The monad of pushforwards and its decomposition

Arnaud Duvieusart

UCLouvain - FNRS

14 July 2025

Pushforwards of short exact sequences

Proposition (Cigoli, Mantovani, Metere)

Given a short exact sequence $K \xrightarrow{k} X \xrightarrow{q} Q$, an action $\xi \colon X \triangleright L \to L$ and an X-equivariant morphism $K \xrightarrow{\varphi} L$, there exists a morphism of short exact sequences

$$\begin{array}{ccc}
K & \xrightarrow{k} & X & \xrightarrow{q} & Q \\
\varphi \downarrow & & \downarrow_f & & \parallel \\
L & \xrightarrow{I} & Y & \xrightarrow{g'} & Q
\end{array}$$

if and only if $(\varphi \rtimes X)^*\chi = [k, 1]^*\xi : (K \rtimes X)\flat L \to L$.

But (when) is it enough to ask instead that $\varphi^* \chi_L = k^* \xi$?

We define

$$(S) = K \xrightarrow{k} X \xrightarrow{q} Q$$

and the category $S \setminus SES(C)$ whose objects are morphisms of short exact sequences

$$\begin{array}{ccc} K & \xrightarrow{k} & X & \xrightarrow{q} & Q \\ \varphi \downarrow & & \downarrow^{f} & & \downarrow^{g} \\ L & \xrightarrow{l} & Y & \xrightarrow{r} & R. \end{array}$$

We have a functor $U_S \colon S \backslash \mathbf{SES}(\mathcal{C}) \to \mathcal{C}$, sending the diagram above to L.

This functor U_S admits a left adjoint $F_S: \mathcal{C} \to S \backslash \mathbf{SES}(\mathcal{C})$, sending L to

$$\begin{array}{c|c} K & \xrightarrow{k} & X & \xrightarrow{q} & Q \\ \hline i \downarrow & & \downarrow i_X & & \parallel \\ T_S(L) & \xrightarrow{\sigma} & X + L & \hline [q,0] & Q. \end{array}$$

In particular, $L \mapsto T_S(L)$ defines a monad on C.

Proposition

The category of T_S -algebra is a coreflective subcategory of $S \setminus SES(C)$, corresponding to short exact sequences with isomorphic cokernels.

Two special cases

For

$$(S) = 0 \longrightarrow X \longrightarrow X$$

we have $T_S(L) = X \triangleright L$; the algebras for this monad are just actions of X.

Two special cases

For

$$(S) = 0 \longrightarrow X \longrightarrow X$$

we have $T_S(L) = X \flat L$; the algebras for this monad are just actions of X. For

$$(S) = K \longrightarrow K \longrightarrow 0$$

we have $T_S(L) = K + L$; the algebras for this monad are just morphisms from K.

Two special cases

For

$$(S) = 0 \longrightarrow X \longrightarrow X$$

we have $T_S(L) = X \flat L$; the algebras for this monad are just actions of X. For

$$(S) = K \longrightarrow K \longrightarrow 0$$

we have $T_S(L) = K + L$; the algebras for this monad are just morphisms from K.

In general, T_S -algebras are formed by combining these two cases.

The decomposition of the monad

We have a diagram

$$\begin{array}{cccc}
X \flat L & \xrightarrow{\overline{\kappa}} & T_S(L) & \xrightarrow{\overline{\rho}} & K \\
\parallel & \sigma \downarrow & \stackrel{\overline{i}}{\downarrow} & \downarrow k \\
X \flat L & \xrightarrow{\kappa_{X,L}} & X + L & \xrightarrow{i_X} & X \\
\downarrow & & \downarrow q, 0 \downarrow \downarrow & \downarrow q \\
0 & \longrightarrow & Q = \longrightarrow & Q
\end{array}$$

which shows that $T_S(L) \simeq (X \flat L) \rtimes K$.

The decomposition of the monad

We have a diagram

$$\begin{array}{cccc}
X \flat L & \xrightarrow{\overline{\kappa}} & T_{S}(L) & \xrightarrow{\overline{p}} & K \\
\parallel & \sigma \downarrow & \xrightarrow{\overline{i}} & \downarrow k \\
X \flat L & \xrightarrow{\kappa_{X,L}} & X + L & \xrightarrow{[1,0]} & X \\
\downarrow & & \downarrow q & \downarrow q \\
0 & \longrightarrow & Q & \longrightarrow & Q
\end{array}$$

which shows that $T_S(L) \simeq (X \flat L) \rtimes K$. In particular, every S_\flat -algebra $\xi^S \colon T_S(L) \to L$ is determined by

$$X \flat L \xrightarrow{\overline{\kappa}} T_{S}(L) \xleftarrow{\overline{i}} K$$

$$\downarrow \xi_{L}^{S} \qquad \qquad \downarrow \xi_{L}^{S} \qquad \qquad \downarrow \xi_{L}^{S}$$

The decomposition of algebras

Proposition

Two morphisms $\xi_L^X: X \triangleright L \to L$ and $\varphi: K \to L$ induce a morphism $\xi_L^S: T_S(L) \to L$, which is an T_S -algebra, if and only if

- ξ_L^X is an X-action

Comparing the results

Given an action ξ_L^X of X on L and $\varphi \colon K \to L$, there is a corresponding pushforward exact sequence if and only if

Version 1

- $oldsymbol{\circ} \varphi$ is X-equivariant

Version 2

- $\bullet \varphi^* \chi_L = k^* \xi_L^X$
- ② $[1, \varphi)$: $L \rtimes K \to L$ is X-equivariant.

Comparing the results

Given an action ξ_L^X of X on L and $\varphi \colon K \to L$, there is a corresponding pushforward exact sequence if and only if

Version 1

- $oldsymbol{0} \varphi$ is X-equivariant
- $(\varphi \rtimes X)^* \chi = [k, 1\rangle^* \xi.$

Version 2

- **2** $[1, \varphi)$: $L \rtimes K \to L$ is X-equivariant.

Both versions are equivalent to the existence of a pair of maps

$$L\rtimes (K\rtimes X) \xleftarrow{\simeq} (L\rtimes K)\rtimes X$$

$$\downarrow L\rtimes [k,1) \qquad [1,\varphi)\rtimes X \qquad \downarrow L\rtimes K,\mathfrak{s}_X \rangle$$

$$L\rtimes X$$