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Goal of the talk

1 Explain the concept of action representability that provides a common categorical
description of

the automorphism group Aut(G) of a group G ,
the Lie algebra Der(L) of derivations of a Lie algebra L,
the actor Act(X) of a crossed module X.

2 Explain under which conditions Grpd2(C ) and 2-Grpd(C ) are action representable
categories.
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Motivation
An action of a group G on a group H is a function

▷ : G × H → H

such that: g ▷ (hh′) = (g ▷ h)(g ▷ h′)

e ▷ h = h

(gg ′) ▷ h = g ▷ (g ′ ▷ h)

Equivalently, a G -action on H is given by a group homomorphism

ϕ : G → Aut(H).

The correspondence is given by:
ϕ(g)(h) = g ▷ h

Consequently, the functor

Act(−,H) : Grpop → Set, G 7→ {G -actions on H}

is representable:
Act(−,H) ≈ HomGrp(−,Aut(H)).
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Consider the functor:

SplExt(−,H) : Grpop → Set,

G 7→ {isomorphism classes of split extensions of G by H}
[0 → H → K ⇄ G → 0]

We have that:
Act(−,H) ≈ SplExt(−,H)

▷ : G × H → H 7→ [0 → H → G ⋊ H ⇄ G → 0]
Hence:

SplExt(−,H) ≈ HomGrp(−,Aut(H))
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Furthermore,
1Aut(H) ∈ HomGrp(Aut(H),Aut(H))

corresponds to an action of Aut(H) on H:

φ ▷ h = φ(h)

The corresponding split extension

0 → H → Aut(H)⋊ H ⇆ Aut(H) → 0

satisfies the following universal property: For any split extension

0 → H → K ⇆ G → 0

there exist unique (up to isomorphism) morphisms φ,ψ such that

0 H K G 0

0 H Aut(H)⋊ H Aut(H) 0

∃!ψ ∃!φ

commutes.
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Structure of the talk

1 Semi-direct products

2 Actors

3 Split extension classifiers

4 Grpd(C )

5 2-Grpd(C )
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1. Semi-direct products

For an abelian category C , the functor

Pt(C )
K−→ C × C

A B
f

s
7→ (Ker(f ),B)

is an equivalence of categories.

Proposition (Bourn; 1991)

Let C be a pointed category with pullbacks. TFAE:

1 K : Pt(C ) → C × C is conservative.

2 The split short five lemma holds.

3 KerB : PtB(C ) → C , (A, f , s) 7→ Ker(f ) is conservative for all objects B in C .

4 p∗ : PtB(C ) → PtE (C ) is conservative for all p : E → B in C .

P A

E B

f ′ fs′

p

s
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Definition (Bourn, 1991)

A category C with pullbacks is protomodular if

p∗ : PtB(C ) → PtE (C )

is conservative for all p : E → B in C .

Definition (Janelidze, Màrki, Tholen; 2002)

A category C is semi-abelian if it is:

pointed

protomodular

(Barr-)exact

finitely cocomplete

Examples of semi-abelian categories

any abelian category (abelian = exact + additive)

Grp, Grp(HComp), XMod(Grp), Rng, AssocK , LieK , HopfK ,coc
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Definition (Bourn, Janelidze;1998)

A category C with pullbacks has semi-direct products if

p∗ : PtB(C ) → PtE (C )

has a left-adjoint and is monadic for all p : E → B in C .

Proposition (Bourn, Janelidze; 1998)

Let C be a semi-abelian category. Then C has semi-direct products.
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Let C be a pointed category with finite (co-)limits. Consider αB : 0 → B. Then α∗
B ≈ KerB .

PtB(C ) C B♭(−)

CKerB

⊣

B+(−)⊣ ⊣

Monad
B♭(−) : C → C

A 7→ B♭A B + A B
kB,A

[1,0]

ιB

C = Grp:
B + A is the free product of B,A.
B♭A is the subgroup of B + A generated by
the elements: bab−1

B♭(−)-Algebras

ξ : B♭A → A st ... The B♭(−)-algebras exactly encode
B-actions on A:

ξ(bab−1) = b ▷ a

Comparison adjunction

C B♭(−) → PtB(C )

(ξ : B♭A → A) 7→ B♭A B + A B ⋉ξ A

B

kB,A

ιAξ

[1,0]

ιB

bab−1 7→ bab−1

7→ b ▷ a
B ⋉ξ A is generated by B,A, with the
condition that conjugation of B on A
coincides with the action of B on A.
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2. Actors

[Borceux, Janelidze, Kelly; 2005]

”Categorical algebra, understood as a categorical approach to and a categorical generalization
of classical algebraic constructions [...] is still full of open questions [...] – especially those that
are needed for categorical reformulations and extensions of specific group- and ring-theoretic
results. Semi-abelian categories ([JMT]) provide a convenient setting for such reformulations
[...]. A typical group/ring theoretic result that extends (see [BJ]) to semi-abelian categories is:
Every split epimorphim is a semi-direct projection. It involves a new categorical notion of a
semidirect product, and in particular a new notion of internal object action, which we continue
to study in the present paper.”
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Let C be a pointed category with finite limits and finite coproducts. There is the functor

(−)♭ : C → Monad(C ), B 7→ B♭(−).

PtB(C ) C B♭(−)

CKerB

B+(−)⊣ ⊣

A B♭(−)-algebra structure on an object X in C is called an action of B on X .
For any object X in C , there is the functor

Act(−,X ) : C op → Set, B 7→ {actions of B on X}.
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Definition (Borceux, Janelidze, Kelly; 2005)

Let C be a pointed category with finite limits and finite coproducts. C is action
representable if the functor Act(−,X ) is representable for any object X in C :

Act(−,X ) ≈ HomC (−, [X ])

[X ] is the actor of X .

Examples of action representable categories

any abelian category: [X ] = 0

Grp: [G ] = Aut(G )

LieR : [L] = Der(L)

XMod(Grp), XMod(LieK )

HopfK ,coc
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3. Split extension classifiers

PtB(C ) C B♭(−)

CKerB

⊣

B+(−)⊣ ⊣

If C is semi-abelian, then:

PtB(C ) ≈ C B♭(−)

Theorem (Borceux, Janelidze, Kelly; 2005)

Let C be a semi-abelian category. TFAE:

1 C is action representable, i.e., Act(−,X ) : C op → Set is representable for all X in C .

2 SplExt(−,X ) : C op → Set is representable for all X in C .

3 For all X in C , there exists a generic split extension:
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φ

x

f
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3 For all X in C , there exists a generic split extension:

0 X A′ B ′ 0

0 X A∗ B∗ 0

∃!ψ ∃!φ

B∗ is the split extension classifier.

In this case, B∗ = [X ] and A∗ = [X ]⋉ξ X, where ξ ∈ Act([X ],X ) corresponds to
1[X ] ∈ HomC ([X ], [X ]).
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4. Grpd(C )

XMod(Grp) ≈ Grpd(Grp), XMod(LieK ) ≈ Grpd(LieK ) are action representable categories.

Question

C action representable
?⇒ Grpd(C ) action representable

Remark

In a semi-abelian category C , a reflexive graph

C1 C0

d

c

e

admits at most one internal category structure.

Grpd(C ) ≈ Cat(C )

Grpd(C ) is a Birkhoff subcategory of RG(C ), i.e. a full reflective subcategory which is
closed under subobjects and regular quotients.

Grpd(C ) RG(C )
⊣
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Proposition (Bourn, Gran; 2002, Gran; 1999)

C is a semi-abelian category iff Grpd(C ) is semi-abelian.

Theorem (Gran, Gray; 2021)

A category C is
semi-abelian + algebraically coherent,

with normalizers
+ action representable

iff Grpd(C ) is so.

Examples

Grp, LieK , HopfK ,coc.
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5. 2-Grpd(C )
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2-Grpd(C ): full subcategory of Grpd2(C ) with objects such that e0 is an isomorphism. • •
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Main result (E., Gran)

Let C be a category which is
semi-abelian + algebraically coherent,

with normalizers
+ action representable

Then 2-Grpd(C ) has the same properties.

17/19



Theorem (E., Gran)

Let C be a semi-abelian category. Then 2-Grpd(C ) is a Birkhoff subcategory of Grpd2(C )
and the reflector F : Grpd2(C ) → 2-Grpd(C ) is given by:

C 1
1 C 1

0

C 1
1 +C 0

1
Coeq(d0, c0) C 1

0 +C 0
0
Coeq(d0, c0)

C 0
1 C 0

0

Coeq(d0, c0) Coeq(d0, c0)

d1 c1

d1

c1

c0

e1

d0

δ1 γ1

δ1

γ1

γ0

ϵ1

δ0

e1

c0

d0

e0

e0 ϵ1 ϵ0

Remark
The statement is true for any regular Mal’tsev category C with finite colimits, such as
Grp(Top), Abt.f., Ban.
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Proof of main result

The fact that 2-Grpd(C ) is a Birkhoff subcategory of Grpd2(C ) implies that 2-Grpd(C )
is semi-abelian.

Moreover, 2-Grpd(C ) is a co-reflective subcategory of Grpd2(C ).

Thus, we can use that the inclusion

I : 2-Grpd(C ) ↪→ Grpd2(C )

is fully faithful, has a right adjoint and is itself a right adjoint to prove that 2-Grpd(C )
has split extension classifiers.
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is fully faithful, has a right adjoint and is itself a right adjoint to prove that 2-Grpd(C )
has split extension classifiers.
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