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Monilmorphisms

We work in a pointed category C with kernels.

Definition
A morphism f in C is a monilmorphism if for any composable g1, g2

[fg1 = fg2] ∧ [ker(gi ) = ker(fgi )] =⇒ g1 = g2

Properties:

▶ Monilmorphisms are closed under composition.

▶ f is mono ⇐⇒ f is monil with trivial kernel.

▶ f is zero ⇐⇒ f is monil with kernel identity.

▶ Monilmorphisms are stable under pullback along
monomorphisms.
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Monilmorphisms in categories of partial maps

A restriction structure [1] on a category C is an assigment

f : X → Y 7→ f̄ : X → X

f is a restricted monic if for any composable g1, g2

fg1 = fg2 =⇒ f g1 = f g2

C has restriction zero if all z = z

(
⇐⇒ ker f = ker f

)

Theorem
In a restriction category with restriction zero T.F.A.E.

1. The monilmorphisms are exactly the restricted monics.

2. Every restriction idempotent is a monilmorphism.
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Relative extensivity in (1 ↓ C)

f is extensive [2] if extensivity condition holds for f

C is PCTS if pulling the coequaliser of points back along t with
ker(t) = 0 is coequaliser of points

Theorem
Let C be any lextensive PCTS category. Then the extensive
morphisms in (1 ↓ C) are exactly the morphisms with trivial kernel.

{f | f is monil} ⊥
∼
{t | ker(t) = 0}
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Sum structures

A sum structure [3] on C is a monoidal structure ⊕ with unit 0 and
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replaced with ⊕.
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We will say C is PCSEP if the pullback of the square of a
coequaliser of points is epi

Theorem
Let C be a lextensive PCSEP category. Then the class of
monilmorphisms is closed under sums in (1 ↓ C).

So in (1 ↓ C)Monil coproduct becomes sum structure ⊕

If C is also PCTS then in (1 ↓ C)Monil

f extensive ⇐⇒ f mono ⇐⇒ f ⊏ -reflecting
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Thank you!

Thank you for listening.
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