Confluence of Term Rewriting Systems with Variable Binding

Gregor Feierabend¹ Marcelo Fiore¹

¹University of Cambridge

CT2025, Brno, 17 July 2025

Binding signature:

$$\Sigma = (O : Set, |\underline{\ }| : O \to \mathbb{N}^*)$$

Binding signature:

$$\Sigma = (O : Set, |\underline{\ }| : O \to \mathbb{N}^*)$$

Signature endofunctor:

Binding signature:

$$\Sigma = (O : Set, |\underline{\ }| : O \to \mathbb{N}^*)$$

Signature endofunctor:

Terms over variables V = Y(1):

initial $(\Sigma + V)$ -algebra

Binding signature:

$$\Sigma = (O : Set, |\underline{\ }| : O \to \mathbb{N}^*)$$

Signature endofunctor:

Terms in metacontext M:

initial
$$(\Sigma + V + (\mathfrak{M} \cdot -))$$
-algebra

Binding signature:

$$\Sigma = (O : Set, |\underline{\ }| : O \to \mathbb{N}^*)$$

Signature endofunctor:

Terms in metacontext M:

initial
$$(\Sigma + V + (\mathfrak{M} - -))$$
-algebra

Term monad:

$$T_{\Sigma}: \operatorname{Set}^{\mathbb{F}} \to \operatorname{Set}^{\mathbb{F}}$$

Binding signature:

$$\Sigma = (O : Set, |\underline{\ }| : O \to \mathbb{N}^*)$$

Signature endofunctor:

$$\sum_{\mathsf{Set}^{\mathbb{I}}}$$

Terms in metacontext M:

initial
$$(\Sigma + V + (\mathfrak{M} \cdot -))$$
-algebra

Term monad:

$$T_{\Sigma}: \operatorname{Set}^{\mathbb{F}} \to \operatorname{Set}^{\mathbb{F}}$$

Terms in $\mathfrak{M} \in \operatorname{Set}^{\mathbb{F}}$ and $\Gamma \in \mathbb{F}$:

$$T_{\Sigma}(\mathfrak{M})(\Gamma)$$

Binding signature:

$$\Sigma = (O : Set, |\underline{\ }| : O \to \mathbb{N}^*)$$

Signature endofunctor:

Terms in metacontext M:

initial
$$(\Sigma + V + (\mathfrak{M} - -))$$
-algebra

Term monad:

$$T_{\Sigma}: \operatorname{Set}^{\mathbb{F}} \to \operatorname{Set}^{\mathbb{F}}$$

Terms in $\mathfrak{M} \in \operatorname{Set}^{\mathbb{F}}$ and $\Gamma \in \mathbb{F}$:

$$T_{\Sigma}(\mathfrak{M})(\Gamma)$$

Metavariables:

$$\mathfrak{m}\langle t_1, \ldots, t_n \rangle$$

Binding signature:

$$\Sigma = (O : Set, |\underline{\ }| : O \to \mathbb{N}^*)$$

Signature endofunctor:

Terms in metacontext \mathfrak{M} :

initial
$$(\Sigma + V + (\mathfrak{M} \cdot -))$$
-algebra

Term monad:

$$T_{\Sigma}: \operatorname{Set}^{\mathbb{F}} \to \operatorname{Set}^{\mathbb{F}}$$

Terms in $\mathfrak{M} \in \operatorname{Set}^{\mathbb{F}}$ and $\Gamma \in \mathbb{F}$:

$$T_{\Sigma}(\mathfrak{M})(\Gamma)$$

Metavariables:

$$\mathfrak{m}\langle t_1, \ldots, t_n \rangle$$

Rewrite rule:

$$(\mathfrak{M}, \ell, r)$$
 with $\ell \in \Sigma T_{\Sigma}(\mathfrak{M})(0)$
 $r \in T_{\Sigma}(\mathfrak{M})(0)$

Binding signature:

$$\Sigma = (O : Set, |\underline{\ }| : O \to \mathbb{N}^*)$$

Signature endofunctor:

Terms in metacontext M:

initial
$$(\Sigma + V + (\mathfrak{M} - -))$$
-algebra

Term monad:

$$T_{\Sigma}: \operatorname{Set}^{\mathbb{F}} \to \operatorname{Set}^{\mathbb{F}}$$

Terms in $\mathfrak{M} \in \operatorname{Set}^{\mathbb{F}}$ and $\Gamma \in \mathbb{F}$:

$$T_{\Sigma}(\mathfrak{M})(\Gamma)$$

Metavariables:

$$\mathfrak{m}\langle t_1, \ldots, t_n \rangle$$

Rewrite rule:

$$(\mathfrak{M}, \ell, r)$$
 with $\ell \in \Sigma T_{\Sigma}(\mathfrak{M})(0)$
 $r \in T_{\Sigma}(\mathfrak{M})(0)$

Reduction relation:

$$\leadsto \subseteq T_{\Sigma}(\emptyset) \times T_{\Sigma}(\emptyset)$$

Confluence of Term Rewriting Systems

 β rewrite rule for λ -calculus:

$$\Big(\big\{\mathfrak{a}\langle_\rangle,\ \mathfrak{b}\langle\rangle\big\},\ (\lambda x.\mathfrak{a}\langle x\rangle)\mathfrak{b}\langle\rangle,\ \mathfrak{a}\langle\mathfrak{b}\langle\rangle\rangle\Big)$$

Terms in $\mathfrak{M} \in \operatorname{Set}^{\mathbb{F}}$ and $\Gamma \in \mathbb{F}$:

$$T_{\Sigma}(\mathfrak{M})(\Gamma)$$

Metavariables:

$$\mathfrak{m}\langle t_1, \ldots, t_n \rangle$$

Rewrite rule:

$$(\mathfrak{M}, \ell, r)$$
 with $\ell \in \Sigma T_{\Sigma}(\mathfrak{M})(0)$
 $r \in T_{\Sigma}(\mathfrak{M})(0)$

Reduction relation:

$$\leadsto \subseteq T_{\Sigma}(\emptyset) \times T_{\Sigma}(\emptyset)$$

Confluence of Term Rewriting Systems

 β rewrite rule for λ -calculus:

$$(\{\mathfrak{a}\langle_\rangle, \mathfrak{b}\langle\rangle\}, (\lambda x.\mathfrak{a}\langle x\rangle)\mathfrak{b}\langle\rangle, \mathfrak{a}\langle\mathfrak{b}\langle\rangle\rangle)$$

Confluence:

Terms in $\mathfrak{M} \in \operatorname{Set}^{\mathbb{F}}$ and $\Gamma \in \mathbb{F}$:

$$T_{\Sigma}(\mathfrak{M})(\Gamma)$$

Metavariables:

$$\mathfrak{m}\langle t_1, \ldots, t_n \rangle$$

Rewrite rule:

$$(\mathfrak{M}, \ell, r)$$
 with $\ell \in \Sigma T_{\Sigma}(\mathfrak{M})(0)$
 $r \in T_{\Sigma}(\mathfrak{M})(0)$

Reduction relation:

$$\leadsto \subseteq T_{\Sigma}(\emptyset) \times T_{\Sigma}(\emptyset)$$

 β rewrite rule for λ -calculus:

$$\Big(\big\{\mathfrak{a}\langle_\rangle,\ \mathfrak{b}\langle\rangle\big\},\ (\lambda x.\mathfrak{a}\langle x\rangle)\mathfrak{b}\langle\rangle,\ \mathfrak{a}\langle\mathfrak{b}\langle\rangle\rangle\Big)$$

Confluence:

$$(\lambda x.(\lambda w.w)x)((\lambda y.y)z)$$

$$(\lambda w.w)((\lambda y.y)z) \qquad (\lambda x.(\lambda w.w)x)z$$

Coherence of (\mathfrak{M}, ℓ, r) :

 β rewrite rule for λ -calculus:

$$(\{\mathfrak{a}\langle_\rangle, \mathfrak{b}\langle\rangle\}, (\lambda x.\mathfrak{a}\langle x\rangle)\mathfrak{b}\langle\rangle, \mathfrak{a}\langle\mathfrak{b}\langle\rangle\rangle)$$

Confluence:

$$(\lambda x.(\lambda w.w)x)((\lambda y.y)z)$$

$$(\lambda w.w)((\lambda y.y)z) \qquad (\lambda x.(\lambda w.w)x)z$$

Coherence of (\mathfrak{M}, ℓ, r) :

(1)
$$\ell_{i}[\zeta] \qquad \qquad \ell_{i}[\zeta]$$

$$\forall i \qquad \bigg\} \qquad \Rightarrow \exists \psi \forall i \qquad \bigg\}$$

$$t_{i} \qquad = \qquad \ell_{i}[\psi]$$

 β rewrite rule for λ -calculus:

$$\Big(\big\{\mathfrak{a}\langle_\rangle,\ \mathfrak{b}\langle\rangle\big\},\ (\lambda x.\mathfrak{a}\langle x\rangle)\mathfrak{b}\langle\rangle,\ \mathfrak{a}\langle\mathfrak{b}\langle\rangle\rangle\Big)$$

Confluence:

$$(\lambda x.(\lambda w.w)x)((\lambda y.y)z)$$

$$(\lambda w.w)((\lambda y.y)z) \qquad (\lambda x.(\lambda w.w)x)z$$

Coherence of (\mathfrak{M}, ℓ, r) :

(1)
$$\ell_{i}[\zeta]$$
 $\ell_{i}[\zeta]$ $\ell_{i}[\zeta]$ $\forall i$ $\begin{cases} \\ \\ \\ \end{cases}$ $\Rightarrow \exists \psi \forall i$ $\begin{cases} \\ \\ \\ \end{cases}$ $\ell_{i}[\psi]$

$$\begin{array}{ccc}
(2) & \ell_{i}[\zeta] & r[\zeta] \\
\forall i & & \Rightarrow & & \\
\ell_{i}[\psi] & & r[\psi]
\end{array}$$

 β rewrite rule for λ -calculus:

$$\Big(\big\{\mathfrak{a}\langle_\rangle,\ \mathfrak{b}\langle\rangle\big\},\ (\lambda x.\mathfrak{a}\langle x\rangle)\mathfrak{b}\langle\rangle,\ \mathfrak{a}\langle\mathfrak{b}\langle\rangle\rangle\Big)$$

Confluence:

$$(\lambda x.(\lambda w.w)x)((\lambda y.y)z)$$

$$(\lambda w.w)((\lambda y.y)z) \qquad (\lambda x.(\lambda w.w)x)z$$

Coherence of (\mathfrak{M}, ℓ, r) :

(1)
$$\ell_{i}[\zeta] \qquad \qquad \ell_{i}[\zeta]$$

$$\forall i \qquad \begin{cases} \Rightarrow \exists \psi \forall i \qquad \end{cases}$$

$$t_{i} \qquad = \qquad \ell_{i}[\psi]$$

$$\begin{array}{ccc}
(2) & \ell_i[\zeta] & r[\zeta] \\
\forall i & & \Rightarrow & & \\
\ell_i[\psi] & & r[\psi]
\end{array}$$

coherence of rewrite rule ⇒ confluence of reduction relation

References

- P. Aczel. A General Church-Rosser Theorem. Unpublished manuscript, 1978.
- J. Adámek. Free algebras and automata realizations in the language of categories. *Commentationes Mathematicae Universitatis Carolinae*, 1974.
- M. Fiore. Second-order and dependently-sorted abstract syntax. In 23rd Annual IEEE Symposium on Logic in Computer Science, 2008.
- M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In *Proceedings. 14th Symposium on Logic in Computer Science*, 1999.