Roy Ferguson

Stellenbosch University

July 2025

In PFn

In Set*

In PFn

In Set*

In PFn

In Set*

In PFn

In Set*

In any regular category:

$$\ker(f) \wedge \operatorname{im}(g_i) = 0$$
 \iff
 $\ker(g_i) = \ker(fg_i)$

We work in a pointed category $\ensuremath{\mathbb{C}}$ with kernels.

We work in a pointed category $\mathbb C$ with kernels.

Definition

A morphism f in $\mathbb C$ is a monilmorphism if for any composable g_1,g_2

$$[fg_1 = fg_2] \wedge [\ker(g_i) = \ker(fg_i)] \implies g_1 = g_2$$

We work in a pointed category $\mathbb C$ with kernels.

Definition

A morphism f in $\mathbb C$ is a monilmorphism if for any composable g_1,g_2

$$[fg_1 = fg_2] \wedge [\ker(g_i) = \ker(fg_i)] \implies g_1 = g_2$$

We work in a pointed category $\mathbb C$ with kernels.

Definition

A morphism f in $\mathbb C$ is a monilmorphism if for any composable g_1,g_2

$$[fg_1 = fg_2] \wedge [\ker(g_i) = \ker(fg_i)] \implies g_1 = g_2$$

Properties:

Monilmorphisms are closed under composition.

We work in a pointed category \mathbb{C} with kernels.

Definition

A morphism f in $\mathbb C$ is a monilmorphism if for any composable g_1,g_2

$$[fg_1 = fg_2] \wedge [\ker(g_i) = \ker(fg_i)] \implies g_1 = g_2$$

- ▶ Monilmorphisms are closed under composition.
- ightharpoonup f is monil with trivial kernel.

We work in a pointed category $\mathbb C$ with kernels.

Definition

A morphism f in $\mathbb C$ is a monilmorphism if for any composable g_1,g_2

$$[fg_1 = fg_2] \wedge [\ker(g_i) = \ker(fg_i)] \implies g_1 = g_2$$

- ▶ Monilmorphisms are closed under composition.
- ightharpoonup f is monil with trivial kernel.
- ightharpoonup f is monil with kernel identity.

We work in a pointed category $\mathbb C$ with kernels.

Definition

A morphism f in $\mathbb C$ is a monilmorphism if for any composable g_1,g_2

$$[fg_1 = fg_2] \wedge [\ker(g_i) = \ker(fg_i)] \implies g_1 = g_2$$

- Monilmorphisms are closed under composition.
- ightharpoonup f is monil with trivial kernel.
- ightharpoonup f is monil with kernel identity.
- Monilmorphisms are stable under pullback along monomorphisms.

A restriction structure [1] on a category $\mathbb C$ is an assignment

$$f: X \to Y \mapsto \bar{f}: X \to X$$

A restriction structure [1] on a category $\mathbb C$ is an assignment

$$f: X \to Y \mapsto \bar{f}: X \to X$$

- (R.1) $f\overline{f} = f$
- (R.2) $\overline{f}\overline{g} = \overline{g}\overline{f}$ whenever dom(f) = dom(g)
- (R.3) $g\overline{f} = \overline{g}\overline{f}$ whenever dom(f) = dom(g)
- (R.4) $\overline{g}f = f\overline{gf}$ whenever cod(f) = dom(g)

A restriction structure [1] on a category $\mathbb C$ is an assignment

$$f: X \to Y \mapsto \bar{f}: X \to X$$

f is a restricted monic if for any composable g_1, g_2

$$\mathit{fg}_1 = \mathit{fg}_2 \implies \overline{\mathit{f}}\,\mathit{g}_1 = \overline{\mathit{f}}\,\mathit{g}_2$$

A restriction structure [1] on a category $\mathbb C$ is an assignment

$$f: X \to Y \mapsto \bar{f}: X \to X$$

f is a restricted monic if for any composable g_1, g_2

$$fg_1 = fg_2 \implies \overline{f}g_1 = \overline{f}g_2$$

 \mathbb{C} has *restriction zero* if all $\overline{z} = z$

A restriction structure [1] on a category $\mathbb C$ is an assigment

$$f: X \to Y \mapsto \bar{f}: X \to X$$

f is a restricted monic if for any composable g_1, g_2

$$fg_1 = fg_2 \implies \overline{f}g_1 = \overline{f}g_2$$

 \mathbb{C} has restriction zero if all $\overline{z} = z$ ($\iff \ker f = \ker \overline{f}$)

A restriction structure [1] on a category $\mathbb C$ is an assigment

$$f: X \to Y \mapsto \bar{f}: X \to X$$

f is a restricted monic if for any composable g_1, g_2

$$fg_1 = fg_2 \implies \overline{f}g_1 = \overline{f}g_2$$

 \mathbb{C} has restriction zero if all $\overline{z} = z$ ($\iff \ker f = \ker \overline{f}$)

Theorem

In a restriction category with restriction zero T.F.A.E.

- 1. The monilmorphisms are exactly the restricted monics.
- 2. Every restriction idempotent is a monilmorphism.

f is extensive [2] if extensivity condition holds for f

f is extensive [2] if extensivity condition holds for f

 $\mathbb C$ is PCTS if pulling the coequaliser of points back along t with $\ker(t)=0$ is coequaliser of points

f is extensive [2] if extensivity condition holds for f

 \mathbb{C} is PCTS if pulling the coequaliser of points back along t with $\ker(t) = 0$ is coequaliser of points

Theorem

Let $\mathbb C$ be any lextensive PCTS category. Then the extensive morphisms in $(1\downarrow\mathbb C)$ are exactly the morphisms with trivial kernel.

f is extensive [2] if extensivity condition holds for f

 $\mathbb C$ is PCTS if pulling the coequaliser of points back along t with $\ker(t)=0$ is coequaliser of points

Theorem

Let $\mathbb C$ be any lextensive PCTS category. Then the extensive morphisms in $(1\downarrow\mathbb C)$ are exactly the morphisms with trivial kernel.

$$\{f \mid f \text{ is monil}\} \perp \{t \mid \ker(t) = 0\}$$

A sum structure [3] on $\mathbb C$ is a monoidal structure \oplus with unit 0 and

jointly epimorphic.

A sum structure [3] on $\mathbb C$ is a monoidal structure \oplus with unit 0 and

jointly epimorphic.

$$u_1 \sqsubset u_2$$

A sum structure [3] on $\mathbb C$ is a monoidal structure \oplus with unit 0 and

jointly epimorphic.

$$u_1 \sqsubset u_2$$

f is \sqsubseteq -reflecting if $fu_1 \sqsubseteq fu_2 \implies u_1 \sqsubseteq u_2$

A sum structure [3] on $\mathbb C$ is a monoidal structure \oplus with unit 0 and

jointly epimorphic.

$$u_1 \sqsubset u_2$$

f is \sqsubseteq -reflecting if $fu_1 \sqsubseteq fu_2 \implies u_1 \sqsubseteq u_2$ f is extensive w.r.t. \oplus if it satisfies extensivity condition with + replaced with \oplus .

We will say \mathbb{C} is PCSEP if the pullback of the square of a coequaliser of points is epi

We will say $\mathbb C$ is PCSEP if the pullback of the square of a coequaliser of points is epi

Theorem

Let $\mathbb C$ be a lextensive PCSEP category. Then the class of monilmorphisms is closed under sums in $(1 \downarrow \mathbb C)$.

We will say $\mathbb C$ is PCSEP if the pullback of the square of a coequaliser of points is epi

Theorem

Let \mathbb{C} be a lextensive PCSEP category. Then the class of monilmorphisms is closed under sums in $(1 \downarrow \mathbb{C})$.

So in $(1\downarrow\mathbb{C})_{\text{Monil}}$ coproduct becomes sum structure \oplus

We will say $\mathbb C$ is PCSEP if the pullback of the square of a coequaliser of points is epi

Theorem

Let \mathbb{C} be a lextensive PCSEP category. Then the class of monilmorphisms is closed under sums in $(1 \downarrow \mathbb{C})$.

So in $(1\downarrow\mathbb{C})_{\text{Monil}}$ coproduct becomes sum structure \oplus

If $\mathbb C$ is also PCTS then in $(1\downarrow\mathbb C)_{\mathsf{Monil}}$

f extensive $\iff f$ mono $\iff f \sqsubset$ -reflecting

Thank you!

Thank you for listening.

References

- [1] J.R.B. Cockett and S. Lack, *Restriction categories I:* categories of partial maps, Theoret. Comput. Sci 270 (2002), no. 1-2, 223–259.
- [2] M. Hoefnagel and E. Theart, On extensivity and coextensivity of morphisms, Theory and Applications of Categories, 2025 (to appear).
- [3] Z. Janelidze, Cover Relations on Categories, Applied Categorical Structures 17, 2009, 351–371.