
00 // 11

Viewed as a map [1] → [1]2, the diagonal edge is:

a 7→ (a, a)

while this cube [1]2 → [1]2 is:

(a, b) 7→ (a, a ∧ b)
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Cartesian monoidality

We can similarly obtain each ϕ : [1]m → [1]n of Pn by filling an
open box on a cube N(ϕ) : [1]m+1 → [1]n.

□m ×□n ⊆ Pm+n is closed under the N construction, so a similar
argument shows □m+ ⊗□n ↪→ □m ×□n is a natural trivial
cofibration.

This, in turn, implies:

Theorem
For any X ,Y ∈ cSet, the natural map X ⊗ Y ↪→ X × Y is a trivial
cofibration in the cubical Joyal model structure.

This, together with monoidality with respect to ⊗, lets us show
cartesian monoidality.
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