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Goal of the talk

Explain the concept of action representability that provides a common categorical
description of
m the automorphism group Aut(G) of a group G,
m the Lie algebra Der(L) of derivations of a Lie algebra L,
m the actor Act(X) of a crossed module X.
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Goal of the talk

Explain the concept of action representability that provides a common categorical
description of

m the automorphism group Aut(G) of a group G,
m the Lie algebra Der(L) of derivations of a Lie algebra L,
m the actor Act(X) of a crossed module X.

Explain under which conditions Grpd*(%’) and 2-Grpd(%’) are action representable
categories.
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Motivation
An action of a group G on a group H is a function

>:GxH—=H
such that: g (hh') = (g>h)(g>h)
eph=h

(gg')>h=g>(g' >h)
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Motivation
An action of a group G on a group H is a function

>:GxH—=H
such that: g (hh') = (g>h)(g>h)
eph=h

(gg')>h=gr(g'>h)
Equivalently, a G-action on H is given by a group homomorphism
¢ G — Aut(H).
The correspondence is given by:
¢(g)(h) =grh
Consequently, the functor

Act(—, H) : Grp®® — Set, G s {G-actions on H}

is representable:
Act(—, H) = Homg,p(—, Aut(H)).
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Consider the functor:

SplExt(—, H) : Grp°® — Set,
G — {isomorphism classes of split extensions of G by H}
0—-H—->K=G—D0
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Consider the functor:

SplExt(—, H) : Grp°® — Set,
G — {isomorphism classes of split extensions of G by H}
O—-H—->K=G6—0
We have that:

Act(—, H) ~ SplExt(—,H)
p:GxH—-H = [0=2H—=GxH=G—=0]
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Consider the functor:

SplExt(—, H) : Grp°® — Set,
G — {isomorphism classes of split extensions of G by H}
O—-H—->K=G6—0
We have that:

Act(—, H) SplExt(—, H)

>:GxH—-H — [0-H—->GxH=2G—0]
Hence:

SplExt(—, H) =~ Homg,p(—, Aut(H))
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Furthermore,
Laut(H) € Homarp (Aut(H), Aut(H))

corresponds to an action of Aut(H) on H:

> h=p(h)
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Furthermore,
Laut(H) € Homarp (Aut(H), Aut(H))

corresponds to an action of Aut(H) on H:
p>h=¢(h)
The corresponding split extension

0— H— Aut(H) x H = Aut(H) — 0

satisfies the following universal property:
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Furthermore,
Laut(H) € Homarp (Aut(H), Aut(H))

corresponds to an action of Aut(H) on H:
@ h=o(h)
The corresponding split extension
0— H— Aut(H) x H = Aut(H) — 0
satisfies the following universal property: For any split extension
0-H—->KSG—0

there exist unique (up to isomorphism) morphisms ¢, ¢ such that

I I
= =l

~ ~

0 H K———G——0

0 — H—— Aut(H) x H —— Aut(H) —— 0

commutes.
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Structure of the talk

Semi-direct products
Actors

Split extension classifiers
Grpd(%)

2-Grpd(%)
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1. Semi-direct products
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1. Semi-direct products
For an abelian category ¢, the functor

Pt(%) LN € x €
f
A—B — (Ker(f), B)
is an equivalence of categories.
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A= B —  (Kex(f),B)

S
is an equivalence of categories.

Proposition (Bourn; 1991)

Let € be a pointed category with pullbacks. TFAE:
K : Pt(¥) — € x € is conservative.

The split short five lemma holds.
p
0 — Ker(f) ——+ A —— B
s
l a i , C isomorphisms = a isomorphism

0 —— Ker(f) A pr—
S
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1. Semi-direct products
For an abelian category ¢, the functor

Pt(%) LN € x €
A= B —  (Kex(f),B)

S
is an equivalence of categories.

Proposition (Bourn; 1991)

Let € be a pointed category with pullbacks. TFAE:
K : Pt(¥) — € x € is conservative.

The split short five lemma holds.
Kerg : Ptg(%) — €, (A, f,s) — Ker(f) is conservative for all objects B in €.
p* : Ptg(€) — Pte(%) is conservative for all p: E — B in 6.
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Definition (Bourn, 1991)
A category € with pullbacks is protomodular if

p* : Pta(€) — Pte(?)

is conservative for all p: E — B in ¥.
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Definition (Bourn, 1991)
A category € with pullbacks is protomodular if

p* : Ptg(€) — Pte(%)
is conservative for all p: E — B in ¥.

Definition (Janelidze, Marki, Tholen; 2002)
A category % is semi-abelian if it is:

m pointed m (Barr-)exact
m protomodular m finitely cocomplete

Examples of semi-abelian categories
m any abelian category (abelian = exact + additive)

m Grp, Grp(HComp), XMod(Grp), Rng, Assock, Liex, Hopfy ..
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Definition (Bourn, Janelidze;1998)
A category ¥ with pullbacks has semi-direct products if

p* ! PtB((g) — PtE((f)

has a left-adjoint and is monadic for all p: E — B in %.

8/19



Definition (Bourn, Janelidze;1998)
A category ¥ with pullbacks has semi-direct products if

p* ! PtB((g) — PtE((f)
has a left-adjoint and is monadic for all p: E — B in %.

Proposition (Bourn, Janelidze; 1998)

Let € be a semi-abelian category. Then € has semi-direct products.
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Let € be a pointed category with finite (co-)limits. Consider ag : 0 — B. Then o ~ Kerp.

%
Ptg(¢) L . @B )
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Let € be a pointed category with finite (co-)limits. Consider ag : 0 — B. Then o ~ Kerp.

%
Pte(¢) L

Monad
By(-):€—%F

kg, A [170]
A B A —— B+ A —

LB

B

@B ()
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Let € be a pointed category with finite (co-)limits. Consider ag : 0 — B. Then o ~ Kerp.

Pig(¢) L . @Bl

Monad € = Grp:
Bb(—): € —F is the free product of B, A.
1,0 BbA is the subgroup of B + A generated b

A BYA ﬂ’ [L4><T] B the elements: ¢ Fl))ab’l ToE ’
Bb(—)-Algebras
£:BPA— Ast .. The Bb(—)-algebras exactly encode

B-actions on A:
£(bab™ ') =bra

Comparison adjunction
€5 (=) - Ptg(%)
§:BVA— A —— Bx:A

NT

B x¢ A'is generated by B, A, with the
condition that conjugation of B on A

coincides with the action of B on A.
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2. Actors

10/19



2. Actors

[Borceux, Janelidze, Kelly; 2005]

" Categorical algebra, understood as a categorical approach to and a categorical generalization
of classical algebraic constructions [...] is still full of open questions [...] — especially those that
are needed for categorical reformulations and extensions of specific group- and ring-theoretic
results. Semi-abelian categories ([JMT]) provide a convenient setting for such reformulations
[...]- A typical group/ring theoretic result that extends (see [BJ]) to semi-abelian categories is:
Every split epimorphim is a semi-direct projection. It involves a new categorical notion of a

semidirect product, and in particular a new notion of internal object action, which we continue
to study in the present paper.”
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Let € be a pointed category with finite limits and finite coproducts. There is the functor

(=) :% — Monad(¥), B+~
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Let € be a pointed category with finite limits and finite coproducts. There is the functor

(=) :% — Monad(¥), B+~

A Bb(—)-algebra structure on an object X in € is called an action of B on X.
For any object X in &, there is the functor

Act(—, X) : €°° — Set, B~ {actions of B on X}.
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Definition (Borceux, Janelidze, Kelly; 2005)

Let ¥ be a pointed category with finite limits and finite coproducts. % is action
representable if the functor Act(—, X) is representable for any object X in €

Act(—, X) =~ Home(—, [X])

[X] is the actor of X.
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Definition (Borceux, Janelidze, Kelly; 2005)

Let ¥ be a pointed category with finite limits and finite coproducts. % is action
representable if the functor Act(—, X) is representable for any object X in €

Act(—, X) = Home (—, [X])
[X] is the actor of X.

Examples of action representable categories
any abelian category: [X] =0

Grp: [G] = Aut(G)

Lieg: [L] = Der(L)

XMod(Grp), XMod(Liek)

Hopfy coc
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SN Pip() m EB)
&
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Theorem (Borceux, Janelidze, Kelly; 2005)
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3. Split extension classifiers
<—

L ePe) If € is semi-abelian, then:
B+(—)
< > ~ B (=)
Kerp (g

Theorem (Borceux, Janelidze, Kelly; 2005)

Let € be a semi-abelian category. TFAE:
& is action representable, i.e., Act(—, X) : €°P — Set is representable for all X in €.
: €°P — Set is representable for all X in €.

B — SplExt(B, X) = {isomorphism classes of split extensions of B by X}
‘PT J{SplExt((p,X)
B’ — SplExt(B’, X)
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3. Split extension classifiers
<—

L , ¢B ) If € is semi-abelian, then:
B+(-)
< > ~ B (=)
Kerp (g

Theorem (Borceux, Janelidze, Kelly; 2005)

Let € be a semi-abelian category. TFAE:
& is action representable, i.e., Act(—, X) : €°P — Set is representable for all X in €.
: €°P — Set is representable for all X in €.

For all X in €, there exists a generic split extension:

0 — X — A —B ——0

I I
H =I1P) =117
! !

v v

B* is the split extension classifier.

In this case, B* = [X] and A* = [X] x¢ X, where £ € Act([X], X) corresponds to
l[x] S HOHkg([X]7 [X])
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4. Grpd(¥%)

XMod(Grp) = Grpd(Grp), XMod(Liex) = Grpd(Liek) are action representable categories.
Question

€ action representable S Grpd(%’) action representable
Remark

m In a semi-abelian category €, a reflexive graph

d
_—
C FE*C
1 - 0

admits at most one internal category structure.
m Grpd(%) =~ Cat(%)
m Grpd(%) is a Birkhoff subcategory of RG(%), i.e. a full reflective subcategory which is

closed under subobjects and regular quotients.

Grpd(%) "L, RG(%)
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Proposition (Bourn, Gran; 2002, Gran; 1999)
@ is a semi-abelian category iff Grpd(€) is semi-abelian.
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Proposition (Bourn, Gran; 2002, Gran; 1999)
@ is a semi-abelian category iff Grpd(€) is semi-abelian.

Theorem (Gran, Gray; 2021)

A category € is
semi-abelian + algebraically coherent,
with normalizers

iff Grpd (%) is so.

Examples
Grp, Liek, Hopfy coc-
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5. 2-Grpd(%)

Corollary

Let € be a category which is
semi-abelian  + algebraically coherent, + action representable

with normalizers

Then Grpd?(%) has the same properties.

Question
What about ?
Crpd?(€) = Grpd(Grpd(%)):
5 Ie; [} [ e
Gt +e— G object of object of object of object of 2-cells
Y J{g‘ Jf < J{ > J{C objects e horizontal vertical arrows e ——e
RN AR ’ arrows ° é > é
co o RN ¢ «
d° *

: full subcategory of Grpd?(%) with objects such that ¢ is an isomorphism. e U



Main result (E., Gran)
Let € be a category which is
semi-abelian + algebraically coherent, + action representable
with normalizers
Then 2-Grpd(€) has the same properties.
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Theorem (E., Gran)

Let € be a semi-abelian category. Then 2-Grpd(%€) is a Birkhoff subcategory of Grpdz(%)
and the reflector F : Grpd?(€) — 2-Grpd(%) is given by:
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Remark
The statement is true for any regular Mal’tsev category € with finite colimits, such as
Grp(Top), Aby ¢, Ban.
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Proof of main result

m The fact that 2-Crpd(%) is a Birkhoff subcategory of Grpd*(%) implies that 2-Grpd(%)
is semi-abelian.

m Moreover, 2-Grpd(€) is a co-reflective subcategory of Grpd?(€).

m Thus, we can use that the inclusion
I : 2-Grpd(€) — Crpd?(¥%)

is fully faithful, has a right adjoint and is itself a right adjoint to prove that 2-Grpd (%)
has split extension classifiers.
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